"tc" calibration for sonic, Tc.2m

dataset = "geo"

\[T_c = 1.31 \, \text{degC} + t_c \times 0.999; \text{rms} = 0.16 \, \text{degC} \]

\[ext{abline}(1.26 \pm 0.22 \, \text{degC}, 1) \]
"tc" calibration for sonic, Tc.8m

2013 May 29 16:52 – 2013 Jul 15 23:57 CDT

\[T_c = 1.13 \text{ degC} + tc^{0.991}; \text{rms} = 0.14 \text{ degC} \]

\[\text{abline}(0.91 \pm 3'0.41 \text{ degC}, 1) \]
"tc" calibration for sonic, Tc.13.9m

\[T_c = 1.19 \text{ degC} + 1.086; \text{rms} = 0.11 \text{ degC} \]

\[\text{abline}(1.34 \pm 0.17 \text{ degC}, 1) \]
$T_c = 0.85 \text{ degC} + tc^1.013; \text{ rms} = 0.11 \text{ degC}$

$\text{abline}(1.19 \pm 3.0.19 \text{ degC}, 1)$
The diagram shows a linear fit for Tc and tc.38m with the equation:

\[Tc = -0.55 \text{ degC} + 0.997 \times \text{tc} \]

The equation is expressed as:

\[y = mx + b \]

where:
- \(y \) = Tc
- \(m \) = slope = 0.997
- \(b \) = intercept = -0.55

The root mean square (rms) of the data points is 0.15 degC.

The red dotted line represents the 95% confidence interval of the data:

\[0.65 \pm 0.18 \text{ degC} \]

The dataset is labeled as "geo".

The values range from approximately 20 to 35 degC on the x-axis (tc.38m) and from 20 to 30 degC on the y-axis (Tc).
"tc" calibration for sonic, Tc.43.9m

tc = 0.75 degC + tc*1.008; rms = 0.11 degC

abline(0.95 +/- 3*0.21 degC, 1)

dataset = "geo"