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Global Gravity-Wave “Hot Spots” in the Upper
Stratosphere (3 hPa)
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*New Zealand is an ideal natural laboratory to study deep propagating GWs
and logistically easier than the Andes.




Why are Deep Propagating Gravity
Waves Important?
« GWs account for main vertical energy & momentum transport at all levels
 The important GWs are not resolved by satellite measurements or GCMs
* GCM parameterizations of GWs are known to be seriously deficient

* Better GW parameterizations require improved understanding of complex
GW dynamics via coordinated measurements & modeling

=> improved predictions of weather & climate DEEPWAVE Gravity Waves
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Why the New Zealand & Southern Oceans?
Rich Prevalent Large-Amplitude GW Structures

Non-Orographic Orographic Waves Downstream
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Deep GW Propagation over New Zealand

What Factors Enable GWs to Achieve Large Amplitudes in the

Southern Hemisphere Stratosphere and Above?
Zonal winds differ from Northern Frequency of 700 hPa U>15m s-!

Hemisphere to S. Hemisphere Invercargill, New Zealand
ERA Reanalysis (July 1991-2011)
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Which Gravity Waves are Visible and Invisible to
Different Satellite Remote Sensors?
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Some DeepWave Science Questions

» What Causes Gravity Wave(GW) “Hotspots”?

» What sources/processes control stratospheric GW activity?

» What is the predictability of deep propagating GWs?

» What factors enable GWs to achieve large amplitudes and scales?

» What Accounts for the large GW variance and momentum flux
modulations at high Southern Latitudes?

» Which GWs are Visible and Invisible to Different Satellite Remote
Sensors?

» How can GW parameterizations be improved for climate models?



DEEPWAVE-NZ

 Location: New Zealand and the Southern
Ocean
* Timing: June 15 to July 31, 2014

 Platforms and Instruments

— NSF/NCAR Gulfstream V
 Flight level data

« Dropsondes
« Uplooking Na Lidar, Rayleigh Lidar, Advanced
Mesospheric Temperature Mapper

— NCAR/EOL Integrated Sounding System (ISS)
— Orbiting satellites (e.g. AIRS, CrlS, SSMIS)





http://youtu.be/D3A1D1vlVhQ

DeepWave Field Campaign
Austral Winter 2014
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New NCAR Gulfwing V Lidars for Measurements
In the Stratosphere and Mesosphere (~15-100 km)

Dave Fritts and Biff Williams, GATS Inc.
Two new upward-viewing lidars will be employed for Rayleigh

and resonance measurements

Aflight demo of the g
two lidars is to occur |
In February 2013
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DeepWave Field Campaign
Austral Winter 2014
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DeepWave Summary
DEEP propagating gravity WAVE experiment

«Comprehensive airborne & ground-based measurement program at one of the
most prominent global GW “hotspots” over New Zealand, Tasmania, S. Ocean,;
Field phase scheduled for June-July 2014.

First observational campaign that would follow GWs from generation in the
troposphere to breakdown in the mesosphere and thermosphere.

*Unique experimental design, measurements, and models
-NSF/NCAR GV: Flight level instruments, dropsondes, up-looking remote
sensing (lidar, airglow systems, Mesospheric Temp. Mapper)
-Ground based: NCAR ISS, surface, and MLT instruments
-Models: Mesoscale, GCMs, ensemble, adjoints, linear, DNS

*International and multi-agency interest and support.
-NSF proposal (EDO submitted), NRL interdisciplinary initiative underway
-NSF instrument development for G-V is on schedule (test flight in Feb. 2013)

*Open to collaborators who can contribute to DeepWave objectives
- seeking cost effective collaborators
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DeepWave Instrumentation
Proposed NSF/NCAR GV Instrument Suite

In situ instruments
(gust probe, GPS..)

