
10/13/2010    Wisard_Boards_V2        Pg 1 / 60 

 

Wisard Version2 / 3 Reference 
 

See Also Wisard_Message_Format,   PartsList.pdf 

 Wisard_Boards V1.pdf,   Xbee9XRadioNotes.docx 
 

Table Of Contents 

Wisard Version2 / 3 Reference ........................................................ 1 

Overview ........................................................................................... 3 

Differences between PIC24F and PIC24H Processors ..................................................................... 3 
Comparison of PIC Processor Specifications: ................................................................................... 3 

MicroChip Support: ............................................................................................................................ 4 

Version2 Board Notes ....................................................................... 4 

PIC Hardware Serial Port: ................................................................................................................. 4 

PIC I2C: ................................................................................................................................................ 5 
PIC Interruptible Control Lines: ....................................................................................................... 5 

Version2 Board PIC24FJ64GB004 – Pin Assignments .................................................................... 6 

Version3 Board Notes ....................................................................... 7 

Version3 Board PIC24FJ256GB206 – Pin Assignments .................................................................. 7 
Changes in V3 Board/Schematic from V2 ....................................................................................... 10 
Issues: V3 Differences from other PIC/Board ................................................................................. 12 

V3 - PIC Hardware Serial Port: ....................................................................................................... 13 

PIC Programming-MPLAB Setup: ............................................... 14 

MPLAB C30 Install Directory: ......................................................................................................... 14 

MPLABC30 Build Tool Suite/Locations: ........................................................................................ 14 
Programmer Setup: ........................................................................................................................... 15 
Configuring the Device Operation: ................................................................................................... 15 

MPLAB C30 Compiler Code Optimization Levels: ....................................................................... 16 
MPLAB Errors: ................................................................................................................................. 17 

Compiler/Linker: ............................................................................................................................... 17 
Language / Run-Time Environment: ............................................................................................... 17 

License Key for MPLAB C30 Compiler Standard Edition .................................................... 18 
Peripherals Support Library: ........................................................................................................... 19 
WatchDog Timer: .............................................................................................................................. 19 
Code Support Files: ........................................................................................................................... 19 

CPU Clock/Oscillator Source: .......................................................................................................... 19 
RTCC: ................................................................................................................................................. 20 
I2C: ...................................................................................................................................................... 21 

FS – File System: ................................................................................................................................ 21 
ADC: .................................................................................................................................................... 22 
Power Saving Modes: ........................................................................................................................ 23 
Timers / Interrupts: ........................................................................................................................... 24 

GPS – U-BLOX Notes .................................................................... 25 

U-Center: ............................................................................................................................................ 25 

file://chandon/isf/isff/doc/Wisard/Wisard_Boards_Message_Format.pdf
file:///C:/Documents%20and%20Settings/militzer/Application%20Data/Microsoft/Word/Wisard_Boards_PartsList.pdf
file://chandon/isf/isff/doc/Wisard/Wisard_Boards.pdf
file:///C:/Documents%20and%20Settings/militzer/Application%20Data/Microsoft/Word/Xbee9XRadioNotes.docx


10/13/2010    Wisard_Boards_V2        Pg 2 / 60 

 

TimePulse: .......................................................................................................................................... 25 
Comparison of PIC24 Processor Power Consumption Specs: ....................................................... 26 
Component Voltage Limits: .............................................................................................................. 26 
Power Consumption / Solar Charging: ............................................................................................ 27 

Wiring & Cables: ............................................................................ 29 

MPLab PIC Programmer Cables: ................................................................................................... 29 
WhiteBox Console Cable (Serial/Power) ......................................................................................... 30 
Sensor MiniDIN Cables ..................................................................................................................... 31 

Difference Between PAR-Wand and Wisard Sensor Cables ......................................................... 32 
How To Pot Bulgin Connectors: ....................................................................................................... 33 

PCB Board Design / Manufacturing ............................................. 34 

Board Design / Layout Software: ...................................................................................................... 34 
PCB Component Stuffing and Assembly ......................................................................................... 34 
Thermal Considerations in PCB Board Design and Layout: ........................................................ 35 

Coating PCB Boards: ........................................................................................................................ 35 
Nominal Current Capacity for PCB trace sizes. ............................................................................. 36 

Chart of PCB Current Capacities vs Temperatures....................................................................... 37 

Schematics / Layouts: ..................................................................... 40 

PIC-MCP3421-SingleChannel: Echo, Rnet, HFT ........................................................................... 40 
PIC-MCP3424-Four Channel Board ............................................................................................... 42 

TPO1 ................................................................................................................................................... 43 
PIC-Tsoil ............................................................................................................................................. 45 
PIC Everest IRT ................................................................................................................................. 48 

SHT75-TRH ........................................................................................................................................ 49 
ParWand – Niwot08 ........................................................................................................................... 54 

WhiteBox - SensorNode Version2 - Release 13Aug10 .................................................................... 55 

WhiteBox – SensorNode Version 3 Prototype 05Jun11 ................................................................. 57 
U 

  



10/13/2010    Wisard_Boards_V2        Pg 3 / 60 

 

Overview 
 
This document describes the Version2.0 ISFS Wisard Prototype SensorNode Board based around the 

PIC24FJ64GB004 16-bit processor.    This document describes how those boards and PIC 

processor.  

 

SensorNodeBoard: This board is intended to sample and forward sensor data.   Its serial output can be routed to 

either an Xbee2 radio and/or a direct RS232 connection.    The Xbee radio can be linked to the 

RepeaterBoard or to a directly connected Xbee base radio attached to an ADAM.   It includes 5 

miniDin-6 connectors for i/o to I2C based PIC sensors.   The RS232 is carried on a miniDin-6 

connector also used for power input as with the Version1 boards.   A DC-DC 

converter:……operating voltage of 3.3.    A 2-pin connector allows a ‘AA’ battery pack to be 

used for either stand-alone and/or a quasi-ups operation. 

 

 

Processor Features & Specifications: 

 
Differences between PIC24F and PIC24H Processors 
PIC24F: Lower Power, 16MIPS, Mid-Range Performance 

PIC24H: 16-bit MCU at 40MIPS, Higher Performance 

Family: Single-Cycle bit manipulation, instructions, hardware multiply, 5 cycle Intr.Response. 

 PIC24F PIC24H 

ADC 10-bit 12-bit 

Uarts 2-4 1-2 

I2C 2-3 1-2 

eeprom 0-512B (PIC24FK)  

ram 4-96k 1-16k 

  Higher power / 

consump

t. 

   

130degC  PIC24HJ, PIC33FJ 

Special DSWDT, DSBOR, 

USBOT

G 

DMA 

 

For Wisard we will use the PIC24F family to save power 

 

Comparison of PIC Processor Specifications: 
Spec 

 

FJ64GB004 FJ256GB206 (206,210) PIC18LF2520 

Operating Voltage 

Range 
 

2.0 – 3.6 2.2 – 3.6 2.0 – 5.5 

I/O Port Sink/Source 

current 

 
 

18mA / 18mA 

Current Limit Resistance: 

Rmin = 3.3V.018 ~= 

183ohms 

18mA / 18mA 

Current Limit Resistance: 

Rmin = 3.3V.018 ~= 183ohms 

25mA / 25mA 

Current Limit Ohms 

Rmin = 3.3/.025 ~=132ohms 

 Note: Using 470ohm  was too much and prevents multiple Wisard sensors from working. 

200 did work in a bench test. 

25mA absolute max implies at least 132ohm min. 

    

    

    



10/13/2010    Wisard_Boards_V2        Pg 4 / 60 

 

    

    

 
 

 

 

MicroChip Support: 
 
Local Representatives: Lange Sales 1500 West Canal Court Bldg. A, Suite 100 Littleton,CO 80120 USA 

Phone: (303) 795-3600 Fax: (303) 795-0373; Judy Miller. 

 

On-Line Support:  FIRST: enter Tech.Question Ticket on-line  If the email response does not solve 

the problem, contact the NORTH AMERICAN Support department by calling 

(480) 792-7627.  Enter the Ticket ID shown in the subject line of this message for 

verification. Enter the Ticket ID which is 1-133803 substituting the '-' with the '*' 

key.  Press # on your telephone when finished. 

 

 

Version2 Board Notes 
 

The PIC-24FJ64GB004 is a 16-bit class processor.  

Program Memory: 64-kByte program flash (22,016 instructions) 

Data Memory:  8192-bytes data SRAM 

No internal EEPROM, Simulation software permits use of flash to simulate it 

10bit ADC, 25 I/O pins (sink/source up to 25mA), 2-I2C, 2-of-SPI/USART,  5-16bit timers, USB-OTG 

Internal Osc.   31k to 8mhz, Watchdog Timer 

2
nd

 Internal Osc Low-Power Internal RC Osc fixed at 31kHz (used in sleep/idle modes) 

External Osc.  upto 32MHz 

Instruction Rate/Cycle: 

Osc/2 = Fosc 1 Cycle to fetch (prefetch used) + 1 Cycle to execute (except instructions that 

change the program flow) 

2.0 – 3.6V operation 

 

 

 

PIC Hardware Serial Port: 
 

UART1 and UART2 are on Reprogrammable Pins (PPS)     

 Board:    

 SensorNode PIC Tx to Max3323 RS232 Pin4, RP24 

 PIC Rx from Max3323 RS232  Pin5, RP25 

 PIC Tx to Xbee Pin20, RP6 

 PIC Rx from Xbee Pin19, RP5 

 
BaudRate Generation: See specific chip data sheet. 

The 16-bit BRGenerator supports either sync or async modes.   It controls a free-running timer which samples the 

i/o in either a rate of FOSC/32 (Standard) or FOSC/8 (High). 

The Standard Calculation for the UxBRG register is: (FCY/16*BaudRate)-1.   With bit BRGH=0 in the 

UxMODE register. 

The High Mode has UxBRG = (FCY/4*BaudRate)-1. With BRGH=0 

NOTE: rates 57600, and 115200 are unusable due to the high clock error from ‘ideal’ 

BaudRate Values - Standard, SYSCLK=16000000, FCY=8000000 



10/13/2010    Wisard_Boards_V2        Pg 5 / 60 

 

          9600: BaudRateReg=51.08/ 51     Error=-0.16/0 % 

         19200: BaudRateReg=25.04/ 25    Error=-0.16/0 % 

         38400: BaudRateReg=12.02/ 12    Error=-0.16/0 % 

         57600: BaudRateReg= 7.68/  7      Error=-8.51/-8 % 

        115200: BaudRateReg= 3.34/  3     Error=-8.51/-8 % 

BaudRate Values - High 

          9600: BaudRateReg=207.33/207   Error=-0.16/0 % 

         19200: BaudRateReg=103.17/103  Error=-0.16/0 % 

         38400: BaudRateReg=51.08/ 51     Error=-0.16/0 % 

         57600: BaudRateReg=33.72/ 33     Error=-2.12/-2 % 

        115200: BaudRateReg=16.36/ 16    Error=-2.12/-2 % 

In these calculations the integer value gets programmed into the UxBRG register 

 

 

 

PIC I2C: 
The p24FJ64GB004 has 2 hardware I2C ports.   These are on specific pins as opposed to many of the 

reprogrammable pin functions of the device.   I2C1= 1(SDA1/RB9), 44(SCL1/RB8) and 

I2C2=23(SDA2/RB2), 24(SCL2/RB3).   I2C2 is used to talk with the Wisard sensors 

 

 Board:  Hardware I2C2: 

Clock RB3(Pin24), Data RB2(Pin23) 

 SensorNodeV2.0 To Sensors (MiniDin’s J1.1-5 only) 

  

Sensors:  MiniDin J1-5 Pin-5 pulled to ground to force sensors into 

‘i2c mode’ 

 MiniDin J1-5 Pin6 NOTE: Jumperable on ‘left-two’ for 

+12vdc, Available for ‘right-three’ as 

gpio 

 

I2C Addressing: 7-bit, although 10-bit is available.   Valid Range = 0x8-0x7F Addresses 0-7 are reserved. 

