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Abstract. The exchange of trace gases between the Earth’s
surface and atmosphere strongly influences atmospheric
composition. Airborne eddy covariance can quantify sur-
face fluxes at local to regional scales (1–1000 km), poten-
tially helping to bridge gaps between top-down and bottom-
up flux estimates and offering novel insights into biophysi-
cal and biogeochemical processes. The NASA Carbon Air-
borne Flux Experiment (CARAFE) utilizes the NASA C-23
Sherpa aircraft with a suite of commercial and custom in-
strumentation to acquire fluxes of carbon dioxide, methane,
sensible heat, and latent heat at high spatial resolution. Key
components of the CARAFE payload are described, includ-
ing the meteorological, greenhouse gas, water vapor, and sur-
face imaging systems. Continuous wavelet transforms de-
liver spatially resolved fluxes along aircraft flight tracks. Flux
analysis methodology is discussed in depth, with special em-
phasis on quantification of uncertainties. Typical uncertain-
ties in derived surface fluxes are 40–90 % for a nominal res-
olution of 2 km or 16–35 % when averaged over a full leg
(typically 30–40 km). CARAFE has successfully flown two
missions in the eastern US in 2016 and 2017, quantifying
fluxes over forest, cropland, wetlands, and water. Preliminary
results from these campaigns are presented to highlight the
performance of this system.

1 Introduction

Accurate, quantitative, process-based understanding of cur-
rent greenhouse gas (GHG) budgets (principally carbon
dioxide, CO2, and methane, CH4) is essential to project-
ing carbon–climate feedbacks and, hence, future climate
(Friedlingstein et al., 2006; Schimel et al., 2015). While
the atmospheric concentrations of these gases can be read-
ily measured (Andrews et al., 2014), it is the sources and
sinks at the Earth’s surface and chemical conversion in the
atmosphere that drive their changing abundances.

Global CO2 budgets are typically constructed in a bottom-
up sense from fossil fuel use inventories, estimates of ocean
flux from solubility calculations, the measured time rate of
change of the atmospheric CO2 burden, perhaps a land use
change/biomass burning emission term, and a land vegeta-
tion uptake flux inferred as the residual (Ciais et al., 2013;
Le Quéré et al., 2016). This construct provides very little
information on the nature and distribution of the land flux
or its potential variations. Global CH4 budgets are similarly
under-constrained in detail (e.g., Bousquet et al., 2011; Dlu-
gokencky et al., 2011; Worden et al., 2017).

Somewhat more specific information on source and sink
distributions is commonly inferred from so-called top-down
and bottom-up flux estimates. The former involves measur-
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ing atmospheric gradients in GHG mixing ratios and com-
bining them with some estimate of volume transport to in-
fer flux to/from the surface (flux inversion; Chevallier et
al., 2010; Gurney et al., 2002). This method can be applied
across a wide range of scales (global to tens of kilometers,
depending on model resolution) but requires accurate trans-
port characterization and intensive, high-accuracy GHG sam-
pling. More recently, satellite measurements have been em-
ployed to provide increased sample density and coverage be-
yond that available from in situ measurements (Basu et al.,
2013; Houweling et al., 2015). Bottom-up GHG flux esti-
mates for terrestrial vegetation can be obtained from biogeo-
physical process models (Schaefer et al., 2008) and/or anal-
ysis of GHG flux observations, the latter typically from large
tower networks such as AmeriFlux (Boden et al., 2013; Jung
et al., 2012). Top-down and bottom-up flux estimates often
compare poorly and models disagree among themselves in
regional flux estimation, with uncertainties typically exceed-
ing 100 % for continental-scale flux estimates (Hayes et al.,
2012; Huntzinger et al., 2012). Validation of inferred fluxes
is challenging due to both their coarse spatiotemporal reso-
lution and a paucity of suitable observations.

Observations of surface exchange at scales typically ac-
cessible to aircraft (1 to 100s of kilometers) permit validation
of high-resolution emission inventories, probing of detailed
biogeochemical interactions (e.g., drought stress), and gen-
eral characterization of spatiotemporal gradients not resolv-
able from large-scale flux estimates. Several airborne meth-
ods have been developed for flux quantification, including
mass balance approaches (Cambaliza et al., 2017; Karion et
al., 2013a; Trousdell et al., 2016), inversions (Chang et al.,
2014; Commane et al., 2017), and eddy covariance (Dab-
berdt et al., 1993; Desjardins et al., 1982). Each of these
methods possess unique strengths and weaknesses in terms of
their measurement requirements, spatiotemporal resolution,
and applicability to various processes (e.g., point source vs.
areal emissions, emission vs. deposition/uptake). An exhaus-
tive review is outside the scope of this work, which focuses
on airborne eddy covariance.

Eddy covariance (EC) directly quantifies vertical turbu-
lent fluxes in the atmospheric boundary layer. When measur-
ing near the surface, fluctuations in vertical wind speed and
scalar magnitude (e.g., temperature, gas concentration) cor-
relate positively/negatively if the surface is a net source/sink
for that scalar. The time- or spatial-average product of verti-
cal wind and scalar fluctuations (their covariance) thus yields
a direct measurement of the flux at the measurement altitude.
Extrapolation to the surface is possible with knowledge of
the vertical flux divergence (change in flux with altitude),
which is typically linear and can be obtained from flux mea-
surements at multiple altitudes or independent constraints on
the continuity equation (Conley et al., 2011; Lenschow et al.,
1980). EC requires high-precision measurements of scalar
and vertical wind fluctuations throughout the range of tur-
bulent timescales (up to several Hz for sampling mixed-layer

eddies), which can be technically challenging. Uncertainties,
dominated by the stochastic nature of turbulence, typically
range from 20 to 80 % for horizontal averaging scales of 1–
30 km but can exceed 100 % when fluxes are small. Similar
error ranges are reported for other surface exchange quantifi-
cation methods (Cambaliza et al., 2014; Chang et al., 2014;
Heimburger et al., 2017).

The main advantage offered by airborne EC is the abil-
ity to map gradients in surface exchange at relatively fine
scales (∼ 1 km) and over relatively broad regions (approxi-
mately hundreds of kilometers). As with ground-based EC,
airborne EC is not feasible over rough terrain (e.g., moun-
tains), but moderate terrain (rolling hills) is acceptable (Mis-
ztal et al., 2014; Wolfe et al., 2015). The technique is es-
pecially well suited for disperse sources and sinks, such as
vegetation and open water. Though not designed for single
point sources, airborne EC can quantify aggregate fluxes over
multiple small emitters, such as oil and shale gas production
regions (Yuan et al., 2015). Airborne fluxes do not provide
the long-term temporal information afforded by tower net-
works, but they can help characterize tower representative-
ness and/or extend tower observations to larger ecosystems
(Chen et al., 1999; Kustas et al., 2006). In combination with
spatially resolved surface information (e.g., remotely sensed
vegetation properties), airborne fluxes can also help to refine
surface exchange parameterizations (Anderson et al., 2008;
Zulueta et al., 2013).

Airborne EC has elucidated surface–atmosphere exchange
processes for more than 3 decades (Dabberdt et al., 1993;
Desjardins et al., 1982; Lenschow et al., 1981; Ritter et al.,
1992, 1994, 1990; Sellers et al., 1997). Recent GHG applica-
tions include evaluations of net ecosystem exchange (NEE)
over complex ecosystems (Miglietta et al., 2007; Zulueta et
al., 2013) and quantification of CH4 emissions from shale
gas production regions (Yuan et al., 2015), agricultural ar-
eas (Desjardins et al., 2018; Hiller et al., 2014), and Arc-
tic biomes (Sayres et al., 2017). The technique has also
proven valuable for measurements of emissions, deposition,
and chemistry of reactive gases (Gu et al., 2017; Karl et al.,
2009, 2013; Misztal et al., 2016, 2014; Wolfe et al., 2015; Yu
et al., 2017). Traditionally, airborne EC has been limited to
small, low-flying aircraft (Gioli et al., 2004), but recent work
has demonstrated successful flux observations from larger
platforms (Wolfe et al., 2015; Yuan et al., 2015) that offer in-
creased payloads for more complete atmosphere and ecosys-
tem characterization.

The NASA Carbon Airborne Flux Experiment (CARAFE)
is a new system engineered specifically for acquisition of air-
borne fluxes and related properties. To date, CARAFE has
flown two 40 h missions, one in September 2016 and another
in May 2017. Table S1 in the Supplement details the times
and locations of each flight, and flight tracks are shown in
Fig. 1f. Based out of NASA Goddard Space Flight Center
(GSFC) Wallops Flight Facility (WFF), flights targeted for-
est, farmland, wetlands, and open water along the central
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Table 1. Instrument specifications for the CARAFE payload.

