HIAPER Cloud Radar

The HIAPER Cloud Radar (HCR) is a research-grade airborne millimeter wavelength radar that serves the atmospheric science community by providing remote sensing capabilities on the NSF/NCAR HIAPER aircraft. The combination of the high-sensitivity and high-resolution HCR measurements and the high-altitude, long-range capabilities of HIAPER provides the ability to study a wide range of clouds in remote regions. The HCR makes dual-polarization and Doppler measurements that are useful for studying cloud microphysics and document cloud properties in remote locations such as over the oceans and in arctic regions, benefitting research ranging in scale from cloud scale processes to determining how cloud systems impact regional and global climate.
About HCR

During flight, the HCR can operate in staring mode (e.g., nadir, zenith, or horizontal) and also has cross-track scanning capability. A key feature of the HCR is the real-time antenna stabilization system that uses the INS/GPS aircraft attitude data to correct the beam pointing angle for aircraft motion during flight, thereby significantly improving vertical velocity measurement during nadir and zenith staring mode.

The radar is housed in a 20-inch diameter wing pod and can be flown on different aircraft capable of supporting the pod. When not in flight, the HCR can operate in a ground-based configuration, enabling long-term cloud monitoring at a fixed site.

System Description

The standard moments products such as reflectivity, Doppler velocity, spectrum width, and dual-polarization variables are archived in netCDF CFRadial format. The raw in-phase and quadrature time series information are also archived, enabling spectral analysis.

The pod-based configuration of HCR uses a lens antenna to illuminate a reflector that can rotate in the cross-track direction. The reflector can rotate up to 60 degrees per second and has the ability to move in the tilt direction (along track) to adjust for the changing pitch of the aircraft.

Technical Specifications

- **Wavelength**: 3.2 mm (W-band)
- **Antenna Gain**: 46.2 dB
- **Beamwidth**: 0.7º
- **Transmitter**: Klystron
- **Peak Power**: 1.5 kW
- **Pulse width**: 0.2 – 1.0 μs
- **PRF**: 10 kHz
- **Polarization**: vertical, horizontal, alternating

Sample retrieved quantities of droplet size (i.e., effective diameter) and liquid water content (LWC).

Contact

Lead Scientist
Dr. Jothiram Vivekanandan
vivek@ucar.edu
303.497.8402

On the Web

www.eol.ucar.edu/instruments/hcr
www.eol.ucar.edu/requestfacilities

EOL is managed by the National Center for Atmospheric Research and sponsored by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.