   The ‘known’ address is shifted 1 byte left for i/o calls (<<1), thus 0x49 becomes 

0x92. 

 

I/O clock speed: 100kHz or 400kHz 

   In Wisard Code, it is selected in the file: “i2c_master” with a define statement. 

 

I2C Slave Addressing: 

 The address needs to be shifted by 1 bit, ie <<1 and the lsb set for either a read or write call. 

 For raw address = 0x20 I2CAdd = 0x20<<1 | 0x01 (for a read request) 

     I2CAdd = 0x20<<1  (for a write to device call) 

 

Interrupt Service Routine: 

 void __attribute__((interrupt,no_auto_psv)) _MI2C2Interrupt(void) 

 

 

Registers: 

 I2C2CON Control Register 

 I2C2BRG BaudRate in Master Mode: 100 

 I2C2STAT Status Register 

    

PIC Interruptible Control Lines: 
RB0 

 



10/13/2010    Wisard_Boards_V2        Pg 6 / 60 

 

Version2 Board PIC24FJ64GB004 – Pin Assignments  
 

Pin PIC24FJ64GB004 Functional Assignment – V2  

1 RP9 / SDA1 / RB9 GPS – Rx (Uart2)  

2 RP22 / RC6 GPS – PPS   

3 RP23 / RC7 GPS Int0 (Not used functionally)  

4 RP24 / RC8 RS232 – Tx (Uart1 to MAX3323)  

5 RP25 / RC9 RS232 – Rx (Uart1 to MAX3323)  

6 DisVreg Gnd – Enables OnBoard Voltage Regulator, 

for core logic to operate off 

3.3  

Allows low voltage 

detection. 

7 Vcap / VddCore LowESR cap to above to support Vreg.  

8 RP10 / PGED2 / RB10 ORG led, J3-pin3 aux. use  

9 RP11 / PGEC2 / RB11 J3 – pin4 aux. use  

10 Vusb n.c.  

11 RP13 / AN11 / RB13 AN11 = Analog Vin  

12 RA10 Xbee SleepReq – (Not functional)  

13 RA7 XBEE Reset  

14 RP14 / AN10 AN10 = Iin  

15 RP15 / AN9 AN9 = I3.3  

16 AVss Gnd: Caps tie together with  

17 AVdd Vcc (+3) Positive Supply for ADC Modules Vref here instead of 19? 

18 MCLR   

19 RP5 / PGED3 / Vref+ / RA0 XBEE Tx – Uart1  

20 RP6 / PGEC3 / Vref- / RA1 XBEE Rx – Uart1  

21 RP0 / PGED1 / AN2 / RB0 XBEE Status  

22 RP1 / PGEC1 / CN5 / RB1 CN5 (white) button: ScanI2c, Swap  

23 SDA2 / RP2 / AN4 / RB2 I2C2-Clk, Sensors  

24 SCL2 / RP3 / AN5 / RB3 I2C2-Data, Sensors  

25 RP16 / AN6 / RC0 RED led  

26 RP17 / AN7 / RC1 GRN led  

27 RP18 / AN8 / RC2 AN8 = Isensors  

28 Vdd +3.3  

29 Vss Gnd  

30 CLKI / OSCI / RA2 16Mhz TCXO in  

31 CLKO / OSCO / RA3 Clock Output Test Point  

32 RA8 Sensor On/Off Power Switch  

33 SOSCI / RP4 / RB4 RTCC Osc.  

34 SOSCO / RA4 RTCC Osc.  

35 RA9 YEL led  

36 RP19 / AN12 / RC3 MicroSD SPI- CS  

37 RP20 / RC4 MicroSD SPI- SDD  

38 RP21 / RC5 MicroSD SPI- Data  

39 Vss Gnd  

40 Vdd +3.3  

41 RB5 GPS On/Off Power Switch  

42 Vbus n.c.  

43 RP7 / INT0 / RB7 MicroSD SPI – CLK  



10/13/2010    Wisard_Boards_V2        Pg 7 / 60 

 

44 RP8 / SCL1 / RB8 GPS Tx – Uart2  

Version3 Board Notes 
 

 

Version3 Board PIC24FJ256GB206 – Pin Assignments  

 
Pi

n 

PIC24FJ256GB206(206,210) 

Pin Functions Available 

Pin Function 

U

s

e

d

 

–

 

V

3 

Application 

A

s

s

i

g

n

m

e

n

t

 

–

 

V

3 

V2 

P

i

n 

V2 Func 

1 PMD5 / CN63 / RE5 RE5 GPS-PowerSw   

2 SCL3 / PMD6 / CN 64/ RE6 I2C3-SCL3 GPS   

3 SDA3 / PMD7 / CN65 / RE7 I2C3-SDA3 GPS   

4 C1IND / RP21 / PMA5 / CN8 / RG6 RP21 / RG6 RX3 from GPS   

5 C1INC / RP26 / PMA4 / CN9 / RG7 RP26 / RG7 TX3 to GPS   

6 C2IND / RP19 / PMA3 / CN10 / RG 8 CN10 / RP19 / 

R

G

8 

INTx from PPS 2 CN18 / RC6 

7 MCLR     

8 C2INC / RP27 / PMA2 / CN11 / RG9 CN11 / RG9 SCAN BUTTON 22 CN5 / RB1 

9 Vss     

10 Vdd     

11 PGEC3 / AN5 / C1INA / Vbuson / RP18 / CN7 / RB 5 PGEC3 / RP18 / 

R

B

5 

TX1 to UART   

12 PGED3 / AN4 / C1INB / USB-OEN / RP28 / CN6 / 

RB4 

PGED3 / RP28 / 

R

B

4 

RX1 from UART   

13 AN3 / C2INA / VPIO / CN5 / RB3 AN3 / RB3 Vin 11 AN11 / RB13 

14 AN2 / C2INB / VMIO / RP13 / CN4 / RB2 AN2 / RB2 Iin 14 AN10 / RB14 

15 PGEC1 / AN1 / Vref- / RP1 / CN3 / RB1 Vref-    

16 PGED1 / AN0 / Vref+ / RP0 / PMA6 / CN2 / RB0 Vref+    



10/13/2010    Wisard_Boards_V2        Pg 8 / 60 

 

Pi

n 

PIC24FJ256GB206(206,210) 

Pin Functions Available 

Pin Function 

U

s

e

d

 

–

 

V

3 

Application 

A

s

s

i

g

n

m

e

n

t

 

–

 

V

3 

V2 

P

i

n 

V2 Func 

17 PGEC2 / AN6 / RP6 / CN24 / RB6 AN6 / RB6 I3.3 15 AN9 / RB15  

18 PGED2 / AN7 / RP7 / RCV / CN25 / RB7 RB7 LED-Org   

19 AVdd     

20 AVss     

21 AN8 / RP8 / CN26 / RB8 RP8 / RB8 TX2 to Xbee 19 RP5 / RA0 

22 AN9 / RP9 / PMA7 / CN27 / RB9 RP9 / RB9 RX2 from Xbee 20 RP6 / RA1 

23 TMS / CVref / AN10 / PMA13 / CN28 / RB10 RB10 Xbee-SleepRQ 12 RA10 

24 TDO / AN11 / PMA12 / CN29 / RB11 RB11 Xbee-Reset 13 RA7 

25 Vss     

26 Vdd     

27 TCK / AN12 / CTEDG2 / PMA11 / CRED2 / CN30 / 

RB12 

RB12 USB-PowerSw 

X

b

e

e

-

S

t

a

t

u

s 

 ProtoV3 had 

t

h

e

s

e

,

 

b

u

t

  

28 TDI / AN13 / CTEDG1 / PMA10 / CTED1 / CN31 / 

RB13 

RB13 I5.0 

USB-PowerSw 

 … 

29 AN14 / CTPLS / RP14 / PMA1 / CN32 / RB14 AN14 / RB14 Xbee-Status  

I5.0 

 Need this to be 

R

P

 

=

I

N

T

2 

30 AN15 / RP29 / REFO / PMA0 / CN12 / RB15 AN15 / RB15 Isensors 27 AN8 / RC2 

31 SDA2 / RP10 / PMA9 / CN17 / RF4 I2C2-SDA2 SENSORS   

32 SCL2 / RP17 / PMA8 / CN18 / RF5 I2C2-SCL2 SENSORS   



10/13/2010    Wisard_Boards_V2        Pg 9 / 60 

 

Pi

n 

PIC24FJ256GB206(206,210) 

Pin Functions Available 

Pin Function 

U

s

e

d

 

–

 

V

3 

Application 

A

s

s

i

g

n

m

e

n

t

 

–

 

V

3 

V2 

P

i

n 

V2 Func 

33 RP16 / USB-ID / CN71 / RF3 USB-ID J5-Pin4   

34 Vbus / RF7 Vbus J5-Pin1   

35 Vusb     

36 D- / CN84 / RG3 D- J5-Pin2   

37 D+ / CN83 / RG2 D+ J5-Pin3   

38 Vdd     

39 OSCI / CLKI / CN23 / RC12 CLKI 16Mhz TXCO   

40 OSCO / CLKO / CN22 / RC15 CLKO T.P.   

41 Vss     

42 RTCC / DMLN / RP2 / CN53 / RD8 RD8 LED-Red   

43 DPLN / SDA1 / RP4 /  PMA14 / PMCS1 / CN54 / 

RD9 

RP4    

44 SCL1 / RP3 / PMA15 / PMCS2 / CN55 / RD10 RP3    

45 RP12 / PMACK2 / CN56 / RD11 RD11 LED-Grn   

46 DMH / RP11 / INT0 / CN49 / RD0 RD0 SensorPowerSw   

47 SOSCI / C3IND / CN1 / RC13 SOSCI RTCC   

48 SOSCO / SCLKI / T1CK / C3INC / RPI37 / CN0 / 

RC14 

SOSCO RTCC   

49 Vcpcon / RP24 / Vbuschg / CN50 / RD1 RD1 LED-Yel   

50 DPH / RP23 / PMACK1 / CN51 / RD2 RP23 / RD2 SDspi-CS 36 RP19/RC3 

51 RP22 / PMBE0 / CN52 / RD3 RP22 / RD3 SDspi-SDD 37 RP20/RC4 

52 RP25 / PMWR / CN13 / RD4 RP25 / RD4 SDspi-Data 38 RP21/RC5 

53 RP20 / PMRD / CN14 / RD5 RP20 / RD5 SDspiCLK 43 RP7/RB7 

54 C3INB / CN15 / RD6     

55 C3INA / SESSEND / CN16 / RD7     

56 Vcap     

57 ENVREG     

58 Vbusst / Vcmpst1 /  Vbisvld / CN68 / RF0     

59 Vcmpst2 / SESSVLD /  CN69 / RF1     

60 PMD0 / CN58 / RE0  ThruHolePad   



10/13/2010    Wisard_Boards_V2        Pg 10 / 60 

 

Pi

n 

PIC24FJ256GB206(206,210) 

Pin Functions Available 

Pin Function 

U

s

e

d

 

–

 

V

3 

Application 

A

s

s

i

g

n

m

e

n

t

 

–

 

V

3 

V2 

P

i

n 

V2 Func 

61 PMD1 / CN59 / RE1 CN59 / RE1 J6-Pin8   

62 PMD2 / CN60 / RE2  ThruHolePad   

63 PMD3 / CN61 / RE3 CN61 / RE3 J6-Pin6   

64 PMD4 / CN62 / RE4  ThruHolePad   

 
 

 

 

 

Changes in V3 Board/Schematic from V2 
 

PIC24FJ256GB206 – connections 

- Vdd/Vss caps still are placed under board despite uChip’s recommendation to ‘same-side’ but still are 

close connections and now have power-via on ‘other-side’ of caps from pic. 