Measurement Instrument Data rate 1 s precision Accuracy
(Hz) (@ 1 Hz)

CO2 LGR 10 330 ppb 600 ppba

Picarro 0.2 50 ppb 200 ppbb

CH4 LGR 10 2 2.0 ppb 4 ppba

Picarro 0.2 0.4 ppb 1 ppbb

H2O LGR 10 200 ppm 7 %c

Picarro 0.07 100 ppm 7 %c

DLH 20 10 ppm 5 %

3-D winds TAMMS 20 0.05 m s−1 5 %
Pressure 0.003 mb 5 %

Vertical wind Rosemount 858 20 0.05 m s−1 5 %

Temperature Rosemount TAT 20 0.05 K 5 %

Aircraft position Applanix 510 20 – 100 m
Aircraft attitude – 0.005◦

Telemetry NASDAT 20 – –

Visible imagery Nikon D7000
IR imagery FLIR 325sc 1 – –
Four-band veg. health MS RedEdge

PPFD LI-190R 1 – 10 %

a Based on Picarro accuracy and variance of LGR–Picarro difference in 1 Hz observations. b Based on
laboratory calibrations and in-flight performance of similar instruments (Chen et al., 2010; Karion et al.,
2013b). c Based on in-flight comparison with DLH.

eastern US coast. Here we describe the key components of
the CARAFE payload and the methodology for deriving sur-
face fluxes of CO2, CH4, sensible heat (H ), and latent heat
(LE). We utilize selected observations from both missions
to demonstrate capabilities and performance. Future publica-
tions will present flux results for specific process representa-
tions in greater detail.

2 Platform and instrumentation

Here we describe the aircraft and core measurements in-
cluded on both CARAFE deployments. Table 1 summarizes
relevant specifications for each system. Key components in-
clude the aircraft, 3-D winds and associated meteorology,
fast water vapor and greenhouse gas measurements, and a
surface imaging system.

2.1 NASA C-23B Sherpa

The NASA C-23B Sherpa (Fig. 1a) is a high-wing, twin tur-
boprop aircraft operated by NASA WFF. Modifications to
support airborne science include addition of a variety of in-
strument ports and dedicated experimenter power (Fig. 1b–
e). The Sherpa was first deployed during NASA’s Carbon in
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Figure 1. The CARAFE payload. (a) The NASA C-23B Sherpa.
(b) A view inside the cabin with all instruments installed. (c) The
angle-of-attack (upper) and total air temperature (lower) probes.
(d) The DLH window plate (upper left) and fairing-mounted tar-
get (lower right). (e) GHG inlet. (f) Flux leg flight tracks for both
campaigns. Target locations indicated in italicized text correspond
to those listed in Supplement Table S1.
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Arctic Reservoirs Vulnerability Experiment (CARVE) to sur-
vey the abundance of CO2, CH4, and related gases in Canada
and Alaska (Chang et al., 2014). Subsequent upgrades for
CARAFE, as detailed below, now permit direct observations
of surface exchange via eddy covariance.

The Sherpa is ideally suited for airborne flux measure-
ments. Typical flight speeds of 80± 10 m s−1 are sufficient
for sampling turbulence statistics in the mixed layer. For ex-
ample, a 10 Hz measurement corresponds to a data point ev-
ery 8 m, and the scale of peak turbulence is roughly propor-
tional to altitude (∼ 100 m for a typical low-level leg). The
nominal altitude envelope of 0.1–3 km facilitates both near-
surface sampling and boundary layer (BL) profiling, and a
range of∼ 1000 km (duration of 4–5 h) permits regional sam-
pling from a single deployment location. With a payload
weight and power capacity of 3.1 t and 6 kW, the Sherpa can
support a full measurement suite for detailed in situ and sur-
face observations. The payload described below uses roughly
half of available weight and power.

Typical flux flight patterns consist of stacked level legs
and vertical soundings. Level legs are mostly at an altitude
of 90–150 m above ground level and range in length from
20 to 100 km. Occasional level legs higher in the boundary
layer (200–400 m) provide a constraint for vertical flux diver-
gence. Vertical soundings are required to assess boundary-
layer depth and ideally occur in the middle of the target area
at both the beginning and end of a sortie.

2.2 Meteorology and telemetry

The Sherpa Turbulent Air Motion and Meteorology System
(TAMMS) is a suite of sensors for high-frequency measure-
ment of horizontal and vertical wind vectors, pressure, and
temperature. Winds are derived from five pitot static-pressure
ports mounted on the radome (nose) of the aircraft (Brown
et al., 1983; Thornhill et al., 2003). In essence, these sen-
sors provide the velocity of air with respect to the aircraft.
Combining this information with a high-quality GPS and In-
ertial Navigation System (Applanix 510) yields the veloc-
ity of air with respect to the Earth’s surface. Calibration via
standard aircraft maneuvers (Barrick et al., 1996) corrects
for aircraft motion and specific features of the pressure field
around the aircraft (Fig. S1). A hatch on the forward left
side supports a Rosemount model 858 angle-of-attack probe
for redundant vertical wind measurements and a Rosemount
model 102 non-deiced total air temperature sensor hous-
ing coupled with a platinum sensing element (E102E4AL;
Stickney et al., 1990) for fast (∼ 8 Hz) air temperature mea-
surement (Fig. 1c). A NASA Airborne Science Data and
Telemetry (NASDAT) system (https://asapdata.arc.nasa.gov/
asf/sensors/nasdat.html) records data from these sensors at
20 Hz. The NASDAT also serves as a hub for GPS and net-
work connections to other instruments.

The quality of the 3-D wind measurement hinges on
the performance of the differential pressure measurements.

For the 2016 campaign, both the radome system and the
858 probe were equipped with Honeywell PPT2 transducers.
Afterward, spectral analysis of vertical wind speeds revealed
anomalies at frequencies above 0.1 Hz. For the 2017 cam-
paign the radome system was equipped with pressure sensors
employing a higher sampling rate (Rosemount model 1221),
giving wind spectra more consistent with theoretical expec-
tations (Fig. S2a). Comparison of the two wind systems for
2017 indicates that the 858 probe/Honeywell system under-
samples 28± 3 % of vertical wind variance, resulting in a
systematic flux underestimate of∼ 24 % (Fig. S2b). Division
of all 2016 fluxes by a factor of 0.76 rectifies this bias in the
mean, but additional random error arises from point-to-point
variability (discussed further in Sect. 3.4). Due to this issue,
fluxes and related quantities presented here will primarily uti-
lize results from the 2017 mission.

An upward-looking photosynthetic photon flux density
(PPFD) sensor (LI-COR LI-190R) is mounted on the wing
and sampled at 1 Hz via the greenhouse gas system. This sen-
sor is designed for level and stationary ground applications
but performed well on initial flights. Section S1 in the Sup-
plement describes post-processing of PPFD data to correct
for aircraft attitude and sun position.

2.3 Fast water vapor

The NASA Langley Diode Laser Hygrometer, or DLH
(Diskin et al., 2002), is an open-path infrared absorption
spectrometer that uses a variation of wavelength modula-
tion spectroscopy (Silver, 1992) to measure water vapor mole
fraction. The DLH uses a laser locked to a water vapor ab-
sorption feature at ∼ 1.395 µm and directs the beam from
a transceiver mounted on the fuselage onto a retroreflec-
tor fixed to the upper surface of the Sherpa landing gear
fairing (Fig. 1d). The returning light is collected and de-
tected in the transceiver with a total round-trip light path
of ∼ 2.5 m. Modulated signals are demodulated at twice the
driving frequency (2F detection) and are converted to wa-
ter vapor mole fraction using laboratory-determined laser
characteristics, spectral parameters taken from the HITRAN
2012 database (Rothman et al., 2013), and the aircraft static
pressure and temperature measurements. Raw data are pro-
cessed at the instrument’s native ∼ 100 Hz acquisition rate.
For CARAFE, data are averaged to 20 Hz with a typical pre-
cision (1σ) of 0.3 % or better. Overall measurement accuracy
is within 5 %, based on field inter-comparisons on other air-
borne platforms (Jensen et al., 2017; Rollins et al., 2014).