Dropsondes

Microwave
Temperature Profiler
(MTP)

Rayleigh lidar

Sodium (Na)
resonance lidar

Mesospheric
Temperature Mapper
(MTM)

Winds, temperature, O, aerosol, humidity
* 1-5 Hz (Ax~50-250 m)

Wind & temperature profiles
* Az~100 m

Temperature profiles
» +1-2 K, Az~0.7-3 km, 10-15 s integration
(Ax~2-4 km)

Temperature profiles

» +2-8 K, Az~2 km, 20s integration (Ax~5 km)
aerosol (PSC) backscatter

* Az~0.5-1 km

Na densities, temperature

» +1-3 K, Az~3-5 km, 20s int. (Ax~5 km)
vertical wind

* +1-3 m/s, Az~3-5 km, 20 s int. (Ax~5 km)

All sky OH airglow and temperature
» +2 K, 5s integration (Ax~1 km)

Existing Facility Instruments

Flight level
(5-13 km)

Below aircraft
(0-13 km)

~5-20 km

T~30-50 km
PSC ~20-30 km

~15-30 km
~84-96 km

~87 km

Along-track hires GW &
turbulence data

Flow environment, GW
structure below flight

GW structure above &
below NGV

GW structure
GW-induced PSCs

GW structure

Two-dimensional GW
structure, propagation
directions

New Facility Instruments being
developed for DEEPWAVE
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UV Rayleigh lidar characteristics

-tripled Nd:YLF laser
-4.6 W at 351 nm, 1 kHz pulse repetition rate
-eye safe after expansion to 20 mm prior to AC exit,
invisible, no distraction to pilots
-FAA has approved this laser for the February 2013 flight test

Na resonance lidar characteristics

-narrowband Toptical DL seed laser, Raman fiber amplifier
-14 W CW at 589 nm
-amplitude modulation for “pulsed” operations
-CW scanning over ~1.5° with 32-channel detector for
effective 32-beam “pulsed” operations
-not eye safe, but can be turned off guided by onboard Traffic Collision
Avoidance System: TCAS 2000 (ACAS llI/Change7); also anticipate
operations only at altitudes > 40,000 ft
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700-mb Wind Speed, Geopotential Height
24-h Forecasts June-July 2010-2011
NZ Mountain Crest Speeds > 15 m/s
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Deep GW Propagation over New Zealand

New Zealand Climatology of Winds

Frequency of 700 hPa U>15 m s-!
Invercargill, New Zealand
ERA Reanalysis (July 1991-2011)

YMHB : 700 hPa: July (1991 - 2011)
].0 1 1 I 1

| Days with cross—mountain wind > 15 m/s: 7.7

Expected Number of Days

0 10 20 30 40 50
Cross—Mountain Wind
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Deep GW Propagation over New Zealand

New Zealand Climatology of Winds

Frequency of 700 hPa U>15 m st and
Wind Shear (700-10 mb) > 0
Invercargill, New Zealand

YMHB : 700 - 10 hPa shear: July (1991 - 2011)

Percentage of days with shear > 0
| given that U(700) > 15 m/s: 85.1

I~
1

Expected Number of Days
2 (O8]

—910 =20 0 20 40 60 80
Wind Shear U(10 hPa) — U(700 hPa)
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Gravity Waves in a Sheared Flow
Gravity-Wave Evolution over S. Andes; 8-9 August 2010
AIRSTA 30 hPa
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*GWs from S. Andes extend > 2000 km to SE.
Momentum flux in the troposphere includes:

- NW-SE branch; propagates into stratosphere

- SW-NE branch; critical level filtering
Jiang, Doyle, Reinecke, Eckermann, Smith (JAS 2012, submitted)
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Gravity Waves in a Sheared Flow
Idealized Shear Experiments
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*ldealized simulations of gravity waves in horizontal shear (Ax:15 km)

*Deep jet (similar to SH) is balanced initially, located to south of terrain.

*Flow over Gaussian hill leads to vertically propagating waves that are
refracted by the horizontal shear in the stratosphere.

« Zonal momentum flux in the stratosphere shows refraction due to shear.