- Mclr pull-up is still distant from pic, despite uChip’s recomm. to keep all components assoc. w/it close.  

Current limit resistor r11 is.   Cap c20 is assoc. w/reset button and distant.   uChip 

suggests cap should be removed for programming but save arrangement worked for V2 

board. 

- Lans are .008 at pic’s pins but moved to .01 outside (with exception of Vdd/Vss which are .01).   Did 

this to improve/help some very tight routing esp. next to pin 1,2,3,64 where 2 lans are 

very very close.   One trace could, maybe should be moved to bottom. 

I2C vias are new smallest ones: .026x.008”hole….will they work? 

RTCC / TCXO Both on bottom of board.   Tcxo has enable jumper for when not used. 

Vin Connector Moved away from L0, etc so that we can switch to screw-terminal version.  Footprint 

same-old 

Xbee Removed cutable/jumperable pull-option for sleepRq.   retained that line because now 

available with xb-8062 firmware.   Added an led and push-button for xb commissioning:  

allows switching modes dynamically (handy for setting up a sleeping network maybe).    

Added XbeePower jumper so it can be utterly turned off.   Pic still decides when 

+enabled. 

MAX3323 Moved to bottom of board to make more room.   May not be needed and may make fab. 

more awkward.   Removed cutable/jumperable null-modem option vias. 



10/13/2010    Wisard_Boards_V2        Pg 11 / 60 

 

J6 – PIC Programming Header Retained wiring for programming side, and 2x5 arrangement.   

Disconnected Xbee related signals.   Added some gpio and still have CN-button (CN11, 

RG9, RP27) on pin 10.   Has cmos level signals.   Added J3 for off-box sensor with 

control, routing signals from console port (232txrx) to pins 2,4 through jumper pad J3.   

Potential use: 9X radio modem but would need 232, or other radio.  

GPS/Ublox Moved toward ‘top-of-box’ and toward side to make room and hopefully make antenna 

cable have more slack.    Should for V3 we consider Terry’s on-board/active-amp and 

passive antenna without any external?  Ublox gnd permanently attached. 

Holes added for batt. 

Changed ldo cap C21 to 0603 and expanded size of filled planes to increase thermal sink. 

J7-Ublox Now has both ‘txrx’ and ‘i2c’ to ublox.  These are cmos level but could be used for aux. 

sensors/etc.   Have not yet tried i2c on ublox, and with this pic probably won’t need to.  

microSD buffer moved to bottom.   moved over  to make more room.   Power distribution moved 

to off sensor chain downstream of current monitor so we can determine that load also.   

Diode added to block back-flow when sensor power switch is off.   Still need to revisit 

software to determine if it’s possible to totally shutdown and prevent io line on spi back-

bleeding. 

ADC/Vref Added Vref U5 Ref3325 to stabilize internal adc ref.  Retained the attempt at RC filter on 

all adc monitor channels.  This may be wrong because the PIC24F family reference on 

the A/D sampling requirements says the total recommended source impedance be <=2.5k 

(Rsource + Rinterconnect).   There is also the internal <=3k sample switch resistance.   

The sample/hold capacitor is 4.4pF and must fully charge before sampling begins to meet 

accuracy spec.   For Imonitors, the MAX4372 claims output impedance of 1.5ohms 

which should be ok. 

 Note: ADC can run in sleep mode to help reduce digital noise if the trigger source is set 

to ensure this and the ‘auto conversion trigger option can be used 

(AD1CON1,SSRC<2:0>=111.  To use this the ‘ADON bit should be sit in the 

intstruction prior to doing a PWRSAV.   In IDLE mode you must have the ADSIDL 

bit=0 (AD1CON1<13>) set for it to continue in idle mode.  With adc interrupts set, it’ll 

wake the processor.  Beware that if it’s set=1 the adc will stop in idle mode and not 

resume a partially completed reading. 

 V2  Noise appears most related to vref, but also uChip recommends either a buffer or low 

impedance sources.   Have not looked or thought about buffers….maybe too much 

cost/effort for value added.   Check how proto board works with just vref. 

USB OTG added, using D+,D-,USBID.   Vbus provided either, as slave from bus, or as host 

through U12- MCP1252 charge-pump controlled by RB13 for shutdown.  ‘Pgood’ not 

being used.   Current monitor for +5 ‘host-mode’ through U14 and adc AN14. 

The USB connector is an issue.  Putting a microA/B or mini right-angle won’t have room for connector 

since they’re normally used on board edge.    For now I used a .1” header (Bulgin sells a 

4” long .1” adaptor for either ‘A’ to host or ‘B’ for device) forcing to build our own 

cable.  I’ve seen 1 right-angle mini-b plug also. 

Spacing Issues Can the USB connection/tors fit?    Sensor connectors and ‘console/power’ connectors 

same.   Programming header moved.   GPS header different but about same place.   

Clearance to remove GPS battery should be better but the J1 max3323 power header may 

still be issue.    Expanded the board length a bit: will din connectors still be ok, etc? 

Ferrites L3,L4 for I2C removed. Replaced by simple resistors for current limit protection. 

The ferrites are/were intended for high-frequency noise suppression. 

However, their characteristically high resistance (500ohms for the ones used)at I2C frequencies 

clobbered the signal. 



10/13/2010    Wisard_Boards_V2        Pg 12 / 60 

 

Current limiting the port for potential short circuits (observed in the field from bad sensors) is more 

important.   For both the processors used with V2 and V3 the max supply current is 

18mA so a 200 ohm value was chosen. 

TVS Diode vs Varistors 

The varistors used in V2 for the I2C in particular had excessive capacitance even though in our 

application it worked.   For driving longer lines or insuring better signals, a low 

capacitance ESD device is preferred even though the varistors potentially handle a bit 

more power.    The 2
nd

 V3 board proto will include roughly .006” pads on the lines as a 

Spark-Gap for higher pulses. 

 

 

 
Issues: V3 Differences from other PIC/Board 
 

MPLAB Error: Device ID doesn’t match expected on ICD2 or 3;  Programming problems 

“Invalid target device id (expected=0x4104, read=0x0)” 

The PIC24FJ256GB206 is much more sensitive to stray capacitance on the 

PGEC/PCED/MCLR lines.  The spurious reset suppression cap, c20, on the reset/MCLR 

button may need to be jumpered out for programming.   Similarly PGEC/PGED are 

routed to RS232/MAX3323 chip and it causes enough added capacitance to prevent 

device programming.     

Fix: Jumper out RS232 lines from PGEC/PGED3 

Notes: From the PIC forums Re IDC2 and 3.3v PIC24 failure ‘rbreesems writes: 

“Well, the configuration bit settings don't matter for ICD2 to PIC24 communication purposes, so it just comes 

down to the MCLR, VDD, GND, PGC, PGD lines.  

 

Have you tried a different pair of PGC, PGD lines on the PIC24? Which ones are you using?  

 

Is the cable from the ICD2 to the PIC24 short?  There have been some documented crosstalk 

problems between the PGC and PGD lines in that cable because they run right next to other, 

some people put a small RC filter on these to slow down signal transitions to reduce crosstalk. 

They recommend a cable length of 6 inches.” 

and ‘ohmite adds:  

“If you are sharing your pgc & pgd pins that you are using to program with something else, you may not be able 

to program the chip.  Try moving to one of the other (choice of three) pgc/pgd pin combinations 

or disconnect the other connections while programming.  I have found they can be very 

intolerant of sharing the program pins with other devices.  Also, if you have made a special 

programming cable (something other than the orginal ICD2 cable and normal ISCP connector), 

make sure your connections are correct and the length of the cable is not too long.” 

 

Error: CLKO monitored by scope messes processor 

The scope probe may have enough added capacitance to effect the signal.  In one case of a user who 

tried to interface with the ICSP (in circuit debugger) via ICD2/3 the scope probe helped 

the processor run by adding capacitance.   In his case he added a 10pf cap to the signal to 

stabilize it. 

 

Problem: I2C2 won’t run / locks up. 

On the 2
nd

 prototype board the i2c wouldn’t open and it locked up/reset.   Removing the ‘varisters’ at 

least allowed the sensorON power to work…….maybe….. 



10/13/2010    Wisard_Boards_V2        Pg 13 / 60 

 

 

MPLAB Error: Odd behavior with v3.25 

Difficulties with timing, putchar, etc. were encountered during initial testing of the V3 board.   These 

were “solved” by stepping back to MPLAB-C30 V3.23…. 

 

 

V3 – Timers: 

Timer Period Calculation: Fosc*Count*PreScaler = Amount of Time for Interrupt to fire 

    External TCXO: Fosc=16,000,000/2 mHz, Period=.000000125 

Sec/count 

    So for 1-Sec with Prescaler 256, Count = 8000000/256 = 31250 

(0x71A2) 

Timer1  Bresenham Clock  Priority-1 

Timer2  InputChange Button  Priority-1 

Timer3  Xbee    Priority-1 

Timer45 GPS No-Lock-Timeout  Priority-1, 16-bit 

 

V3 - PIC Hardware Serial Port: 
 

UART1-3 are on Reprogrammable Pins (PPS)     

 Board:    

 SensorNode PIC Tx to Max3323 RS232 Pin11, RP18 

 PIC Rx from Max3323 RS232  Pin12, RP28 

 PIC Tx to Xbee Pin21, RP8 

 PIC Rx from Xbee Pin22, RP9 

 PIC Tx to GPS Pin5, RP26 

 PIC Rx from GPS Pin4, RP21 

 
BaudRate Generation: See specific chip data sheet and is similar to the version2 processor. 

The 16-bit BRGenerator supports either sync or async modes.   It controls a free-running timer which samples the 

i/o in either a rate of FOSC/32 (Standard) or FOSC/8 (High). 

The Standard Calculation for the UxBRG register is: (FCY/16*BaudRate)-1.   With bit BRGH=0 in the 

UxMODE register. 

The High Mode has UxBRG = (FCY/4*BaudRate)-1. With BRGH=0 

 

NOTE: Use BRGH1bitHIGH.   BRGH1bitSTANDARD only works for 9600,19200bps...i.e. don’t bother. 

    

NOTE: 115200bps can only be used with the TCXO / 16mHz clock via ‘USE_EXTERNAL_OSC’.  

Otherwise all of the standard rates are available: 9600, 19200, 38400, 57600bps 

  



10/13/2010    Wisard_Boards_V2        Pg 14 / 60 

 

PIC Programming-MPLAB Setup: 
 

SensorNode and Repeater Boards include a 5-pin header for programming denoted J6: 

J6 Pin Description Dual Use 

1 Vcc – Usually +5 from MPlab ICD2  

2 PGC – Program Clock from MPlab PIC-Tx to ADG736 (repeater) 

3 PGD – Program Data PIC-Rx from ADG736 (repeater) 

4 MCLR – Pull-Up resistor provided on-board  

5 Gnd  

 

ICDx USB Driver path for PC: 

 c:\Program_files\Microchip\ MPLAB IDE/ICD2/Drivers/icd2w2k.inf 

If you plug your ICD2/3 into a different USB port you may need to reload the driver which should be in the 

above directory.   Don’t use the windowz version, it’ll ask for an install disk. 

 

Directories used in search path: 

 Project-tab 

     Build Options 

         Project 

Directories-tab Shows (Include, Output, Assembler, Library, Intermediate): 

 For MPLABC30-V3.23,V3.25 

Include Search Path  \c\mcc18\h 

Library Search Path  \c\mcc18\lib 

 

’Project.mcw’ Pop-up Window Shows the ‘Source Files’, ‘Linker Script’, etc. 