2.4 Greenhouse gas (GHG) suite

The GHG system consists of several modified commercial
analyzers coupled with custom hardware for fast gas flow and
centralized data acquisition. Two Los Gatos Research (LGR)
analyzers, one for CO2 (model no. 907-0020-1000) and the
other for CH4 and water vapor (model no. 913-0014-0001),
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acquire mixing ratios at 10 Hz. The gas sampling system of
each LGR is modified with a proportioning valve (IQ Valves,
0.234 in. orifice) coupled to a PID controller (Omega) to
maintain a sample cell pressure of 140.0± 0.1 Torr through-
out the Sherpa altitude range. Small pressure fluctuations
in this range do not noticeably impact measurement preci-
sion, and instrument pressure fluctuations are uncorrelated
with wind speed fluctuations. Dry scroll pumps (Edwards
nXDS15i) maintain a gas flow of ∼ 35 slpm through each
system. Laboratory evaluation of the LGR time response
(Fig. S4) gives an e-fold flush time of 90± 16 ms, or an effec-
tive cutoff frequency (following the definition of Aubinet et
al., 2016) of 3.8 Hz. A Picarro G1301-m analyzer supplies an
additional set of CO2 /CH4 /H2O mixing ratios. Compared
to the LGR analyzers, the Picarro provides a reduced duty
cycle (∼ 5 s for CO2 and CH4, ∼ 15 s for H2O) but greater
precision and stability. Thus, the LGR systems provide fast
measurements needed for EC flux calculations while the Pi-
carro serves as an accuracy standard. For the 2016 deploy-
ment, a Picarro G2401-m replaced the G1301-m for the last
four flights following a power supply failure on the latter. The
specifications and accuracy are very similar for these two in-
struments, though the (newer) G2401-m offers a faster data
rate (∼ 0.5 Hz) and better precision (based on in-flight com-
parison with the LGRs, Fig. 2d). Data streams from all ana-
lyzers, along with a GPS feed, are recorded via RS232 using
a National Instruments CompactRIO controller.

The external gas inlet is a 6 in. length of 0.5 in. OD stain-
less steel tube (Fig. 1e). The tip of the inlet features a
15◦ rear-facing bevel to reject large particles. The inlet is
mounted on an access hatch on the starboard side roughly
3 m aft of the nose. Directly behind the mounting plate, a
tee connects to two identical lengths of Teflon PFA tubing
(0.375 in. ID, 5.2 m length). Each tube terminates at a high-
flow inline Teflon particle filter (Entegris WGMXMBSS4)
before connecting to one of the two LGR sample gas inputs.
The Picarro analyzer sub-samples at 0.4 slpm from the LGR
CH4/H2O line. For typical flow rates and low-altitude flight,
this configuration gives a gas sampling line residence time of
0.7 s and a Reynolds number of 4600.

Post-processing of GHG data occurs in several steps. First,
data from all instruments are roughly time aligned (to within
∼ 1 s for the Picarro and ∼ 0.1 s for the LGRs) using both
the internal timestamp of the data acquisition system and the
GPS timestamp. Next, CO2 and CH4 observations are con-
verted to dry mixing ratios using native H2O measurements
(LGR CO2 is corrected using H2O from the LGR CH4/H2O
sensor, time aligned via lag correlation). The corrections,
which account for both density and spectroscopic effects, fol-
low the quadratic form suggested for the Picarro G1301-m
(Chen et al., 2010; Rella, 2010) but with laboratory-derived,
instrument-specific coefficients (Fig. S5). Picarro CO2 and
CH4 mixing ratios are calibration-corrected via small scal-
ing factors (1.0026 for CO2, 0.9994 for CH4) based on com-
parisons to a NIST-traceable certified gas standard (NOAA
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Figure 2. Least-squares fit lines (a–c) and correlation coeffi-
cients (d) for Picarro and LGR dry mixing ratios of CO2, CH4, and
H2O obtained during flights in 2016. Fits are colored by flight and
shown only over the range of mixing ratios observed on each flight.
Dashed lines in panels (a), (b), and (c) denote a 1 : 1 correlation.

ESRL) pre- and post-mission. Picarro G1301-m water vapor
is calibration-corrected following the manufacturer’s recom-
mendation (Rella, 2010). Finally, for each flight, LGR ob-
servations of CO2, CH4, and H2O are linearly transformed
to optimize agreement with the Picarro data. The transfor-
mation requires several operations, including (1) averaging
dry mixing ratios to a common 1 Hz time base, (2) smooth-
ing LGR data to match the slower cell throughput of the
Picarro, (3) time-lagging the LGR (typically < 2 s) to opti-
mize correlation with the Picarro, (4) calculation of fit coeffi-
cients for an ordinary least-squares fit (LGR=m×PIC+ b),
and (5) correction of LGR dry mixing ratios using the fit
parameters. This procedure, akin to performing a flight-by-
flight span and intercept calibration correction, rectifies cal-
ibration errors and flight-to-flight drift that may occur in the
LGRs under different operating conditions. Figure 2 shows
linear fits for all flights from 2016 (results for 2017 shown in
the Supplement Fig. S6). Linear correction factors vary little
from flight to flight. One exception to this procedure occurred
on Flight 5 (16 September 2016), where a narrow concentra-
tion range gave an atypically poor water fit (Fig. 2d). Com-
parison of H2O observations between the LGR, Picarro, and
DLH instruments (Sect. 4) corroborates this result. For this
flight, the campaign-average slope and intercept were used to
calibration-correct LGR H2O. Campaign-average fit parame-
ters were also used for two of the 2017 flights due to a failure
in the Picarro system.

It is not currently feasible to calibrate the LGR systems
in-flight due to high gas flow rates. Due to our correction
procedure, we estimate that the accuracy limit of LGR CO2
and CH4 is degraded by a factor of 3 and 4, respectively,
compared to the Picarro (Table 1). It may be possible to ex-
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pand the above correction method to account for potential
in-flight variability in LGR accuracy; however, as discussed
later, measurement accuracy is a negligible contributor to to-
tal flux uncertainty for greenhouse gases.

2.5 Surface imaging suite (SIS)

The nadir-viewing surface imaging suite (SIS) consists of
three cameras: a high-resolution digital visible-color cam-
era (Nikon D7000), a thermal imager (FLIR A325sc), and
a multiband camera specifically intended to observe vege-
tative health (MicaSense RedEdge). The Nikon D7000 is a
single-lens reflex camera incorporating a “DX” format 16.2-
megapixel CMOS imaging sensor (1.5× “crop factor”) and
28 mm focal length lens. The lens was chosen to maximize
field of view while minimizing distortion. The shutter speed
is generally set to 1/1000 s with an ASA/ISO of 640. Aper-
ture is controlled by the camera, the manual focus is fixed at
infinity, and images are captured on two SD memory cards.
The FLIR A325sc is an uncooled microbolometer with sen-
sitivity covering the range of 7.5 to 13.0 µm and a 320× 240
imaging sensor. The lens focal length is 9.7 mm, providing
a 45◦× 34◦ field of view. Data are captured by small note-
book computer. The MicaSense RedEdge is a five-band im-
ager covering the spectral range of approximately 460 to
860 nm with blue, green, red, near-infrared, and red-edge
sensors. The camera has fixed focus and fixed field of view,
and images are captured internally on an SC memory card.
All three cameras are set for 1 s recording intervals, and time
tagging and geolocation is done by remote GPS. Aircraft
power (0.6 A) eliminates battery charging requirements, and
the system is essentially autonomous. All imagery is down-
loaded after each flight and archived by the Wallops Remote
Sensing Group. Figure 3 illustrates typical products acquired
from this system.

The primary purpose of the SIS is to provide real-time
qualitative information on surface characteristics and fea-
tures that may influence gas and energy exchange. A rigor-
ous comparison between imagery and airborne fluxes is non-
trivial, as the flux footprint extends upwind of the aircraft
with a typical half-width of several km, often exceeding the
(altitude-dependent) swath width of the imagers. It is possi-
ble that an assumption of local surface homogeneity may be
valid in some situations. Further work is needed to fully ex-
ploit the potential of combined surface imaging and in situ
observations.

3 Flux calculations

The flux methodology for CARAFE builds on previous work
in airborne and ground-based EC. All calculations utilize a
custom MATLAB toolbox, available upon request. Wavelet
calculations utilize the framework described in Torrence and
Compo (1998). The following discussion references both the

Figure 3. Example imagery from the SIS recorded during the
9 September 2016 flight over Pocomoke forest. (a) Visible image
from the Nikon D7000. (b) Surface temperature from the FLIR
A325sc. (c) Normalized difference vegetation index (NDVI) de-
rived from the “red” (668± 10 nm) and “near-IR” (840± 40 nm)
bands of the MicaSense RedEdge sensor. Note that the color scale
for the latter saturates at both ends.

time and spatial domains as appropriate, the two coordinates
being linked by leg-average aircraft speed.

3.1 Pre-processing

Data from the TAMMS, DLH, and GHG systems are aver-
aged or re-gridded to a common 10 Hz time base. De-spiking
is generally not necessary as data are quality-controlled prior
to archiving. Gas concentrations are provided as dry mixing
ratios, eliminating the need for density corrections (Webb et
al., 1980) to derived fluxes. Individual flux legs are iden-
tified through inspection of heading, aircraft attitude, and
vertical wind speed. We require that each leg be relatively
level (±20 m altitude above ground). This altitude window is
based on observed variability in the 2016 and 2017 data sets
and is not a hard limit. Data are also filtered to exclude air-
craft roll exceeding 5◦ to minimize potential artifacts in the
vertical wind measurement. Wind vector rotation is not re-
quired as winds are already reported in a geodetic reference
frame.

