Phase Doppler Interferometry Measurement of the Cloud Drop Number Distribution during RICO

Patrick Chuang Univeristy California Santa Cruz

Overview

Scientific Goals
Technological Goals
Overview of PDI

Scientific Goals

1. To make high accuracy measurements of the cloud drop spectrum.

2. To study the large drops critical for collision-coalescence.

Scientific Questions

- What is the concentration of those drops that initiate collision-coalescence, i.e. drops with $D_p > 50$ um?
- Where are they located in small cumulus clouds? Cloud top? Cloud edges? Updrafts? Downdrafts? Everywhere?
- What is their relationship to other cloud properties (e.g. turbulence, vertical velocity, LWC)?
- What does this tell us about the mechanisms of their formation?

Technological Goals

How does this new instrument compare with other instruments under flight conditions?

cloud droplet number distribution

liquid water content

Instrument Specifications

Droplet sizing

- size range 2 to 200 um (conservative)
- min. dynamic range of 100:1
- accuracy ±0.5 um absolute

Concentration

- 5% uncertainty for each size bin (due to view volume uncertainty)
- View volume is calculated in near real-time

Drop Velocity

- nominal velocity range ±1 m/s in direction of aircraft travel
- user-adjustable between ± 0.1 to ± 5 m/s.
- accuracy 0.1% of full scale

View volume

- max. target area (perpendicular to aircraft travel) of 5 mm x 5 mm, adjustable
- view volume thickness ~ 0.1 mm (minimize coincidence)

Coincidence

- can distinguish presence of multiple particles
- can measure drop properties even if two are coincident but not completely overlapping.

Old PDI probe for aircraft icing use. Large He-Ne laser to be replaced by much smaller solid state laser.

Previous wind tunnel testing of this geometry shows no flow disturbance in the vicinity of the view volume

Figure 3: A typical PDI instrument setup.

Figure 1-1: PDA system optical arrangement

Limitations:

• Technique only works for spherical drops of known refractive index.

Advantages:

 Drop diameter and velocity measurements depends fundmentally on *frequency* (instead of amplitude), which is easy to measure accurately.

View volume is drop size dependent. This is determined in near real-time (every $\sim 10^2$ drops) by looking at (a) number of scattered fringes and (b) signal amplitude.