 Linker Script:   right-click and add 18f2520.lkr (for the chip we’re using) 

     \c\mcc18\lkr\18f2520.lkr 

     you can enter this by hand 

Linker Scripts: /cygdrive/c/Program Files/Microchip/MPLAB 

C30/support/PIC24F/gld/p24fj64gb004.gld 

 

 Source Files:   right-click to ‘add’/’remove’ files 

MPLAB C30 Install Directory:   

Should look something like this: 

Windows7 c:\Program Files (x86)\Microchip\MPLAB C30\ 

 

MPLABC30 Build Tool Suite/Locations: 

Install Directory: This partly depends upon your version of Windows and where you want to 

put them. There can be multiple versions such as: v3.25 or v3.31.   The executables/etc. 

can be setup for either.  With the ‘old-default’ it isn’t obvious which version it holds.  

  c:\Program Files\Microchip\MPLAB C30   (XP / old mplab 

default) 

c:\Program Files (x86)\Microchip\mplabc30\v3.25  (7 better, more obvious) 

c:\Program Files (x86)\Microchip\mplabc30\v3.31 

 

Project-tab   “Set Language Tool Locations” 

Registered Tools:  Microchip C30 ToolSuite 

 Project-tab   “Select Language Toolsuite” 

Active Toolsuite: “Microchip C30 Toolsuite” 

Toolsuite Contents: … 



10/13/2010    Wisard_Boards_V2        Pg 15 / 60 

 

Location: “Install-directory”\bin 

  

  Executables: 

      MPLAB ASM30 Assembler: …\bin\pic30-as.exe 

      MPLAB C30 C Compiler:   …\bin\pic30-gcc.exe 

      LIB30 Archiver:   …\bin\pic30-ar.exe 

      MPLAB LINK30 Object Linker: …\bin\pic30-ld.exe 

 

NOTE: For PIC18 compiler (other projects) : 

      For v3.23: c:\mcc18\bin\mcc18.exe       (Was using this before) 

    …\mpasm\mpasmwin.exe 

    …\bin\mplib.exe 

    …\bin\mplink.exe 

      For v3.42:   c:\Program Files\Microchip\mplabc18\v3.42\bin\mcc18.exe 

(Kaiser’s pic) 

 

 

Programmer Setup: 

 Programmer-tab 

     Select Programmer:   MPLAB ICD3 

     Settings 

         Communication:  USB 

         Status:   AutoConnect at startup, AutoDownload firmware if needed 

     Note the ‘Run Self Test’ tab 

         Power:   Uncheck ‘Power target circuit from MPLAB ICD2 

Note: Power is +5vdc from the programmer.   The XBee radios are tolerant only 

up to 3.6volts so don’t run an ‘xbee’ board from the mplab 

         Program:   Allow ICD2 to select memories and ranges 

Program2: IMPORTANT: Preserve EEPROM on Program.   This lets you 

keep permanent application setups without them getting erased 

between programming cycles. 

 

 

Configuring the Device Operation: 

 Configure-tab 

     Select Device = PIC24F64GB004 (V2) or PIC24FJ256GB206 (V3) 

     Settings 

         Workspace:  ‘Auto Save: Prompt’ 

         Progm Loading:  ‘Clear memory before’ 

         Projects:   ‘set all checked’ 

     Configuration Bits:  ‘Configuration Bits set in code’ 

Note: These are for the configuration (held in eeprom) which can be set either by 

the MPLAB ‘Configure’ tab under ‘Configuration-Bits’ or ‘Set in Code’.   

For set in code, you can #include “config_settings.h” and put the various 

words in: ie _config1 ..etc.. 

 

 

PGEDx/PGECx Selection (for multiple-option parts)s: 

 Designated by ICS Config. Bits in ICD 

 

  



10/13/2010    Wisard_Boards_V2        Pg 16 / 60 

 

 

MPLAB C30 Compiler Code Optimization Levels: 

 In MPLAB-IDE: Select ‘Project’, ‘Build Options’, ‘Project’ – Select Tab ‘MPLAB 

C30’ and use the Pulldown selection under Categories: ‘Optimization’ 

 -O0 Default: Do Not Optimize 

 -O1 Optimize.   Compiler tries to reduce size and exe. time 

 -O2 Optimize More (Full Licensed Version) 

 -O3 Optimize Even More (Full Licensed Version) turns on ‘inline-functions’ option 

 -Os Optimize for Space (Full Licensed Version) 

 

 See Interactive Help File: “hlpMPLABC30.chm” 

 

 
 

Example: -O0 

Total program memory used (bytes):        0x107b5  (67509) 25% 

Total data memory used (bytes):         0x1c40  (7232) 7% 

heap                        0x1c40                               0x800  (2048) 

stack                       0x2440                              0x5bc0  (23488) 

                        Maximum dynamic memory (bytes):         0x63c0  (25536) 

Note: You may not see any big difference in code size but the speed, hopefully should be 

higher in some cases between –O0, -O2, -O3 

  



10/13/2010    Wisard_Boards_V2        Pg 17 / 60 

 

 

MPLAB Errors: 

Failure to recognize PIC / Board OR Device ID does not match: 

This can happen when there is board corrosion esp. near or on the Xbee/connector 

because the pgm/pgc pins of the programming header are shared 

with other tx/rx uses. 

“Failed to load C:\dir-filename.cof” This will stop you in your tracks.   The .cof file is the 

binary file generated by the linker and ultimately what gets loaded 

into the processor.   The pic30-bin2hex utility can be used to 

convert into hex file format use by device programmers. 

Solution: Project-BuildOptions-MPLAB LINK30-General 

 Select: ‘Keep all’ to get rid of… 

 The ‘Strip debugging info’ button is what got me into trouble. 

 In the link command option controlling this is ‘-S’ 

 “Omit debugger symbol information (but not all symbols) from the 

output file.” 

Note: This would appear to be related to using the ‘Project - 

BuildConfiguration’ Debug option versus ‘Release version control. 

Setting ‘Release’ did allow inclusion of –S, however when 

toggling back and forth between release and debug the switch did 

cause issues; perhaps noting that the setting may not immediate 

effect passing of options to the build tools.    You can’t use –S with 

‘debug.’    Select ‘release’ and remove –S to be sure. 

Test Logic Issues The compiler is dumb……Put Parens around every logical 

segment: 

 

Compiler/Linker: 

Generating Compiler Errors/Warnings: 

You can add compiler directives #if…#error…#endif, or similarly #warning 

…example-1… 

#if  I2C2BaudRate > 157 

#error Cannot set up I2C2 for the SYSCLK and BAUDRATE >5.\ 

 Correct values in main.h and uart2.h files. 

#endif 

...example-2… 

#if Nchannels*NsamplesEach > 16 

#error Nchannels * NsamplesEach is limited to 16 buffer slots / interrupt. \ 

#endif 

MPLAB LINK30 Options: 

--heap  see below in run-time env 

--report-mem Causes linking to show the memory map…..very useful! 

 

Language / Run-Time Environment:   
See: “MPLAB C Compiler for PIC24 and dsPIC User Guide ds51284j.pdf” 

Heap / Printf The heap is dynamically allocated memory used by malloc, calloc, realloc as well 

as standard i/o functions such as printf, etc. 

 It must be created at compile/link time via the linker build options: 
 pic30-gcc foo.c -Wl,--heap=512 

 At least 40-bytes per file ‘open’ed, and 514 for files that need buffering.   If you 

only use ‘stdio’ then the heap size must exist but can be 0.   The linker allocates 

heap from unused data memory. 



10/13/2010    Wisard_Boards_V2        Pg 18 / 60 

 

 Specifying the Heap size when using MPLAB C30: 

 ‘project’-‘build options’ – ‘project’, ‘MPLAB LINK30’ tab, ‘general’ category; 

and notice the generate command line ‘heap size:’ you can fill in and have the 

command  line created for you.   NOTE you can also fill in the min stack size 

here.   See “16-Bit Language Tools  Getting Started ds70094.pdf”  linker build 

options. 

Printf/Stdio Also: For a PIC24FJ64GB004 and devices with multiple uarts, you must: 

 __C30_UART=2;          // Defines which UART is stdio, default=1.  

 Note: This can be dynamically changed between ports. 

While Statement must include operable commands within it’s control. 

 This: while(!value)  __delay_ms(5); // works 

 Not: while(!value); // doesn’t,  stream is blocked even  if ‘value’ is 1   

Type Casting Very Important 

The compiler is very sensitive and it can be a factor with 16-bit representation.    Example: 

#define TIMED_SAMPLING 1 

This: unsigned char Sampling_Mode=(unsigned char)TIMED_SAMPLING; 

Not: unsigned char Sampling_Mode=TIMED_SAMPLING; 

because the storage can be corrupted and not what you think it ‘should be.’ 

 

To Install/Verify the MPLAB C30 Compiler for PIC24 MCUs 

If using MPLAB IDE, be sure to install MPLAB IDE v8.10 or later before installing these tools. 

To install the MPLAB C Compiler for PIC24 MCUs and dsPIC DSCs (previously MPLAB C30) tools, 

perform the following steps: 

1. Locate the setup program on the compiler CD ROM. 

2. Run the setup program. 

3. Follow the directions on the screen. 

4. If the installation program indicates that it is necessary, reboot your computer to complete the 

installation. 

5. When the installation is complete, verify that the executable directory has been correctly added to 

your PATH (i.e., if you chose to install the tools in the default directory, c:\Program 

Files\Microchip\MPLAB C30, then ensure that c:\Program Files\Microchip\MPLAB 

C30\bin has been added to your PATH). From a DOS prompt, type: c:\>PATH 

To verify installation, perform the following steps: 

6. At a DOS prompt, go to the examples directory (by default, it is c:\Program Files\Microchip\MPLAB 

C30\examples\MPLABC30_Getting_Started) 

7. Type: run_hello.bat 

8. If the tools are installed correctly, the output should show the various steps in the compilation and 

execution process ending with the text:  Hello, world! 

License Key for MPLAB C30 Compiler Standard Edition  

Purchase a valid license key from www.microchipdirect.com.   (for ISFF MTI102550893) 

To update an Evaluation or Lite edition of MPLABC30 to ‘Standard’: execute the following command line: 
pic30-lm –ulicensekey 

http://www.microchipdirect.com/


10/13/2010    Wisard_Boards_V2        Pg 19 / 60 

 

 PIC24 Hardware Programming Notes: 
 

Peripherals Support Library:   

Library Source c:Program Files/Microchip/MPLAB 

C30/src/peripheral_24F/libpPIC24F/pmc 

 Where a copy of the source code is located 

Documentation c:Program Files/Microchip/MPLAB C30/docs/peripheral_lib 

 Has a compiled help file: “Microchip PIC24F Peripheral Library.chm” 

and html files 

 

 

 

WatchDog Timer:  

The WDT is driven by the LPRC oscillator, so when the WDT is enabled so is this internal clock.   The WDT 

setup is done through the Config1 settings (ie CW1 register) via pre-compiler or MPLAB 

Nominal LPRC: 31kHz which feeds a prescaler of either 5 or 7-bits (1:32 or 1:128 divide-

by).  In 5-bit mode this ~=1mS, in 7-bit mode ~4mS.    

Config1:FWDTEN Can be set to always enable it (1), or if 0 allows software to dynamically 

set the RCON register SWDTEN bit to do so and/or disable it. 

Config1:FWPSA sets the prescaler to 5/7-bit mode 

Config1:WDTPS Post scaler for binary increments up to 32768 * 1or4mS mode rates 

(max=~131 Sec in 7-bit mode. 

EnableWDT(x) Either WDT_ENABLE or WDT_DISABLE allows software dynamic 

control 

ClrWdt() clears it so that it doesn’t fire 

Operation: The watchdog does not have an interrupt vector for it.  Instead it will 

either reset the processor, or wake operation after a sleep or idle 

PWRSAV instruction after which the sleep or idle bits must be cleared by 

the user.  

 

 
Code Support Files:   

iomapping.[c,h] Used the define the i/o pin assignments and usage.   Definition of 

‘__PIC24FJ64GB004__’   by MPLAB when using 24FJ64GB004 device 

controls which section is used. 

 

CPU Clock/Oscillator Source:   

Fosc Processor Clock Frequency, Internal=8Mhz, External on Wisard=16Mhz 

which is the ‘Primary Oscillator-EC’ see below. 