For each leg and each scalar time series, scalar data un-
dergo mean removal and lag correlation to the vertical wind
measurement. Lag times, with a typical range of 0–0.5 s, are
determined through inspection of lag-covariance plots and
held constant for each flight. Following Mauder et al. (2013),
lag-covariance functions are calculated using fast Fourier
transforms (FFTs), and frequencies below 0.02 Hz (spatial
scales greater than∼ 4 km) are removed to limit the influence
of scalar trends on (co)variances. Note that these filtered lag-
covariance functions are used for lag time determination and
error calculations but not for calculation of actual fluxes.

Planetary boundary layer depth (zi), required for calcula-
tion of flux errors and footprints, is assessed through exam-
ination of gradients in potential temperature and water va-
por mixing ratio during vertical soundings. Due to mission
constraints, soundings are not always located in the center
of the target area or only occur at the beginning or end of
a flight, making it difficult to quantify spatial or temporal
variability in zi . Thus, we assume a constant value for each

Atmos. Meas. Tech., 11, 1757–1776, 2018 www.atmos-meas-tech.net/11/1757/2018/



G. M. Wolfe et al.: The NASA Carbon Airborne Flux Experiment (CARAFE) 1763

target area. The uncertainty in this approximation is roughly
±100 m based on observed variability in BL depth for flights
with multiple soundings. Determination of exact BL depth is
not critical, as calculated fluxes do not depend on BL depth
and flux errors and footprints scale as a fractional power of
zi .

3.2 Ensemble-average flux

Traditional ensemble-average (EA) fluxes are calculated for
each leg using vertical wind speed w and scalar s with the
standard formulation.

FEA = 〈w
′s′〉 (1)

Primes denote deviation from the mean. In addition, we de-
rive spectra and cospectra using FFTs for each leg. These cal-
culations are primarily for comparison with wavelet-derived
quantities and are not used for scientific analysis, as ter-
rain is often heterogeneous and observations are often non-
stationary. A stationarity quality flag, qstat, is calculated using
the criteria of Foken and Wichura (1996):

qstat =
∣∣1−FEA,5/FEA.

∣∣ . (2)

Here, FEA,5 represents the mean of EA fluxes calculated on
five evenly sized sub-intervals within a leg. Ideally stationary
legs will give qstat = 0.

3.3 Continuous wavelet transform flux

The continuous wavelet transform (CWT) is a powerful and
popular tool for time series analyses in atmospheric science.
For a time series x(t), wavelet coefficients Wx(a,b) are cal-
culated as a function of location (time or distance) and scale
(frequency or wave number) by convolving the time series
with a wavelet function (ψ).

Ws (a,b)=

∞∫
−∞

s (t)ψa,b (t)dt (3)

ψa,b (t)=
1
√
a
ψ0

(
t − b

a

)
(4)

Here, the size and location of the wavelet are determined
by the scale (a) and translation (b) parameters, respectively.
Normalization of the wavelet function by a−1/2 preserves
the energy of the wavelet at different scales (Torrence and
Compo, 1998). The CWT cospectrum is defined here as the
cross-wavelet power of w and s,

∣∣WwW
∗
s

∣∣, normalized by
wavelet scale to correct for bias (Liu et al., 2007). We note
that the latter operation is functionally equivalent to the com-
mon practice of multiplying FFT cospectra by frequency.

The wavelet function is actually a family of functions
stemming from a “mother” wavelet, ψ0. Mother wavelets are
typically chosen based on the application, but a defining fea-
ture is localization in both the time and frequency (or dis-
tance and wave number) domains. This property, combined

with scaling and translation, permits the wavelet transform to
de-convolve contributions to time series variance along both
the time (distance) and frequency (wave number) domains.
In this work we utilize the Morlet wavelet, which is a plane
wave modified by a Gaussian:

ψ0 (η)= π
−1/4eiω0ηe−η

2/2, ω0 = 6. (5)

The Morlet wavelet is the standard choice for eddy covari-
ance calculations, giving reasonable localization in both time
and frequency domains (Schaller et al., 2017).

The CWT is well suited for airborne fluxes, offering sev-
eral advantages over traditional EA and FFT. Application of
the CWT does not require stationarity, a condition that may
be violated during long flight legs. This property also elimi-
nates the need for signal detrending, improving quantifica-
tion of long-wavelength flux contributions (Mauder et al.,
2007). The technique provides a time series of fluxes along
a flight track, removing the need to block-average homoge-
nous sub-sections of the flight and giving relatively fine sur-
face resolution that is essential when surveying patchy ter-
rain. Further descriptions of CWT applications to airborne
fluxes can be found elsewhere (Desjardins et al., 2018; Karl
et al., 2009; Kaser et al., 2015; Mauder et al., 2007; Metzger
et al., 2013; Misztal et al., 2016, 2014; Vaughan et al., 2016;
Wolfe et al., 2015; Yuan et al., 2015).

Figures 4 and 5 illustrate a typical set of CWT flux results
for CO2 using observations over the Great Dismal Swamp,
VA. The transect included sampling over forest, bog, and
a small lake. The location of the lake at 15–22 km (dis-
tance relative to the start of the transect) is evident in the
reduced variability of vertical wind speed (Fig. 4a). As ex-
pected, cospectral power (Fig. 4b) is mostly negative, en-
hanced over land (beginning and end of leg), and diminished
over the lake. Integrating the local wavelet cospectrum over
all scales yields the flux time series (Fig. 4c). In this example,
the EA flux (also shown in Fig. 4c) is within 4 % of the leg-
average wavelet flux. This agreement can vary considerably
from leg to leg, and in general we find that the agreement
of EA and CWT fluxes is well correlated with stationarity
(Fig. S7). Thus, comparison of EC and CWT fluxes may not
be a useful quality metric for wavelet fluxes as suggested by
some previous studies (Misztal et al., 2014). “Instantaneous”
10 Hz fluxes exhibit significant variability due to both instru-
ment noise and the random nature of turbulence, and some
averaging is required to obtain an estimate of “true” surface
fluxes (discussed further below).

Averaging the local wavelet cospectrum along
time/distance gives the global cospectrum (Fig. 5). Ogives
(cumulative cospectra) are also shown. In this example, 90 %
of the cospectral power occurs at eddy scales of 2500–100 m,
corresponding to sample frequencies of 0.03–0.7 Hz for an
aircraft speed of 80 m s−1. The comparable FFT cospectrum
shows the same features but with more noise. The ogive
also indicates that 99 % of flux-carrying eddies occur at
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Figure 4. Example wavelet CO2 flux calculation from a flight leg at 130 m altitude over Great Dismal Swamp, VA, on 16 May 2017.
(a) Normalized 10 Hz time series of vertical wind speed (w, magenta) and CO2 (gray) fluctuations. (b) Local wavelet cospectrum. Red areas
denote positive power; blue areas negative. Power is bias-corrected (multiplied by scale) as suggested by Liu et al. (2007). Hatched area
indicates the cone of influence (COI). (c) Scale-integrated wavelet flux (cyan: 10 Hz; blue: 2 km running mean) and ensemble-average flux
(green dashed line). Crosses denote points where 50 % or more of the cospectral power lies within the COI.
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Figure 5. Global cospectra of vertical wind and potential tempera-
ture for the leg described in Fig. 4, calculated by time-averaging the
local wavelet cospectrum (blue) and fast Fourier transforms (green).
Cospectra are scaled for display. Dashed lines show the cumulative
integrals of the cospectra (ogives), normalized by total covariance.

wavelengths longer than 54 m (frequencies lower than
1.4 Hz). This point serves as a reminder that fast instrument
time response is less critical for sampling turbulence in
the mixed layer as compared to the surface layer. Such
measurement requirements scale with platform speed: on a
faster-moving aircraft, an instrument must sample faster to
resolve the same eddy scales.

3.3.1 Cone of influence

The cone of influence (COI) is the spectral region where
wavelet coefficients may contain artifacts due to edge effects.
As shown in Fig. 4b, the COI encompasses all scales at the
ends of the time series and tapers toward larger scales (larger
wavelengths/lower frequencies) near the center. Following
the definitions of Torrence and Compo (1998) for the Morlet
wavelet with ω0 = 6, the COI threshold scales linearly with
distance from the beginning or end of the time series with a
scaling factor of 0.73. This is an important consideration in
flight planning. For example, if the largest flux-carrying ed-
dies are∼ 5 km as in Fig. 5, the COI will fall below this value
at distances greater than 5 km/0.73= 6.8 km from leg edges.
Thus, flight legs should be padded by at least this distance on
either end to ensure fully resolved fluxes over a target area.

