Ground-based Microwave Radiometry for

- investigating spatial variability
- towards sensor synergy

Susanne Crewell and Ulrich Löhnert
University of Cologne
The Challenge: Humidity variations

Small scale variations of water vapor and clouds

Water vapor mixing ratio [ig/kg] along S-SW (210°)—N-NE (30°) transect

30° scans
Δx = 5 km
at PBL height

Microwave radiometry measures thermal emission along slant path
Scanning in Different Spectral Regions

Azimuth scan at 30° elevation

Liquid water path (LWP) [gm⁻²]

Infrared TB anomaly [K]

Total Sky Imager

Microwave radiometry can reveal cloud water ➔ good matching of beams is required
Process Studies

- assessment of individual clouds
 ➔ dynamic component from Doppler wind lidar
- analysis of 3D radiation effects
Statistical information

Murg Valley aligned in north – south direction

Water vapor

- azimuth scans show maximum differences between individual directions up to \(4 \text{ kgm}^{-2}\)
- largest mean differences occur in north–south with \(-0.18 \text{ kgm}^{-2}\) and in east–south with \(-0.14 \text{ kgm}^{-2}\)

Liquid water path

- azimuth scans show more than \(20 \text{ gm}^{-2}\) higher LWP above hill crests
- not straightforward comparable to zenith observations

Mean LWP in \(\text{gm}^{-2}\)
Water Vapor Gradients

- airmass corrected integrated water vapor \(W \)

Linear horizontal gradient in water vapor density \(\rho_v \) in the direction of the gradient \(x \)

\[
\rho_{v_0}(x) = A_0 + A_1 x
\]

\[
\rho_v(x, z) = \begin{cases}
\rho_v(x) & z \leq h \\
\rho_v(x) \cdot \exp\left(-\frac{z-h}{L}\right) & z > h
\end{cases}
\]

- \(A_0 \) water vapor above site
- \(A_1 \) gradient strength
- \(h \) boundary layer height
- \(L \) scale height

Radiosonde profile
Water Vapor Gradients

The amplitude factor corresponds to the gradient distribution between PBL and free troposphere

\[W_1 = A_1 \left(\frac{1}{2} h^2 + Lh + L^2 \right) \]

The offset of the cosine wave corresponds to the vertical column above the instrument site

\[W_o = A_o (h + L) \]

\[
W = W_0 + W_1 \tan \theta \cos(\alpha + \varphi)
\]

The units for water vapor are kg m\(^{-2}\).

Legend:
- \(\alpha \) azimuth angle
- \(\theta \) zenith angle
- \(\varphi \) gradient direction
- \(A_1 \) gradient strength

• Crosses show gradient direction derived for individual elevation angles.
• Line gives direction obtained from fit to full volume data.
Linear Water Vapor Gradients

Model validation: 20 April 2009

COSMO
$\Delta x=400m$

6 UTC

12 UTC

16 UTC

HATPRO

Annika Schomburg, Christoph Selbach
Temporal development

problems of high-resolution modelling: correct description of boundary conditions and advection

COSMO with Δx=400m

scan variability
Towards Sensor Synergy

cloud radar distracts raven from MWR
Integrated Profiling Technique (IPT)

a 1DVar approach towards multi-instrument retrieval

Measurements = INPUT

- passive RS – measurement + error
- active RS – measurement + error
- in-situ measurement + error
- a priori information + error

Integration

- e.g. 1DVAR

OUTPUT

- atmospheric composition: temperature, humidity, hydrometeors + errors

What about profiling of clouds?

Inclusion of higher MWR frequencies doubles information content.
How does radar help?

Ebell, K., U. Löhnert, S. Crewell, D. Turner, On characterizing the error in a remotely sensed liquid water content profile, Atmospheric Research, 98(1), 57-68. DOI:10.1016/j.atmosres.2010.06.002
Conclusions

- Microwave radiometer (MWR) can provides continuous spatial informations on column water vapour and cloud distribution
 - process studies
 - long-term statistics (site representativeness)

- Water vapour gradients can be automatically determined
 - advection often occurs in distinct jumps
 - investigate how residual WV field can be related to convective activity

- For model evaluation it is important to match observations and models not only in space and in time but also to mimic instruments
 - observation simulators

- Optimal estimation theory is a powerful tool to investigate information content
 - no liquid water profiles can be determined from MWR alone
 - cloud radar provides additional informations
Uncertainty implication for radiation

sensitivity of retrieval to additional microwave brightness temperatures
→ include 90 / 150 GHz channels

→ effect on LWP results: ± 20 gm⁻²
→ strong effect on solar flux: variations from -40 to +20 Wm⁻²
Volume scanning

IWV

θ = 57°

mean+/−std dev = 11.5+/−0.3

min, max, N = 11.1, 12.6, 326

θ = 76°

mean+/−std dev = 0.0+/−0.2

min, max, N = −0.6, 0.8, 326

LWP

09.09.2009 00:09:48 - 00:18:06 [dur=08:18]
Ideas and Questions for our Action

- many other promising instrument combinations
 - Radar + Lidar (e.g. Univ. of Reading)
 - MWR + Lidar (e.g. Univ. of Bern, IfT Leipzig)
 - IR + Lidar (??)
 ...

- Where do we need/want to go?
 - Identify combinations which are easy to handle & robust, bring forth straight-forward results and are relatively "cheap" → Network-suitability (WG1 & 4)
 - **Ceilometer, GPS, IRT, MWR combinations** …

 → Develop methods for dedicated "anchor stations" for a most complete picture of the atmospheric profile + errors (WG3 & 4)
 - **Lidar, FTIR, cloud radar, wind profiler combinations** …

- What are some of the pending problems?
 - calibration & instrumental error issues (WG1)
 - absorption model uncertainties!!! (which WG??)
 - radar discrepancy (WG4)