FCY Instruction Cycle Clock Frequency = Processor Clock Source/2 = Fosc/2 

Tcy Instruction Cycle Time period = 2/Fosc, ex. for CLKI-16Mhz = 125nS.   

The minimum allowed is 62.5nS 

EC External Clock Input (0-32mhz) via the TXCO is the mode used for 

WisardV2.  The PLL is not needed, and in this mode the following works: 

CLKO Pin 31 is used as a Fosc/2 signal in the V2 board.   This is setup in the pre-

compiler CONFIG2 word:  

 OSCIOFNC_OFF  // OSCO pin 31 is clock output (CLKO, to measure 

TXCO)  Note that this clock will stop when in low-power ‘IdleMode’ 

 



10/13/2010    Wisard_Boards_V2        Pg 20 / 60 

 

RTCC: 
 Secondary Oscillator  =32768kHz crystal 

Config Words The RTCC can be used with either the Internal or External Clock. 

 Depending upon Processor, the config setup may be in diff.words. 

Drive Strength SOSCSEL_SOSC = In high drive strength. 

 SOSCSEL_LPOSC = low drive strength.   

 High may needed on some boards, although usually not.   On a few it was 

required for the rtcc function to work, however, on most boards it can 

cause a bit unstable/high-freq. oscillations…..Ie look for this setting if 

RTCC problem.  Normally use Low-Power. 

Register Ops In order to write bits in the ctrl and value registers, you need to set the 

RCFGCAL.RTCWREN bit to 1.   That should be done with a short assy. 

routine or the periph. support library may/should have a call or macro for 

this.   It must be done in 1 instruction to let the above do it.   This is also 

true for the RTCEN bit to be set, and to setup the chime/alarm register. 

Idle Mode RTCC stays awake 

Sleep Mode RTCC stays awake, but not peripherals and clock 

Calibrating The RCFGCAL can be adjusted by +127,-128 counts/minute (8bits) 

 It is very temperature dependent. 

 Note: do not try to put a scope directly on the osc. because it’s impedance 

changes the circuit performance and frequency. 

 For room temp offset cal: 

 Write a test program (see my test stuff) that uses TIMER1 to monitor the 

error of the oscillator: 

1) setup RTCC to fire at 1sec 

2) run Timer1 at fastest rate and have it toggle an output pin 
TIMER-1 SETUP: 

        // Enable Timer Interrupt, Nearly highest priority level 

        ConfigIntTimer1(T1_INT_ON | T1_INT_PRIOR_6); 

        // Timer configured with Base-Rate: 

        //       T1_PS_1_256 = ~7.81mS = ( (1/F-SOSC)*0x1 ) * 256 

        //       T1_PS_1_64  = ~1.95mS = ( (1/F-SOSC)*0x1 ) * 64 

        //       T1_PS_1_8   = ~.244mS = ( (1/F-SOSC)*0x1 ) * 8 

        //       T1_PS_1_1   = ~.030mS = ( (1/F-SOSC)*0x1 ) * 1 

        // Then Multiply above pre-Scaler by the Timer-Period value to determine 

        // the actual interrupt rate, and toggled i/o^1 = 1/2 of that 

        //       ie. PS_1 with Timer-Period 0x4000 (16384) ~= .50sec int, i/o^1 = 1sec 

        //       ie. PS_8 with Timer-Period 0x400 (1024)   ~= .25sec int, i/o^1 = .5sec 

        // So, for fastest toggling of i/o lines to measure with counter/scope.... 

        //  PS_1 ~.03mS (( (1/F-SOSC)*0x1)*1)*1 period ~= 1/32768Sec, i/o^1 = 16384hz 

        //  Then we can measure the difference from ideal 32768hz 

        // Continue running timer in idle mode, source is SOSC, RTCC secondary oscillator 

       OpenTimer1(T1_ON | T1_PS_1_1 | T1_SOURCE_EXT | T1_SYNC_EXT_OFF | T1_IDLE_CON | 

T1_GATE_OFF , 1); 

TRISDbits.TRISD9 = output 

//**************** ISR for Timer1: RTCC Freq. Output ********************** 

void __attribute__ ((interrupt,no_auto_psv)) _T1Interrupt (void) 

{ 

    T1_Clear_Intr_Status_Bit; 

    LATDbits.LATD9  ^= 1;    // toggle io lines 

    LATDbits.LATD10 ^= 1; 

} 

 
 

3) monitor the output pin with the scope/counter 



10/13/2010    Wisard_Boards_V2        Pg 21 / 60 

 

4) Run and accumulate for a reasonable amount of time (min-ish) 

5) Compute clock errors/minute 

a. (32768-measured)*60=error count 

b. Set RTCC RCFGCAL register bit0-7 =error-count/4 

 
  

I2C:   

Reference Files: /cygdrive/c/Program\ Files/Microchip/MPLAB\ C30/….. 

 src/peripheral_24F/src/pmc/i2c/  Many support functions here 

 src/peripheral_24F/include/i2c.h 

 

FS – File System:   

Reference Material: Locations of some help files on disks: 

  /cygdrive/c/Microchip\ Solutions 

  /net/isf/isff/picwork/Microchip\ Solutions 

 Compiled Help Files are under these directories at: 

 Microchip\ Solutions/Microchip/Help/MDDFS Library Help.chm 

 AN01045b:

 ImplementingFileI/OFunctionsUsingMicrochipsMemoryDiskDriv

eFileSystemLibrary 

Files Used: FSconfig.h Contains Options to Configure the library firmward 

   Such as: ‘ALLOW_FILESEARCH’, ‘ALLOW_DIRS’ 

   These config. settings will cause modules to be loaded, 

  increasing or decreasing the program size 

 FS_HardwareProfile.h Declares what the hardware interface is and 

sets which pins are assigned to SPI, CS,SDD,Data, etc. 

 FSIO.h  

// Summary: Contains file information and is used to indicate which file to access. 

// Description: The FSFILE structure is used to hold file information for an open file as it's being 

modified or accessed.  A pointer to  

//              an open file's FSFILE structure will be passeed to any library function that will modify 

that file. 

typedef struct 

{ 

    DISK    *       dsk;            // Pointer to a DISK structure 

    DWORD           cluster;        // The first cluster of the file 

    DWORD           ccls;           // The current cluster of the file 

    WORD            sec;            // The current sector in the current cluster of the file 

    WORD            pos;            // The position in the current sector 

    DWORD           seek;           // The absolute position in the file 

    DWORD           size;           // The size of the file 

    FILEFLAGS       flags;          // A structure containing file flags 

    WORD            time;           // The file's last update time 

    WORD            date;           // The file's last update date 

    char            name[FILE_NAME_SIZE];       // The name of the file 

    WORD            entry;          // The position of the file's directory entry in it's directory 

    WORD            chk;            // File structure checksum 

    WORD            attributes;     // The file attributes 

    DWORD           dirclus;        // The base cluster of the file's directory 

    DWORD           dirccls;        // The current cluster of the file's directory 



10/13/2010    Wisard_Boards_V2        Pg 22 / 60 

 

} FSFILE; 

mSDdatafile is the handle used in the code 

  

 

ADC:   

MPLABC30/support/peripheral_24F/adc.h 

Sampling Switching time for the channel to be connected through the sample-hold 

reg. 

Conversion Time for the digitization of the analog voltage 

ADC Conversion Clock ‘Tad’  12 cycles are needed for a conversion and 3 for sampling to 

be stabilized (important when in manual triggering). 

CONFIG3 sets up the Tad based on a multiple of the Instruction Clock Time Period, Tcy 

when using the system clock.   Otherwise it has a separate RC oscillator 

that should be used if sampling during Sleep mode is needed. 

Tad1 = 12*Tcy, ex 16Mhz CLKI = 12*2/Fosc = 1.5uSec 

 Peripheral Library: The peripheral library, referenced above includes a variety of functions 

and macros that can be used for controller ADC operations.   These may 

include for example setup such as these: 

   unsigned int channel,config1,config2,config3,configport,configscan; 

   // Configure adc 

   config1= ADC_MODULE_OFF |       // Remains off until turned on 

ADC_IDLE_STOP |        // does not run when cpu is in 

idle/sleep  

ADC_FORMAT_INTG |      // Integer output 

ADC_CLK_AUTO |         // Internal counter ends sampling and 

starts conversion: auto-convert 

ADC_AUTO_SAMPLING_OFF; // Sampling begins when the 

SAMP bit is set 

   config2= ADC_SCAN_ON |          // enable scanning 

ADC_INTR_16_CONV ;     // Interrupts at completion of each 

16 sample/conversions 

   config3= ADC_CONV_CLK_SYSTEM |  // system clock for 

conversions 

ADC_SAMPLE_TIME_15 |   // sample time for auto setup to 

15 Tad cycles 

ADC_CONV_CLK_1Tcy;     // conversion clock 1 Tad cycles 

 

   configport = AD1PCFG;       // Uses AD1PCFG we did in 'setups' 

   configscan = ADC_SCAN_AN11 | ADC_SCAN_AN10; 

//channels10,11 

   OpenADC10(config1,config2,config3,configport,configscan); 

   CloseADC10();     // closes adc and disables interrupts....function call to: 

                                 // AD1CON1bits.ADON = 0; IEC0bits.AD1IE = 0;  

                                 // IFS0bits.AD1IF = 0; 

 

However, Direct Register Manipulation seems better than incurring function call 

overheads, etc…. 

AD1CON1 = 0x20E4;   // Configure sample clock source and conversion 

trigger mode. 

                        // Module starts up in off state (AD1CON1bits.ADON = 

OFF 



10/13/2010    Wisard_Boards_V2        Pg 23 / 60 

 

                        // No operation in Idle mode (ADSIDL=1) 

                        // Output Format Integer (FORM<1:0>=00)  

                        // Auto Conversion 

                        // Auto Sampling 

                        // S/H in Sample (SAMP = 1) 

 

 

AD1PCFG = 0xF0FF;   // Configure A/D port....make sure unused remain 

off or else i2c/pps won't go 

                        // AN8-AN11 input pins setup analog, all others are digital 

i/o 

                        // This is same as doing a =0xFFFF and then these: 

                        //  AN_Vin_CHAN = ANALOG_MODE;  // ch11, Wisard 

V2 Vin 

divider....AD1PCFGbits.PCFG11 

                        //  AN_Iin_CHAN = ANALOG_MODE; 

                        //  AN_I3_CHAN = ANALOG_MODE; 

                        //  AN_Isnsr_CHAN = ANALOG_MODE; 

AD1CSSL = 0x0F00;       // Channels 8-11 configured for scanning, in that 

order!... 

AD1CON1 = 0x00E0;       // Continue in Idle Mode; Integer Format; 

Internal Counter ends sampling and 

                            // starts conversion...auto-convert; Sampling begins 

when SAMP bit set 

AD1CHS = 0x000B;        // AN11 selected for sampling 

AD1CON3 = 0x0F00;       // SystemClockUsed, Sample time=15Tad, 

Tcy*1 Conversion Clock 

AD1CON2 = 0x043C;       // Set AD1IF after every 16 cycles with 

scanning turned on 

AD1CON1bits.ADON=1;        // Turn on ADC 

 

Power Saving Modes:  

Idle Mode: mPWRMGNT_GotoIdleMode(); 

 defined asm PWRSAV #1, Clock remains active, 

                                    so peripheral interrupts are still enabled and active for wake, ie 

                                    Wakeup from Interrupts (enabled), wdt, reset 

                                    Operation begins here or within Interrupt handler 

 This is the mode to use if you want to keep ‘uart’ ingest ie incoming 

operator commands or other i/o running 

 It is what’s used in the Wisard ‘main’ 
Sleep Mode: mPWRMGNT_GotoSleepMode();       

 defined asm PWRSAV #0, Clk inactive, i/o locked and 

                                    any periph using Clk are disabled (uart,i2c,...) 