Treatment of the COI can impact scale-integrated CWT
fluxes. Some previous studies exclude the COI before cal-
culating fluxes (Vaughan et al., 2016), while others include
it (Misztal et al., 2014). For short-length or higher-altitude
flight legs, neglecting cospectral power within the COI may
create systematic errors due to exclusion of larger-scale flux
contributions. On the other hand, inclusion of covariance
within the COI can lead to spurious fluxes, especially near
the ends of a leg and when fluxes are small. Here we de-
velop a quality flag to quantify the potential impact of the
COI and examine the effects of including or excluding the
COI in scale-averaged fluxes.
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The quality flag, qCOI, is calculated by interpolating global
ogives (e.g., Fig. 5) onto the time series of COI threshold
(given in wavelength or frequency units). Mathematically, for
time t and wavelength λ,

qCOI(t)= ogivew,s(λ= COI(t)). (6)

For this calculation, the ogive is calculated by integrating
the absolute value of cospectral power to avoid negative val-
ues. Ranging from 0 to 1, this flag roughly represents the
fraction of global cospectral power within the COI at each
point in time. For example, for the data shown in Fig. 4b,
the COI threshold at a distance of 5 km occurs at a wave-
length of 3.7 km. The global ogive value at this wavelength
is 0.12 (Fig. 5), indicating that 12 % of the global cospec-
tral power lies at lower frequencies, and thus qCOI = 0.12
for this time/location. The qCOI flag can be used to filter
scale-averaged CWT fluxes; for example, crosses in Fig. 4c
indicate fluxes with qCOI > 0.5. Thus, more than half of the
cospectral power resides within the COI for these times.

Figure 6 compares CWT and EA fluxes to quantify the po-
tential impacts of COI treatment. This analysis is restricted to
legs that are highly stationary (qstat < 0.1) to ensure the qual-
ity of EA fluxes. Scale-averaged CWT fluxes are calculated
by either including or excluding the cospectral power within
the COI (see Fig. 4b). The resulting flux time series is sub-
sequently filtered using a specified maximum qCOI prior to
leg-averaging. For example, a max qCOI of 0.2 indicates that
all points in the time series with more than 20 % of cospec-
tral power within the COI are excluded from the leg-averaged
flux. CWT fluxes systematically under-predict EA fluxes by
as much as 14 % on average when omitting the COI and agree
within 5 % when including the COI. Thus, the extra system-
atic error from exclusion of the COI in the case without a
qCOI filter (rightmost points in Fig. 6) is 9 %. Addition of
the qCOI filter reduces the CWT–EA discrepancy by remov-
ing CWT fluxes near leg edges where the COI influence is
strongest. More restrictive filters (lower maximum qCOI) im-
prove agreement at the expense of data density. For example,
filtering for CWT fluxes with qCOI less than 0.6, 0.4, and 0.2
removes 6, 12, and 28 % of 1 Hz CWT fluxes, respectively.
We choose to include the COI when calculating CWT fluxes
and assume fluxes are valid for qCOI < 0.5. From Fig. 6, this
choice may reduce leg-average fluxes by ∼ 2 % on average.

3.3.2 Data gaps

Wavelet analysis is inherently designed for contiguous data,
but data gaps are inevitable in field observations. Such gaps
most commonly result from instrument calibrations or unfa-
vorable aircraft attitude (e.g., evasive pitch or roll to avoid
avian hazards). Since the wavelet algorithms of Torrence and
Compo (1998) rely on FFTs, these gaps must be removed
or filled prior to performing the CWT. Several studies have
suggested procedures for modifying wavelet basis functions
to handle gaps (Frick et al., 1997, 1998; Mondal and Perci-
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Figure 6. Impact of treatment of the COI on wavelet fluxes. Wavelet
fluxes are calculated either including (blue circles) or excluding (red
triangles) cospectral power within the COI. In addition, wavelet
time series are filtered using the qCOI quality flag (see text) at var-
ious thresholds prior to averaging over each leg. Symbols repre-
sent the median ratio of wavelet to ensemble-average fluxes for all
scalars (CO2, CH4, H, LE-LGR, and LE-DLH) and legs with sta-
tionarity flags of 0.1 or less. Error bars represent standard errors on
the ratio.

val, 2008), but it is not clear how to implement such methods
within our framework. Supplement Sect. S2 describes an em-
pirical method that utilizes the covariance of scalar and verti-
cal wind speed fluctuations to fill gaps with projected values.
Even this method introduces some error in wavelet fluxes,
especially in the immediate vicinity of a gap (Fig. S8). Tran-
sient errors are typically below 30 % with a spatial extent that
scales with the width of the gap. To be conservative, we dis-
card wavelet fluxes within a gap and on either side of a gap
out to a distance equal to the gap width. In practice, gaps are
rare and this procedure has a minimal impact on the total flux
data set.

3.4 Uncertainties

Uncertainty in EC fluxes arises from measurement limita-
tions, sampling strategies, and the fundamental nature of tur-
bulence. When extrapolating airborne fluxes to the surface,
uncertainties in vertical flux divergence must also be con-
sidered. Methods to quantify flux errors are reviewed else-
where (Langford et al., 2015; Mauder et al., 2013; Rannik
et al., 2016). Here we leverage a combination of these meth-
ods and suggest a new technique to quantify the total ran-
dom error in wavelet fluxes. Figure 7 summarizes individual
error terms for the 2017 field campaign for all legs at alti-
tudes below 200 m. Note that fluxes of CH4 were negligibly
small for most of the mission, thus the fractional errors are
biased high. When flying over methane source regions (e.g.,
wetlands), CH4 flux errors are comparable to those in CO2
flux. In the following discussion, we adopt the convention of
defining systematic errors as a fraction or percentage of the
flux and random errors as an absolute value (in flux units).
“Typical” error ranges quoted in the text refer to interquartile
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Figure 7. Distribution of errors, normalized by leg-average fluxes, for all 2017 flight legs below 200 m altitude (97 legs total). In the box plots,
the center line is the median value, box edges are 25th/75th percentiles and whiskers are 5th/95th percentiles. Turbulence sampling errors
(systematic: light gray; random: dark gray) are the same for all scalars. Instrument-specific systematic error sources include measurement
accuracy (dark green) and limited response time (light green). Random errors due to uncorrelated noise are shown in indigo. Empirical
random errors, which inherently include both the turbulence and instrument noise components, are derived for both the leg ensemble (blue)
and the wavelet time series (cyan). Also shown is the distribution of divergence corrections (red) and the additional fractional uncertainty
in flux associated with this correction (orange). The total uncertainty in derived surface fluxes (black) includes the combined contributions
from systematic, random, and divergence errors. Note that SERT for DLH-H2O is undefined as this instrument is the time response standard.

ranges (upper and lower box boundaries in Fig. 7) and are
1σ .

3.4.1 Systematic errors

Under-sampling of turbulent fluctuations at both low and
high frequencies creates systematic flux errors. For airborne
observations, Lenschow et al. (1994) derive an upper limit for
systematic error fraction due to under-sampling of low fre-
quencies (long wavelengths) as a function of altitude above
ground level (z), boundary layer depth (zi), and leg length
(L).

SEturb ≤ 2.2
(
z

zi

)0.5
zi

L
(7)

Typical SEturb ranges from 1.6 to 3.3 % of observed fluxes
(Fig. 7, light gray). The CWT utilizes data from the whole
leg and thus theoretically captures all resolvable long-
wavelength flux contributions at any given point in time.
Thus, we assume this fractional error is constant for each
point within a leg, irrespective of averaging length (e.g., a
1 km average is assigned the same SEturb as the whole leg).

Limited instrument time response is the main cause of
high-frequency systematic errors for the CARAFE payload.
The open-path DLH instrument does not suffer from such
limitations and thus serves as a time response standard. The
ratios of cospectra for temperature, CO2, CH4, and LGR
H2O fluxes against DLH H2O cospectra exhibit a character-
istic decay at high frequencies that is well described by the
transfer function (Horst, 1997).

Hs(f )=
Cow,s(f )

Cow,DLH(f )
=

1

1+ (2πτsf )2
(8)

Here, f is natural frequency and τs is a characteristic re-
sponse time for scalar s. Fitting Eq. (8) to global wavelet
cospectra for all legs gives typical response times of 0.09 s
for temperature and CO2 and 0.1 s for CH4 and LGR H2O,
consistent with lab tests (Fig. S4). Systematic error fraction
due to response time is calculated for each leg as

SERT =

∫
∞

−∞
Hx(f )Cow,s(f )df∫
∞

−∞
Cow,s(f )df

− 1. (9)

Typical values for SERT are 2–7 % of observed fluxes (Fig. 7,
light green), assumed constant for each leg.

Accuracy in both the vertical wind and scalar measure-
ments (Table 1) directly propagates into calculated fluxes.
This systematic error (SEacc), of unknown sign, adds uncer-
tainties of 5 % to CO2 and CH4 fluxes, 7 % to sensible heat
and DLH latent heat fluxes, and 8.6 % to LGR latent heat flux
(Fig. 7, dark green).