                                    but LPRC clock remains active for DSWDT or RTCC, 

                                    To do this properly, 1st setup/enable dswdt, rtcc, 

                                    change-notification, dsboren, save critical context in dsgpr0/1 

                                    then enable dsconbits dsen and issue this command above 

                                    Wakeup from PwrOnR, CN, MCLR, RTCC, ExtInt0, DSWDT 

 // This is the mode to use for deeper sleep where the deep-sleep watchdog 

is still available but not peripherals or the ‘normal’ watchdog for 

example. 



10/13/2010    Wisard_Boards_V2        Pg 24 / 60 

 

Determining Wakeup:   wakeup_source = PwrMgnt_WakeupSource();  

 

 
Timers / Interrupts:  

Timer Period Calculation: Fosc*Count*PreScaler = Amount of Time for Interrupt to fire 

 External TCXO: Fosc=16,000,000/2 mHz, Period=.000000125 Sec/count 

 ie for 1-Sec with Prescaler 256, Count = 8000000/256 = 31250 (0x71A2) 

Internal 8mHz: Fosc=8,000,000/2 mHz, Period=.00000025 Sec/count 

 ie for 1-Sec with Prescaler 256, Count = 2000000/256 = 15625 (0x3d09) 

 

Timer Rates: Fosc * Count * Divider 

 For 8Mhz internal Osc. the Fosc=4000000mHz = .00000025sec/tick 

  

Timer1: Clock-Scheduler for Bresenham/TCXO. 

 Timer1 can run in Idle mode. 

Timer2: CN button 

 16-bit timing to determine what option: (scani2c, switch output port 

between xbee/sio,) 

Timer3: Xbee wait-for-reply timeout if no reply from radio 

 16-bit 

Timer45: GPS – Failed Sync Timer 

 32-bit 

 NOTE: With the current source, the standard ‘Open/ConfigTimer45’ 

library functions are not working.   Instead the wisard code had to be 

modified to setup timers 4 and 5 by direct register accesses.   When using 

these in 32bit mode, Timer 4 is setup in 32bit mode, the counter registers 

PR4,PR5 are given lsb,msb counts respectively and the actual interrupt 

occurs under ‘Timer5’.   Fortunately the approach appears fairly generic 

between other processors in the 24 family. 

 NOTE: A secondary approach would be to setup timer4 for 1 sec (in 16bit 

mode max is about 4sec) and use a countdown for the seconds of gps run 

time before a failed to acquire shutdown is initiated. 

INT1 GPS-PPS, ISR found in gps_functions.c 

 If RTCC is used it turns the RTCC back on and flags it’s functions. 

INT2: Xbee-Sleep Mode ‘Awake’ triggers ‘sampling, ISR found in Wisard 



10/13/2010    Wisard_Boards_V2        Pg 25 / 60 

 

GPS – U-BLOX Notes 
 

Binary Command Examples 

PIC24FJ64GB004 Functional Assignment  

   

GPS Reset B5 62 05 01 02 00 06 04 12 3B  

 B5 62 06 04 04 00 00 00 08 00 16 74 Controlled GPS STOP 

 B5 62 06 04 04 00 00 00 09 00 17 76 Controlled GPS START 

 B5 62 06 04 04 00 01 00 09 00 18 7A Warm Start 

GPS Revert to 

 last saved config. 
B5 62 06 09 0D 00 00 00 00 00 00 00 00 00 FF 

FF   
00 00 07 21 B7 

 

   

   

   

   

 

U-Center: 

CFG-View: This is where to go for sending or polling the gps configuration. 

 

TimePulse: 

Wiring: The timepulse from pin-3 of the NEO5/6Q is connected to PIC pin 

2, RP22/RC6. 

Interrupt: The PIC is programmed for reprogrammable pin RP22 to be INT1, 

with it’s dedicated predefined interrupt handler name 

_INT1Interrupt(void).  The interrupt can be configured for rising 

or falling edge, as can the ublox signal.   For now, both are set to 

‘rising edge’ 

TIM-TP This is the ublox message type for setting up the timepulse signal’s 

length, rate, rising/falling-edge, etc.  It controls whether to always 

send the pulse even if there is no fix, or to only send when there is 

a fix.   For ‘now’ in testing it is setup ‘always’ with the clock 

source being ‘UTC.’   This message also controls: 

Delays The TIM-TP can include delays for the RF processing in the ublox, 

Antenna to ublox, and  ‘user-application-delay’ for signal delay 

plus processing delay.    These adjust when the pulse is fired.    It 

may be possible to measure these delays, and adjust the pulse 

length/edge so that it fires sufficiently after the GPRMC message 

is received and processed such that the interrupt will trigger a 

correct setting at the ‘tail-end’ …or not.         For ‘now in testing’ 

there is no user or antenna delay..ie pulse occurs at UTC time. 

 

Antennas / Testing: 

Performance Tests: Use U-Center and the “Sky View” tool for testing outdoors for the antenna performance.   

See Application Note:



10/13/2010    Wisard_Boards_V2        Pg 26 / 60 

 

Power System: 
 

Comparison of PIC24 Processor Power Consumption Specs: 
Operating/(Idle) 
 Typ. Current 

 

 
 

FJ64GB004 FJ256GB206  

(206,210) 

FJ256DA206  

(106,206) 

FJ256GB106  

(106,108,110) 

HJ256GP206A  

(206,306,506,210,310,510,610) 

4MIPS, 3.3V,  

25C, Vreg 
 

2.9 (.75) 3.0 (.6) 3.0 (.6) 4.3 (1.1) N/A 

16MIPS, 3.3V,  

25C, Vreg 
 

11.3 ( 2.9 ) 12 (2.3) 12 (2.3) 18.2 (4.4) 38/45 (5/25) 

 

 

Component Voltage Limits: 
 

Nominal Specifications for various parts used in wisard: 

Component 

Normal Vcc range: 

Vcc 

range 

Icc 

mA 

 Comment 

Xbee OEM Radio 2.8-3.4    

9Xtend OEM Radio     

PIC18F2520 2.0-5.5   V1 Sensor Nodes, Sensors 

PIC18F26J11 2.0-3.6   V1 Repeater  

PIC24FJ64GB004 2.2-3.6 11.5mA  Operating current, idle=3mA … 

16MIPS=32Mhz 

Osc…..Expect ½? 

MCP9800 2.7-5.5V .2  I2C Temperature Sensor 

     

MAX3323 3.0-5.5 1mA 1uA shutdown RS232 Transceiver 

MAX4372 2.7-28V .03mA  Current Monitor/ 

ADS1112/1115 2.7-5.5 .24mA  ADC 

MC74VHC1GT125 

Buff

er 

3-5.5    

MCP1703 LDO 2.7-16  .625V dropout at 

 250mA 

Used for USB power to board, V2...OLD 

SA57000 LDO .5-6.5  55mV Dropout  

at 50mA 

CapFree, Used for 3V on GPS, V2 

MIC94065 PwrSw 1.7-5.5  .002mA  

     

     

     

 

 

 

  



10/13/2010    Wisard_Boards_V2        Pg 27 / 60 

 

Power Consumption / Solar Charging: 
 

Protection: F1 is a resettable fuse situated on the +12VDC input.   It is nominally rated for hold 

current at .2A , trip current .4A within .05Sec at maxcurrent 8A.  These devices trip point 

changes with respect to ambient temperature, input current and rated values are at 25C.   

At 60C expect ~.14A hold with trip .32-.5A.  At 0C .25A hold, trip, .45-.8A roughly. 

 

Measured Loads (From Version1 and 2) during testing nominally show the following: 

Component mA VDC mWatts Load Comment 

Xbee Radio 50 3.3 ~165mW The baseline Rx power is most significant.   Max 

 Tx power makes essentially no differenct. 

Ublox GPS ~64 3.3 ~210mW Turning it on/off and measuring supply 

microSD   basically 

 nothing 

 

     

Pic / SensorBoard  

Version1.0 

9-14 3.3 30-46 Seems excessive, based on residuals.  May still  

have MAX3323 enabled on these with nom. 1mA  

Version 2.0 ~6.8 13.0 88mW Peak, No GPS, Sensors, microSD 

with TXCO serial out 

 13.0 3.3 42.9mW Peak, No GPS, Sensors, microSD 

with TCXO, serial out 

 ~5 13 65mW Peak, No GPS, Sensors, microSD 

with RTCC, serial out 

     

 6.4 3.3 21.1mW Peak No GPS, Sensors, microSD 

with RTCC, serial out 

Per Above: 

DC-DC  

  ~45mW At low power, Efficiency 50%ish 

See below, goes up at higher loads to ~75% 

Per Above: 

TXCO vs RTCC 

  ~23mW  

     

     

Sensors 13-17 3.3 43-56 Rough Total for sensors…. 

tsoil 1.6-4.0   Saw an occasional 15mA!!!!VERIFY ME 

gsoil/hft 1.3-4.5   ….ditto….with even a 45mA 

     

     

     

     

Version1 Total  

Consumptions  

measured 

  310 – 345mW High Load for ‘Wireless Sensing!’ 

Note 50%-Xbee, 22%=SG4, 15%=sensors, 

14%=board. Plus…. 

Version1 Actual  

Consumption 

  390 – 425mW Nominal efficiency of DC-DC switcher improves 

a bit at higher loads, 75%ish 

 

Version 2 board uses a commercial DC-DC module: Vinfinity V7803-500 versus my home-grown 

version.   Efficiencies are roughly the same for either. 

The Solar Charging System uses either a 5 or 10W PV panel with  

 



10/13/2010    Wisard_Boards_V2        Pg 28 / 60 

 

 

 

 

 



10/13/2010    Wisard_Boards_V2        Pg 29 / 60 

 

Wiring & Cables: 
 

MPLab PIC Programmer Cables: 

 
 

1              6 

Looking at MPLAB ICD 2 

RJ11 Jack Pinout (Female 

Recepticle)….b

uild cable with 

male plug 

noting reversed 

Looking at Female Recepticle (socket) MiniDin-6 

From MPlab ICD3 for Programming Sensors 

6 

4 

2 

5 

3 

1 

MCLR 
Open 

Gnd 

SDA/PGC SCL/PGD 

6 

4 

2 

5 

3 

1 

+V 

Wisard Sensor  Male MiniDIN connector 

Jack Pinout of MPLAB programmer for PIC 

 

   RJ11-Pin #         Signal      MiniDin6 

1 NA 

2 PGC  1 

3 PGD  2 

4 GND  4 

5 Vdd  3 

6 MCLR  6 

mates with sensor cable 



10/13/2010    Wisard_Boards_V2        Pg 30 / 60 

 

WhiteBox Console Cable (Serial/Power) 
  

MinDinPin #  BulginPin# Signal    (wire color..maybe) DE9 (for ref.)    

1                         5  Rx, (From board to ‘PC’) white (red)  2 

2                         6     Tx (To board from ‘PC’) gray (orange) 3 

3     1     +12 supply   yellow (brown) 

5     1  +12 supply   orange (black) 

4     8  Gnd                 violet (yellow) 5 

6     8  Gnd    red (green) 

case     8  Gnd    shield 

 

5 

3 

1 

6 

4 

2 

4 5 

2 7 

1 

8 6 3 

Front View 

Bulgin Connector (Male-Pins) 

Plugs into ADAM Console Port 

Front View 

MiniDin-6 Connector (Male-Pins) 

Plugs into Sensor/Repeater boards 



10/13/2010    Wisard_Boards_V2        Pg 31 / 60 

 

 

Sensor MiniDIN Cables 
 

The sensors can be built with either a MiniDin-6 or MiniDin-7 male ended cable.   Solder holes are 

provided via ‘J1’ on the sensor boards for the other end. 