Systematic errors can be applied as a correction factor to
fluxes (if of known sign) or be included as part of the total
uncertainty. Both practices are common among the airborne
flux community (Gioli et al., 2004; Misztal et al., 2014). For
the errors discussed above, SEacc is of unknown sign, while
SEturb and SERT should both increase the flux. We are, how-
ever, reluctant to employ the latter two as correction fac-
tors. SEturb represents an upper limit and thus may slightly
“over-correct” the fluxes, while SERT can become unrealis-
tically large when fluxes are small due to the amplification
of high-frequency noise by Eq. (9). Furthermore, systematic
errors are typically small compared to random errors. Thus,
we elect to include all systematic errors in the total flux error
and assume all error components are symmetric for simplic-
ity. Total systematic error (SEtot), given as a fraction of the
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flux over any interval, is then the root sum square of SEturb,
SERT, and SEacc. Total systematic error is reported as a sep-
arate variable in flux archive files and may be used as part
of the total error or as a correction factor (after removing
the accuracy contribution) at the discretion of data end users.
One exception to this procedure is the treatment of system-
atic under-sampling of vertical wind variance in the 2016 ob-
servations (Sect. 2.2). For this particular issue, all 2016 fluxes
are corrected upwards by a factor of 1.32 (Fig. S2) and addi-
tional random error is incorporated as discussed below.

3.4.2 Random errors

Random flux errors arise from both uncorrelated noise in
scalar measurements and the stochastic nature of turbulence.
Errors due to uncorrelated instrument noise are calculated as

REnoise =

√
σ 2
s,noiseσ

2
w/N. (10)

Here, σ 2
w is the variance of vertical wind speed over a whole

leg and N is the number of points. The noise variance in
scalar s, σ 2

s,noise, is derived from the auto-covariance func-
tion as described elsewhere (Langford et al., 2015; Lenschow
et al., 2000; Mauder et al., 2013). Relative to the total flux,
this error is typically less than 5 % for sensible and latent
heat, 4–8 % for CO2 flux, and 11–96 % for CH4 flux (Fig. 7,
indigo), with higher errors occurring when fluxes are small.
For turbulence sampling errors in airborne fluxes, Lenschow
et al. (1994) suggest the following upper limit (as a fraction
of total flux):

REturb

F
≤ 1.75

(
z

zi

)0.25(zi
L

)0.5
. (11)

Values for REturb typically range from 15 to 21 % of leg-
average flux (Fig. 7, dark gray). This equation suggests sev-
eral strategies for reducing random errors, including reduced
altitude, averaging over distance, or averaging over repeated
legs.

The total random error is the square root of the sum of
squared errors from Eqs. (10) and (11). Alternatively, the to-
tal error can be estimated empirically as the variance of the
covariance between s and w (Finkelstein and Sims, 2001).

REFS01 =

√√√√ 1
N

m∑
p=−m

(
s′s′p w

′w′p + s
′w′p w

′s′p

)
(12)

Arguments such as s′ w′p and similar represent the unbiased
cross-covariance or auto-covariance for lag p. Finkelstein
and Sims (2001) suggest taking the summation over a suffi-
ciently large m to capture the integral timescale, somewhere
in the range of 10–40 s. Mauder et al. (2013) further note that
summing over too wide a range can give unrealistic results if
a time series contains trends. Following Mauder et al. (2013),
we calculate the lagged cross- and auto-covariance functions

using FFTs and remove frequencies below 0.02 Hz (spatial
scales > 4 km) to limit trend effects. The maximum lag for
the summation is set to 10 s based on comparison with the
root sum square of REnoise and REturb, the latter representing
a theoretical upper limit for total random error (Fig. S9a).

All of the above methods were originally developed for
traditional EA eddy covariance, and it is not immediately ob-
vious how to extend error calculations to time-resolved CWT
fluxes. Several previous studies (Karl et al., 2009; Misztal
et al., 2014; Vaughan et al., 2016) have defined the random
error for distance-averaged wavelet fluxes (1–10 km means)
by substituting the averaging length for leg length (L) in
Eq. (11). There are several issues with this approach. First,
it does not account for errors due to instrument noise, which
can comprise a significant fraction of the total error when
turbulence-driven scalar variability approaches measurement
precision. Second, Eq. (11) assumes that the flux calculated
over distance L uses only observations acquired over that
same window; however, the CWT inherently integrates in-
formation from the entire leg to derive (co)variances. In other
words, the CWT flux for a 1 km region is not equivalent to the
EA flux calculated using only wind and scalar observations
sampled within that same 1 km.

We propose a novel method to calculate total random er-
ror along a wavelet flux time series. The technique is essen-
tially an extension of Eq. (12), with lagged cross- and auto-
covariance calculated using the scale- and time-dependent
wavelet coefficients. In analogy to Eq. (24) of Torrence and
Compo (1998), the covariance between variables s and w for
time t and lag p is given by

s′w′p(t)=
δjδt

Cδ

j2∑
j=j1

∣∣Ws(aj , t)W
∗
w(aj , tp)

∣∣
aj

N

N − |p|
. (13)

Here, δj is the wavelet spacing parameter (0.25 in our case),
δt is the sample interval (0.1 s for 10 Hz data), Cδ is a
wavelet-specific reconstruction factor (0.776 for Morlet), and
aj is the wavelet scale at index j . The last term on the right
gives an unbiased covariance estimate. When taken over mul-
tiple lags, Eq. (13) defines a wavelet cross-covariance func-
tion between s andw at each point in time (Fig. S10). Analo-
gous equations apply for the other cross- and auto-covariance
terms. Combining Eqs. (12) and (13) thus gives the wavelet
random error, REwave, as the variance of covariance along the
time series. For this calculation the 1/N term in Eq. (12) is
neglected, as the error is calculated for a single point in the
time series and not the whole leg. As with the ensemble ap-
plication of Eq. (12), the summation in Eq. (13) is restricted
to scales with a corresponding Fourier frequency greater than
0.02 Hz (spatial scale < 4 km) and uses a lag range of ± 10 s.
This operation is computationally expensive for 10 Hz data,
and thus wavelet coefficients are averaged to 1 Hz before cal-
culating REwave. This procedure yields comparable results to
calculating errors from 10 Hz wavelet coefficients and then
averaging to 1 Hz.
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Two internal checks validate this approach. First, leg-
averaged wavelet cross- and auto-covariance functions are
virtually identical to those from ensemble-based lag calcu-
lations (Fig. S10). Second, leg-averaged REwave values agree
relatively well with both REFS01 and the root sum square of
REturb and REnoise (Fig. S9b–c). Typical REwave values range
from 10 to 50 % of observed fluxes (Fig. 7, cyan).

As noted in Sect. 2.2, the 2016 data set includes an ad-
ditional random error component from damping of verti-
cal wind variance. Using 2017 fluxes derived from the two
wind data sets (Fig. S2), we estimate 1σ random errors
in 2016 1 Hz fluxes for sensible heat, latent heat, CO2,
and CH4 of 50 W m−2, 110 W m−2, 7 µmol m−2 s−1, and
50 nmol m−2 s−1, respectively. This error is added directly
to REwave rather than in quadrature, as it is not unambigu-
ously independent of REwave (the latter being based on verti-
cal wind and scalar (co)variance). The extra uncertainty does,
however, reduce with averaging; note the tighter correlation
for leg-average fluxes in Fig. S2b.

3.4.3 Vertical flux divergence

Extrapolation of airborne fluxes to the surface requires ac-
counting for the change of flux with altitude, which should
exhibit a near-linear profile in the boundary layer for non-
reactive species. Vertical flux divergence can arise from sev-
eral processes, as illustrated when considering the budget
equation for a scalar s:

∂F

∂z
=−

∂ s

∂t
−U

∂ s

∂x
+Q. (14)

Terms on the right-hand side respectively represent storage,
horizontal advection (the product of horizontal wind speed
and concentration gradient), and net in situ production or
loss, which is negligible for long-lived GHGs. We neglect
generally small contributions from vertical subsidence and
horizontal turbulent fluctuations (Karl et al., 2013). It is pos-
sible to constrain each of the right-hand terms with a care-
fully designed flight plan (Karl et al., 2013; Kawa and Pear-
son, 1989). Alternatively, flux measurements at multiple alti-
tudes in the boundary layer provide a means of directly quan-
tifying the flux divergence slope. Here we describe a proce-
dure for deriving divergence corrections and discuss some of
the associated challenges.