 

  J1 Pins On Sensors 

(solder holes) 

 

   Sensors            Cable Pins  

    J1-Pin# MiniDin6 MiniDin7            Signal  Programming 

5 1  1  I2C-SDA/Serial-Tx PGC 

6 2  2  I2C-SCL/Serial-Rx PGD 

2 3  3  Vin (“+12”supply) Vdd 

3 4  4  GND   GND 

7 5  5  RB2 / Int2  n.c. 

4 6  6  RE3 (input only) MCLR 

1   7  +3.3 (LDO output) n.c. 

NOTE: The J1 connections on all Sensors show signal labels only, not pin#’s on the silk-screen.  

Pin designations shown on schematics only. 

 

76 

4 

2 

5 

3 

1 

6 

4 

2 

5 

3 

1 

Looking at Male Plug (pins) Cable from 

Sensors: 

MiniDIN-6                            MiniDIN-7 

 

Looking at Female Recepticle (socket) 

6 pin Mini-DIN 

On SensorNode (WhiteBox) host 

board 

(Mounted top Side) 

Pin #  SensorNode Board Signal (WhiteBox) 

1 SDA (Red) 

2 SCL  (Org) 

3 3.3v (Brown) 

4 GND (Yellow) 

5 GND (Black/Int2,RB) 

6 GPIO pad (Green/Mclr) 

 

NOTE: Pin-5 (bussed GPIO), and Pin6 (individual GPIO) are open pads that can be soldered 

to PIC lines RA0-2 or RB4 that also have pads available for specialized control 

applications. 

2 1 

3 4 

5 6 



10/13/2010    Wisard_Boards_V2        Pg 32 / 60 

 

Difference Between PAR-Wand and Wisard Sensor Cables 
The PAR-Wands from Niwot-2008 were based on the same pic processor as most wisard sensors, however 

there were some wiring differences on the 6-pin din connector, as shown. 

 

 

 

 

 

 

 

 

 

 

 

Par Wand Layout 

 
Par Wand Schematic

 
 

Gnd 

(Green) 

Gnd 

(Yel) 

Gnd 

MCLR, RE3 
MCLR, 

Open on PAR 

+V 

SDA/PGC SCL/PGD 
SCL/PGD SDA/PGC 

Looking at Male Connector from ‘sensor’ 

 

6 

4 

2 

5 

3 

1 

+V 

Wisard Sensors PAR Sensors 

6 

4 

2 

5 

3 

1 



10/13/2010    Wisard_Boards_V2        Pg 33 / 60 

 

How To Pot Bulgin Connectors: 
 

The Urethane potting materials come in small packets that have both mix and hardener. 

Materials are ordered from ‘Hardman’ 

Use nitrile gloves and 2 0mil syringe. 

Mix a small amount (2 or 3 packets) and work fast: 5-minute setting time. 

Use a cup and stiring stick to mix the materials. 

Keep the connector oriented down because the material drips.   You only need to cover the exposed 

pins, wires and holes and don’t need to fill the entire back-shell. 

Suck the material up into the syringe rather than trying to fill it from the back side. 

Use a heat gun to warm the back-shell before pushing it on or else it may break. 

 
. 



10/13/2010    Wisard_Boards_V2        Pg 34 / 60 

 

 

PCB Board Design / Manufacturing 

 

Board Design / Layout Software:   
Schematics, Layouts and Board Manufacturing have been done using www.ExpressPCB.com

   

Boards are: 4-layer, 1.25oz copper.= Copper Thickness .0017” 

 .062” Laminate: FR-4 Epoxy glass: Dielectric Constant = 4.2-5.0 

 Stacking: TopSignal/Silkscreen, Ground, Power, BottomSignal 

 Assuming equidistant: ~.020” between layers 
 

Milling: Board perimeters are cut to shape using a 0.093" router bit. Slots in the perimeter must 

be 0.100" or wider. Narrower slots will not be milled correctly. Routing slots or holes 

in the interior of the board are not offered. 

Board Edge Clearance: .020"   The edges of the board are cut with an accuracy of ± 0.015". A 

minimum of 0.020" blank space is recommended between the perimeter and all 

features on the board. Traces placed closer than 0.015" to the board's edge may be 

routed off. 
 

PCB Component Stuffing and Assembly 

Gerber Files: Assembly companies normally need:   Gerber Files, XYRS and Panelized Paste Files; 

plug BOM and assembly notes. 

 The Bill Of Materials (BOM) can begin using output from most Schematic capture 

programs including expresspcb; however the generated files are far from adequate and 

need to include component identifications, packaging, ordering information and any 

special assembly notes such as ‘Ublox is no-wash part.’ 

Stencils: High-end, quantity manufacturing requires Stencils to apply paste to the PCB before 

components are automatically picked and placed for oven curing.   Using expressPCB 

these cannot be made directly without the XYRS and Paste files. 

 The files needed to create stencils can be generated for a cost by most assembly houses 

for an additional cost.   Otherwise, higher end Schematic Capture / Layout programs 

such as Altium and Eagle have the capability to generate these files. 

 

AAPCB This company has been used for low quantity builds by ‘DropSonde’ group.   They can 

make their own component templates for automated pick-n-place without needing tape 

and reels which are typical of large builds but impractical for small runs.  Instead they 

can handle either ‘Cut-Tape’ (and prefer it), or loose parts. 

 Advanced Assembly 

 20100 East 32nd Parkway, Suite 225, Aurora, CO 80011 

 aapcb.com 

 

ExpressPCB only provides Gerber files and only after boards have been manufactured by them.   

After that you can order them and actually have boards made elsewhere (maybe).  

They say: 

We can not generate solder paste, stencil or Centroid files.  Typically what our 

customers do is order gerber files from us which can be edited into other formats.   I 

recommend that you speak with your board assembly house (or the company making 

your solder paste screens) to verify that they can work with these files.  



10/13/2010    Wisard_Boards_V2        Pg 35 / 60 

 

You can order gerber files by email for PCBs that we have previously 

manufactured.  The cost of these files is $60.  This fee will be billed to the credit card 

number used in the original order for the boards.  You will receive these gerber files in 

RS-274X format:  

        + Top silkscreen layer  

        + Top soldermask layer  

        + Top copper layer  

        + Bottom copper layer  

        + Bottom soldermask layer  

        + Drill file  

        + 4 layer designs also include the 2 inner layers  

 

To order the files, send email to support@expresspcb.com with this exact information:  

 

1) Write a note indicating that you would like to purchase gerber files.  

2) Acknowledge in your email that you understand there is a $60 fee for each set of 

gerber files that you order, and that the fee will be billed to your credit card.  

3) Specify the order number of the previously manufactured design by noting our 

original 8 or 9 character order number.  Our order numbers have the form ABCD-

1234-E.  

 

We will generate the gerber files using the original PCB design file associated with 

your order number.  We will then email the gerber files back to you as an 

attachment.  The email will also include a receipt for the $60 fee marked "Paid in 

full".  Typically it takes one 24 hour business day to fulfill the order.      
 

Thermal Considerations in PCB Board Design and Layout: 
 

Care must be taken to provide adequate component cooling under load for power components 

especially LDO's and other dc-dc devices. Manufacturer's typically specify junction 

temperature in addition to output current capacity. Care must be taken to avoid heat-

dissipation causing temperature rise above specified limits to avoid damaging the part, 

and perhaps worse, having their internal safety-monitor shutting them off 

disconnecting your circuit or even worse: component total failure. 

 

Adequate PCB area must be provided for the anticipated operating temperatures to provide this 

cooling, or other heat sink techniques in 'big-part' situations. Often we simply provide 

an area that 'looks good and fits' without doing a specific calculation. However a 

second factor is what can happen when attaching the part. If the area is too large then 

when hand-soldering the component can also be over-heated and be damaged or just 

as likely not have a good joint. Manufacturer's generally suggest controlled 'Re-Flow-

Soldering' (ie oven) over hand-attachment.  

 

The following sheets provide an accurate calculation of PCB thermal pad area sizing: See: 

PCB_Thermal_Copper_Area_3_CalculatorforThermalMgmt.xls 

LDO_PowerDissipationCalculator_Limits.xls 

 

Coating PCB Boards: 
 

mailto:support@expresspcb.com
http://wiki.eol.ucar.edu/sew/CalculatorforThermalMgmt
http://wiki.eol.ucar.edu/sew/PowerDissipationCalculator


10/13/2010    Wisard_Boards_V2        Pg 36 / 60 

 

There are significant differences between types of coating materials and depending upon application, 

one may work better than others: 

1) Epoxy – Heavy Duty, UV, Good for durable, out-door applications.   This is the material we 

have been using for the Wisard Sensor boards, soils and such that will be exposed to 

water and abrasion. 

 Supply: White Rapid Coat Aircraft Paint.   Jeff Bobka supplies this stuff.   It has a 

shelf life and cannot be stored for long term. 

 Mix: 1 to 1.   This is critical for good results 

 Stir / Rest for 15-Minutes.   You’ll probably see some bubbles. 

 Stir – Dip Boards 

 NOTE: if you’re going to spray the paint on instead of dipping the ‘Rest for 10-

Minutes not 15’. 

 

All Other Coatings below are ‘Light Duty’ and ‘Non-UV’ 

 

2) Acrylic Do not used for exposed boards.   Light duty for protected locations.   This coats well 

and doesn’t bubble.   It is good for use inside sensor ‘clam shells.’ 

Chemtronics – KonForm spray. 

 

3) Urethane Similar to Acrylic, but hard to coat with this and it bubbles easily…so don’t use it for 

the most part.   For this one you must have the board extremely clean 

 

4) Silicone Good for temporary light duty use.   It is the only one that can be cleaned off if needed 

 

 

Nominal Current Capacity for PCB trace sizes. 
Current capacity depends on board and component temperature.  In general current capacity goes 

down with higher temperature for lans/wire, but improves for components that are 

limited on internal junction temp/heat sinking.    
 

For 1.25-Oz copper traces (=1.68 mil thickness, used by ExpressPCB) the approximate current 

capacity is shown (for ~20degC temperature rise).  Elevated temperatures reduce trace 

capacity. 

Trace Width Sq.Mils(1.25Oz) 20degC temp Rise 

.010” 0.17 0.3 Amps 

.015” 0.25 0.4A 

.020” 0.34 0.7A 

.025” 0.42 1.0A 

.050” 0.84 2.0A 

.080” 1.35 3.2A 

.100” 1.68 4.0A 

.150” 2.53 6.0A 

 
 

  



10/13/2010    Wisard_Boards_V2        Pg 37 / 60 

 

Chart of PCB Current Capacities vs Temperatures 

 

 
 



10/13/2010    Wisard_Boards_V2        Pg 38 / 60 

 

Design: Tank Capacitors 

On boards with power traces running longer than six inches in length, it is suggested to use a tank 

capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value 

of the tank capacitor should be determined based on the trace resistance that connects the power 

supply source to the device, and the maximum current drawn by the device in the application. Select 

the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 

4.7uF to 47uf.    

 

Design: PCB Trace Impedances 

In general, resistance and impedances on PCB traces are extremely small and can often be largely 

ignored.  Resistance effects both DC (voltage sags, recovery) and AC characteristics, but impedance 

(capacitance/inductance) influence only AC and are consequently frequency dependent factors.  For 

the most part in AC situations the trace behaives like a LC circuit that will effect switching 

signals/transition times.   This can be an issue if the signals are deteriorated enough to effect 

reliability.   For example if a signal doesn’t reach high enough levels or adequate settling time for 

detection.  Worst case is marginal operation that can introduce ‘random’ errors.  There are several on-

line calculators for trace resistance, capacitance and inductance.    

 

Resistance relates to trace cross-section (PCB express uses 1.25oz or .017mil thicknesses), length and 

temperature.   As temperature goes up so does resistance.   For copper it is generally 

very small, so unless current draw and fluctuations are significant for a IC, or 

temperatures a high, the voltage sag may not be a factor.   It may not be obvious how 

the current changes on the IC, so recommended tank-capacitors should be use, or 

larger. 