Calculation of the divergence correction begins with selec-
tion of a subset of flux observations. Figure 8 shows an ex-
ample sensible heat flux profile for a series of 15 legs flown
over the same 43 km forest swath (within a cross-track hor-
izontal spread of ∼ 2 km). Most legs on a typical CARAFE
flight occur at low altitude (90–150 m), with only one to three
legs at higher altitudes (200–400 m). Ideally the upper-level
legs would be situated in the upper half of the boundary layer
(z/zi > 0.5), but this is not always possible due to flight re-
strictions and the difficulty of determining boundary layer
depth in real time. Fitting and error estimation requires a
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Figure 8. Vertical profile of sensible heat flux observed over
Pocomoke forest on 16 September 2016. Points represent mean
CWT fluxes accumulated over ∼ 43 km (9 min) of flight along two
side-by-side tracks spaced ∼ 2 km apart (circles: west tracks; trian-
gles: east tracks). CWT fluxes with qCOI > 0.5 are excluded from
the averages. Error bars represent total errors (systematic plus ran-
dom). Data are colored by the mean solar zenith angle (SZA) during
the leg. The blue dashed line is an error-weighted least-squares fit
for all fluxes with SZA below 38◦. Note that fluxes for this flight are
corrected upwards by a factor of 1/0.76 for the vertical wind spec-
tral artifact discussed in Sect. 2.2. The boundary layer depth for this
flight was zi = 1070 m.

minimum of three legs and two altitudes. Chosen by visual
inspection, these legs must be relatively close to one another
in both space and time for a reliable fit. Diurnal variability
is evident at low altitude over the 3 h afternoon flight shown
in Fig. 8, and in this case we limit the fit to legs with a solar
zenith angle of less than 38◦. CWT fluxes are filtered prior
to leg-averaging using both the COI quality flag (qCOI < 0.5)
and a “proximity” filter. The latter requires that each point
within a leg-average lies within 1 km of at least one point
in every other leg. This proximity filter effectively trims the
ends of each leg and limits the spatial average to regions of
overlap. The choice of a 1 km radius is somewhat arbitrary
and is a compromise between spatial overlap and data den-
sity, though we note that this is also a typical scale for a flux
footprint. In some instances the proximity filter cannot be
applied. For example, the fit in Fig. 8 uses legs from both
the “east” and “west” tracks. Though these tracks are spaced
∼ 2 km apart, the forest is fairly homogeneous and the fit is
more robust with the inclusion of more points.

Following data selection, divergence correction factors are
calculated as follows. First, an error-weighted least-squares
fit of the filtered and leg-averaged flux versus altitude gives
the slope, m, and intercept, b. Next, a scaling factor Cdiv is
calculated as a function of altitude, with associated random
uncertainty derived from fit parameter uncertainties (δm, δb)
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using standard error propagation.

Cdiv (z)=
F(0)
F (z)

=
b

mz+ b
(15)

REdiv =

((
∂C

∂m
δm

)2

+

(
∂C

∂b
δb

)2
)0.5

=
z

(mz+ b)2

(
δm2b2

+ δb2m2
)0.5

(16)

Multiplication of the CWT fluxes by the associated Cdiv then
gives the surface-extrapolated flux. As shown in Fig. 7, the
divergence scaling factor can vary considerably. “Typical”
correction factors rescale fluxes sampled below 200 m by 10–
50 %, and the additional random error from this correction is
typically 5–30 %. Divergence correction factors and their as-
sociated uncertainties are reported alongside CWT fluxes in
archived data files.

The application of a “bulk” divergence correction in-
herently assumes that the correction is relatively invariant
(within uncertainties) in both space and time for a given
target region. It is possible to empirically test this assump-
tion with observations. Figure S11a illustrates our tests for
temporal and spatial variability in the divergence correction.
Four of the 2017 flights included two high-level legs spaced
1.5–2.2 h apart, allowing derivation of divergence corrections
at two different times for the same region. For this test we
separately fit two legs (one high and one low) and calculate
Cdiv for each of the two sub-periods, and then compare this
to the Cdiv value derived from all four legs combined. Fits
are done on fluxes of CO2, temperature, DLH H2O, and LGR
H2O, giving a total of 16 scalar–flight pairs and 32 test cases.
Based on this test, 95 % of the sub-period Cdiv values differ
by less than 22 % from the full-flight Cdiv (Fig. S11b). To
assess spatial variability, we divide each set of legs into two
sub-regions of equal length, calculate the divergence correc-
tion in each of the sub-regions, and compare this to Cdiv cal-
culated for the full region. Using the same set of fluxes as de-
scribed above, this test includes four species, four flights, two
divergence pairs per flight, and two sub-regions per pair for a
total of 64 test cases. Spatial variability is larger than tempo-
ral variability, with 95 % of the sub-region Cdiv values differ-
ing by less than 35 % from the full region Cdiv (Fig. S11b).
In general, we find that the spatiotemporal variability of di-
vergence corrections is within the calculated uncertainty for
the divergence correction factor.

3.4.4 Total uncertainty

The total error for in situ fluxes is the root sum square of
SEtot (multiplied by flux) and the empirical random error,
REwave. When extrapolating to the surface, the divergence
error is also added in fractional quadrature. Thus, the total

fractional error for surface fluxes is

Esurf

Fsurf
=

(
SE2

tot+

(
REwave

F

)2

+

(
REdiv

Cdiv

)2
)1/2

. (17)

For CO2, sensible heat, and latent heat, typical Esurf values
range from 16 to 35 % of the leg-averaged flux (Fig. 7, black).
Values for CH4 flux are significantly higher when consider-
ing the whole campaign since most of our sampling occurred
in regions with scant methane emissions. Over the Alligator
River and Great Dismal Swamp wetlands, where CH4 emis-
sions were significant, leg-average Esurf values are 17–32 %
of the leg-average CH4 flux.

The above values are based on the 2017 data set. For 2016
fluxes, consideration of the additional random error due to
vertical wind variance under-sampling increases Esurf by 1–
2 % of leg-averaged fluxes or 7–15 % of 2 km average fluxes.

3.4.5 Error averaging

When averaging fluxes within a leg, fractional systematic er-
rors are assumed constant while absolute random errors re-
duce as the mean of the root sum square of REwave for each
point in the average (see Eq. 10 in Langford et al., 2015).

REwave =
1
N

√∑
RE2

wave (18)

Divergence corrections (Cdiv) are averaged directly, while
REdiv is averaged as the root mean square (like Eq. 18 but
without the extra factor of N−1/2). Archived fluxes are re-
ported at high resolution (1 Hz), but random errors due to
turbulence sampling are large at these scales and some aver-
aging is necessary to obtain statistically meaningful results.
For example, the interquartile range in CO2 surface flux un-
certainty is 192–438 % at the native 1 Hz (∼ 80 m) resolu-
tion but improves to 40–90 % when averaging to 2 km. These
uncertainties are comparable to those reported in other air-
borne flux studies (e.g., Vaughan et al., 2016). Uncertainty
reductions are also possible by averaging over repeated legs
(Sect. 4.3).

3.5 Footprints

The flux footprint defines the distribution of surface
sources/sinks contributing to the net flux observed at a given
point. A simple 1-D metric for footprint size is the half-
width, dx0.5, defined as the distance along the mean horizon-
tal wind that contains 50 % of the surface flux (Karl et al.,
2013; Weil et al., 1992).

dx0.5 = 0.9
Uz2/3z

1/3
i

w∗
(19)

Here, w∗ is the convective velocity scale. Footprint scales
from this equation typically range from hundreds of meters
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to ∼ 10 km. For the CARAFE missions, estimates of dx0.5
are reported alongside 1 Hz fluxes.

Robust comparison with ground observations or grid-
ded model output may require an estimate of the full 2-D
footprint. In this case, the “footprint” is effectively a spa-
tial weighting function that can be applied to spatially re-
solved quantities prior to integration and comparison with
observed fluxes. For tower comparisons, fluxes can be fil-
tered for times/locations where both platforms sampled the
same footprint area. Applications of footprint models for air-
borne flux analysis vary in complexity. For example, Mis-
ztal et al. (2016) define a series of circles with radii equal
to dx0.5 and used these areas to integrate model-derived sur-
face fluxes (with equal weighting within the circle). Sayres
et al. (2017) utilize the 1-D parameterization of Kljun et
al. (2004), while others have augmented the latter with a
cross-wind distribution function (Metzger et al., 2012, 2013;
Vaughan et al., 2016). The recent 2-D parameterization of
Kljun et al. (2015; hereafter K15) is an attractive next step,
both because it is based on the same Lagrangian framework
as its 1-D predecessor and because the MATLAB code is
freely available. All required inputs for this parameterization
are available from the CARAFE flux system, and footprints
are theoretically calculable at any resolution up to the na-
tive 10 Hz resolution of the data stream. Equation (19) and
K15 give comparable footprint half-widths for typical low-
level legs below 200 m altitude (results not shown). Agree-
ment is primarily a function of the stability parameter, z/Lob
(Lob being the Obukhov length). For higher-altitude legs
in strong convective conditions (z/Lob <−2), footprint half-
widths from K15 can be 2 to 4 times larger than dx0.5; K15
note that this regime approaches the limits of applicability
for the parameterization. In future work with the CARAFE
data set, we will evaluate what level of footprint complexity
is required for comparison with surface fluxes.

4 Performance

Here we present a subset of results that illustrate the quality
and performance characteristics of CARAFE observations.
This evaluation is not exhaustive, and future studies will con-
tinue to assess the quality of fluxes through both internal
quality controls and, when possible, comparison to other ob-
servations.

4.1 Spectral analysis

Figure 9 exemplifies quality metrics for a low-level leg
with appreciable fluxes in all measured species. All cross-
covariance functions (Fig. 9a) display strong peaks with sim-
ilar integral timescales of ∼ 3 s (defined as the time at the
first zero crossing). Power spectra (Fig. 9b) for temperature,
DLH-H2O, and vertical wind speed measurements exhibit
the f−2/3 power law (f−5/3 when not frequency-multiplied)

in the inertial subrange, consistent with theory (Kaimal et
al., 1972, 1976). In contrast, power spectra for CO2, CH4,
and LGR-H2O show a shallower decay and exhibit a slope
of ∼ 1 above 0.4 Hz, indicative of white noise. The effects of
instrument noise are also reflected in the increased variability
in the cross-covariance functions at longer lag times and in
the higher values of REnoise for these fluxes (Fig. 7). Despite
the limited precision of the closed-path analyzers at higher
frequencies, cospectra with vertical wind generally agree for
all scalars (Fig. 9c).

4.2 Water comparison

The CARAFE payload includes two independent water va-
por measurements, providing a unique inter-comparison op-
portunity. The DLH system is open-path, fast-response, and
field-proven through numerous prior missions. The LGR sys-
tem is closed-path, displays reduced precision at turbulence-
relevant frequencies, and had not flown prior to the 2016 mis-
sion. Figure 10 compares 1 Hz water mixing ratios and latent
fluxes derived from both instruments. LGR water mixing ra-
tios exhibit a small positive bias (slope= 1.05, r2

= 0.995)
throughout the mixing ratio range sampled during the 2017
CARAFE mission (0.3–1.5 % by volume). This difference is
well within the uncertainties of both instruments. LGR latent
heat shows a somewhat larger bias relative to DLH latent heat
(slope= 1.13, r2

= 0.87). The source of this extra∼ 8 % bias
in fluxes is unclear; it may be related to the contact of sample
air with surfaces (such as the 5.2 m sample line), though we
would generally expect gas–surface interactions to dampen
concentration fluctuations and thus reduce the flux. The bias
is small compared to typical flux uncertainties; thus we will
not explore the issue further here. Similar results were ob-
tained for the 2016 mission.

4.3 Repeatability

The stochastic nature of turbulence imparts substantial ran-
dom errors into small-scale flux measurements. For a typical
1 Hz (∼ 80 m) flux, random errors are on the order of hun-
dreds of percent. Averaging rapidly reduces this error; for
example, random errors in a 2 km average flux are typically
30–50 %. Precision is also improved by repeated sampling
over the same swath of land, as long as changes in flux over
the averaging period are small relative to random errors. Fig-
ure 11 shows CO2 fluxes observed over five consecutive legs
covering mixed farmland and forest. All legs were flown at
an altitude of 100 m with a cross-track separation of less than
500 m. Typical dx0.5 values are 800± 300 m, and leg-average
fluxes vary by less than 12 % with no discernable time trend.
Random variability is evident in the 2 km average flux val-
ues. Nonetheless, all profiles exhibit the same general trend
with lower fluxes (0 to −15 µmol m−2 s−1) at the beginning
of the track, higher values (−10 to −30 µmol m−2 s−1) near
the midpoint, and a sharp decline at the eastern edge (near
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Figure 9. Example vertical wind–scalar (cross) covariance functions (a), CWT power spectra (b), and CWT cospectra (c) for a 31 km leg
at 100 m altitude (z/zi ∼ 0.1) over Alligator River, NC, on 26 May 2017. Cross-covariance functions are normalized by peak covariance
and time shifted to align the peaks. Spectra are frequency-multiplied and (co)variance-normalized. The dashed line in panel (b) shows the
expected −2/3 decay in the inertial subrange.

Figure 10. Comparison of water vapor mixing ratios (a) and latent
heat fluxes (b) for all legs of the 2017 mission. Cyan dots represent
1 Hz average data. Blue lines are reduced major axis linear fits.

the Atlantic coast and more urban areas). Averaging all legs
together in each 2 km bin shows this trend more clearly. The
1σ random error for the multi-leg average is ∼ 22 % of the
flux. Roughly 47 % of the individual 2 km averages are con-
tained within 1σ of the mean, and 72 % within 2σ . This is
somewhat less than the 68/95 % expected for a normal dis-
tribution; however, we do not necessarily expect a Gaussian
distribution. Furthermore, some leg-to-leg variability is ex-
pected due to changes in wind speed and direction and thus
the flux footprint. Overall, this result provides some addi-
tional confidence in our random error estimates.

5 Conclusions

The NASA CARAFE project aims to incorporate eddy co-
variance fluxes as a standard component of the airborne sci-
ence toolbox. The C-23 Sherpa is well suited for EC due to
its particular balance of range, speed, and payload, though
any aircraft that is amenable to fast 3-D wind measurements
could be a viable platform. The instrumentation deployed on
the 2016 and 2017 missions provided observations of suffi-
cient quality to calculate fluxes of sensible and latent heat,
CO2, and CH4. Continuous wavelet transforms are key to
unlocking the full potential of airborne fluxes, but only if
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Figure 11. Comparison of horizontal CO2 flux profiles sampled
over the same region of mixed cropland and forest on 4 May 2017.
Colored circles represent 2 km average fluxes from each of five con-
secutive legs. The solid black line, shading, and dotted lines are the
mean, 1σ random error, and 2σ random error, respectively.

utilized within a framework that properly accounts for all
sources of uncertainty and the peculiarities of the technique
(notably, the cone of influence and vertical flux divergence).
Typical uncertainties in derived surface fluxes are 40–90 %
for a resolution of 2 km and 16–35 % when averaged over
an entire leg (typically 30–40 km). Initial results demon-
strate sound spectral features of all measurements (with the
exception of 2016 vertical winds), excellent agreement be-
tween closed and open-path water vapor observations, and
reproducibility of horizontal flux gradients within random
variability. Future efforts must continue to refine measure-
ment and analysis techniques by both leveraging earlier work
and acquiring new observations over a variety of conditions
and surfaces. Inter-comparison with other methodologies for
quantifying surface exchange, where possible, would also be
valuable for both performance diagnosis and evaluation of
multi-scale flux variability.

Direct observations of carbon and energy fluxes at re-
gional scales offer unique opportunities for probing Earth–
atmosphere–biosphere interactions. This type of data set is
rare, and more work is needed to understand how such mea-
surements can be applied to improve biophysical parameteri-
zations and model- or satellite-derived flux estimates. In par-
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ticular, the spatiotemporal scales of airborne flux measure-
ments – snapshot pictures in time over regional areas – are
very different from the long-term, but spatially sparse, tower
flux observations typically available to the GHG commu-
nity. Future efforts with the CARAFE data set will include
detailed comparisons to both ground observations and high-
resolution Earth system models, with the dual goals of devel-
oping techniques to upscale flux observations and furthering
process-level understanding of biosphere carbon exchange.

Potential applications of airborne flux extend beyond the
topics outlined here. Augmentation of the CARAFE payload
with additional observations, such as mixing ratios and/or
fluxes of carbonyl sulfide (Blonquist et al., 2011), may en-
hance the value of future data sets for diagnosing plant phys-
iological responses. Co-located observations of surface prop-
erties such as solar-induced fluorescence and other mark-
ers of vegetation state/health could also prove synergistic
for data interpretation. The methodology developed here
is equally applicable to fluxes of reactive gases, including
ozone, volatile organic compounds and oxidized nitrogen
compounds. The process-level drivers of emission, deposi-
tion and transformation of these gases remain highly un-
certain, and observational constraints on surface–atmosphere
exchange are needed to challenge and improve air quality and
chemistry–climate models. The combination of energy, car-
bon, and reactive gas fluxes may even provide new insights
into the linkages between the biosphere, the atmosphere, and
anthropogenic activities.

Code and data availability. All observations, 1 Hz fluxes, and re-
lated quantities are publicly available through the CARAFE mis-
sion page at https://www-air.larc.nasa.gov/missions/carafe/index.
html (NASA, 2018). Flux analysis code is available upon request
from the corresponding author and will eventually be refined into
a publicly available MATLAB toolbox. Wavelet software was pro-
vided by Christopher Torrence and Gilbert Compo, and is avail-
able at http://atoc.colorado.edu/research/wavelets/ (Torrence and
Compo, 1998).
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