Inductance is dependant and inversely related to trace width/thickness.   It is unevenly distributed 

throughout the trace and is generally uncontrolled.   Vias also introduce some 

inductance. 

Capacitance is dependant upon trace width/thickness, dielectric material, and distance from the signal 

return path to the driver.   It is inversely related to the distance and is distribute along 

the path. 

Controlled vs Uncontrolled: Unless the traces are carefully designed so that the impedance matches 

through the line, and thus acts like a transmission line, they are uncontrolled.   The 

need for impedance matching is a factor if for example a bus needs termination to 

prevent reflections (thus false triggering, etc.). Factors that must be controlled: 

 Trace Width/Thickness 

 Spacing between trace/return path.  Planes make control over this easier. 

 Dielectric of insulating material. 

For a controlled line, trace dimensions in themselves aren’t important, they can change, but the 

electric field surrounding the trace needs to be constant.   Simple impedance formulas 

aren’t really adequate, instead on-line calculators are best: 

 High-End design/layout tools show trace impedance along the path. 

 Simulation Tools: Mentor’s HyperLynx, 

 Calculators: Polar Instruments Si8000 calculator, and also see UltraCAD 

 

For the Wisard Design, PCB trace issues are considered neglibible, however they can come into play 

with the I2C buss communications.   Normally we’re running slow, 100mb, but if we 

go to 400, it needs to be tested.   Also, use of the I2C circuit switch/mux. is desirable.  

We should look at the transition between the board, connector, and wires to our sensor.  

Bottom line is: It Has Worked for the low speed stuff. 



10/13/2010    Wisard_Boards_V2        Pg 39 / 60 

 

 

 

  



10/13/2010    Wisard_Boards_V2        Pg 40 / 60 

 

Schematics / Layouts: 

 

PIC-MCP3421-SingleChannel: Echo, Rnet, HFT 
This is the ORIGINAL Version.   The newer, Spring 2011 board, removed ferrites and some other 

changes. 

 

 
 



10/13/2010    Wisard_Boards_V2        Pg 41 / 60 

 

 
 

 

 

Pinout for  Connector to sensors (Rnet, HFT, General Purpose) 

Note: Wiring from sensor-board  is direct 

 

SE 1 Channel boards 

 

Pin 1    V+ 

Pin 2    V- 

Pin 3    no connection 

Pin  4   Vref 

Pin  5   Gnd 

 

For new ECHO probe: 

 

Binder Pin 1 (V+) ------- echo red wire 

            Pin 2 (V-) -------- echo bare wire/shield 

            Pin 5 (gnd) ------- echo bare wire/shield 

            Pin 3      no connection 

            Pin 4 (Vref) ------ echo white wire 

 

 

 

Front View – Male Connector 

 
 

 

 

 

 

 

Front View - Female Connector 

 
 

 



10/13/2010    Wisard_Boards_V2        Pg 42 / 60 

 

PIC-MCP3424-Four Channel Board 
 

This is the ORIGINAL Version.   The newer, Spring 2011 board, includes a RS232 option 

 
 



10/17/2014 Wisard_Boards_V2  43/60 

  

TPO1 
 

Note: There was a schematic and layout problem for the 2
nd

 run of these boards.    The ‘NR’ or noise 

reduction pin of the fixed version Vheater LDO, TPS736125, was connected directly to Vout.   

That caused the Vheater to rise to 4.9volts when the supply was sufficient which is beyond the 

tpo1 specification.   The boards were fixed and the schematic and layout below were adjusted 

appropriately. 

CURRENT Version / 2011 

 

 



10/17/2014 Wisard_Boards_V2  44/60 

 
 

Pinout for Binder Connector to TP01 soil probe  (From probe to the sensor board with din cable. 

Binder connector             tp01 board (male 8 pin) 

Pin 1   (wht)                             channel  1 +  

       2   (red)                              ch           2 + 

       3   (Blu)                             gnd 

       4   (yel)                              ch           2 - 

       5   (grn)                              ch           1 – 

       6   (brn)                              heater 

 

 
 

 

Front View – Male Connector 



10/17/2014 Wisard_Boards_V2  45/60 

PIC-Tsoil 
This is the ORIGINAL Version.   The newer, Spring 2011 board fixed a problem with the temp sensor layout and 

removed ferrites, etc.   NOTE: in I2C mode, polling must be 2-sec or slower for sampling to finish.   

Sampling is at ~3.75/second and the averaging process needs time to complete for a result to be 

successfully delivered. 

 

 



10/17/2014 Wisard_Boards_V2  46/60 



10/17/2014 Wisard_Boards_V2  47/60 

PIC Radiometer Boards 
This is the newer, Spring 2011 board, with ferrites removed and some other changes. 

 
 

 



10/17/2014 Wisard_Boards_V2  48/60 

 

PIC Everest IRT 
 

 
 

 



10/17/2014 Wisard_Boards_V2  49/60 

NCAR SHT75-TRH 
 

The NEW (V4 June2012) TRH circuit is based on a PIC18F26K20, QFN-28 same footprint as 2520 but is on a 

4layer board.   It includes the MAX3323 chip and has a separate fan-monitor board to measure the fan 

current.   If the fan current exceeds a preset mA limit, the fan is turned off. 

 

 



10/17/2014 Wisard_Boards_V2  50/60 

 

 
Both versions of the TRH can be run in either I2C, TTL (software uart) or RS232 mode. 

 

  



10/17/2014 Wisard_Boards_V2  51/60 

TRH Message: TRH44 24.04 7.79 31 0 1595 29 97 

 Fields: ID#=44  T=24.04DegC  RH=7.79%  FanCurrent=31mA  FanPwrStatus  RawTemp  RawRH  

RawIfan 

 

Sample ISFS-DSM XML entry to decode data: 
        <serialSensor ID="NCAR_SHT" class="isff.NCAR_TRH" 

            baud="9600" parity="none" databits="8" stopbits="1" init_string="\x12"> 

            <!-- TRH004 23.35 26.76 6301 820\r\n --> 

            <sample id="1" scanfFormat="TRH%*d%f%f%f%*f%f%f"> 

<variable name="T" units="degC" longname="Air Temperature, NCAR 

hygrothermometer" plotrange="$T_RANGE"> 

                    <linear> 

                        <calfile  path="$ISFF/projects/$PROJECT/ISFF/cal_files/$QC_DIR" 

                            file="T_${HEIGHT_}_${SITE}.dat"/> 

                    </linear> 

                </variable> 

<variable name="RH" units="%" longname="Relative Humidity, NCAR 

hygrothermometer" plotrange="$RH_RANGE"> 

                    <linear> 

                        <calfile 

                     path="$ISFF/projects/$PROJECT/ISFF/cal_files/$QC_DIR" 

                            file="RH_${HEIGHT_}_${SITE}.dat"/> 

                    </linear> 

                </variable> 

                <variable name="Ifan" units="mA" minValue="20" maxValue="70" 

                    longname="Aspiration fan current, NCAR hygrothermometer" 

                    plotrange="$IFAN_RANGE"/> 

<variable name="Traw" units=" " longname="SHT T raw counts, NCAR 

hygrothermometer" plotrange="0 10000"/> 

<variable name="RHraw" units=" " longname="SHT RH raw counts, NCAR 

hygrothermometer" plotrange="0 10000"/> 

            </sample> 

            <message separator="\n" position="end" length="0"/> 

        </serialSensor> 
 

 

TRH Fans: Supplier 

Micronel Safety USA 

12115 Insurance Way 

Hagerstown, MD 21740 

301 733-2224 

Model: D589L-012GA-2.  The breakdown as follows: 
D589 = 58mm axial fan, no flange, pressure counterclockwise 
rotation (flow into the motor end and out the impeller end) 
L – motor wires straight off the back of the motor 
012 = 12vdc 
GA = sleeve bearing, aluminum fan housing 
-2 = CLL commutation 

The fans should be mounted ‘reverse flow’ sucking air past the TRH into the fan and exhausting above 

the housing.   The wiring is reverse: red=negative black=positive. 

 

  



10/17/2014 Wisard_Boards_V2  52/60 

TRH Commands: 

 CTRL-R to software reset the sensor 

 ‘Oc’ will toggle on/off the calibrated output message 

 ‘Or’ will toggle on/off the raw data output message 

 ‘Ob’ will toggle on/off the calibration output data message. This command is reserved for doing 

calibrations and should not be used in normal operations. 

 ‘f’ will toggle on/off the fan 

 CTRL-U to enter EEPROM command mode. The allows changes to be made to specific operational 

parameters. The user should apply caution when entering this command. Do not make changes 

unless you really know what you are doing! 

 

EEPROM Commands Menu of the TRH: (Mar2014) 
input command format: cmd [value] [[value] [value] ...] 

command     desc                   type     quantity 

MOT      1 sec mote flag         byte     1 

FID       Fan ID            byte     1 

RES       Bit resolution           byte     1 

SID       Sensor ID                byte     1 

I2C       I2C address              byte     1 

RAT       Data Rate                int      1 

CUR      Max Fan current          int      1 

TM0       timer0 count             int      1 

TA0       T probe a0 Cof           float    1 

TA1       T probe a1 Cof           float    1 

TA2       T probe a2 Cof           float    1 

HA0       H probe a0 Cof           float    1 

HA1       H probe a1 Cof           float    1 

HA2       H probe a2 Cof           float    1 

HA3       H probe a3 Cof           float    1 

HA4       H probe a4 Cof           float    1 

FA0       Fan current Cof          float    1 

EEC       clear EEPROM space 

DEF       DEFAULT flag  (reload default values) 

CMD      print command list 

EXT       exit EEPROM handler 

Warning: Upon exit EEPROM data will be downloaded to RAM EEprom: 

 

Example To Change Timer and Fan Current:  

   Ctrl-u 

TM0<cr> (to read counter value, 4036 = 1second) 

TM0 xx<cr> (to set a new value) 

CUR<cr> (to read current setting in mA) 

CUR xx<cr> (to set a new value) 

EXT<cr> (to get out of command mode and reboot) 

  



10/17/2014 Wisard_Boards_V2  53/60 

TRH Wiring:  Modifications 2012 including Fan Monitor 

TRH 
 Signal TRH binder color 

Housing  
binder (#wires 

 connected) FAN monitor Bulgin color 

12 1 green 1 (3) J1-1 1 (10") green 

SDA 2 red 2 (2) 
 

2(10") red 

SCL 3 orange 3 (2) 
 

7(10") orange 

Mclr 4 white 4 (1) J1-2 
 

white 

RX 5 blue 5 (2) 
 

6 (10") brown 

TX 6 yellow 6 (2) 
 

5 (10") black 

I 7 
purple (DK 

 grn) 7 (1) J1-3 
 

blue 

Gnd 8 black 8 (3) J1-4 8 (10") yellow 

 

 
 

 4  5 

 2  7 
 

 

 1 

 8 
 6  3 

Bulgin Connector (Male-Pins) 

Front View 

Binder Connector 

Wagon-Wheel = Female (sockets) 

SHT = Male (pins) 

Rear View 

  5   4 

  7   2 
   1 

  8 
  3   6 

Front View – Male Connector 

       (Rear View – Female) 

  

  1   7 

  3   5 

  

  4 

  8 
  6   2 

White Tab 

Front View -Female Connector 

        (Rear View – Male) 

  

  7   1 

  5   3 

  

  4 

  8 
  2   6 

White Tab 



10/17/2014 Wisard_Boards_V2  54/60 

 

ParWand – Niwot08  
 
These are the PAR/Accelerometer boards built for Niwot08 deployment to sample the sun penetration in trees. 

AS OF …. THEY HAVE NOT BEEN CONVERTED TO WISARD SENSORS…YET… 

 

Software_I2C Compiler Issues:   A softwareI2C is used on PORTC RC0(scl) RC1(sda) to communicate with the 

Accelerometer and ADC.   Library functions are provided for this, however, there are differences 

between versions with EVERY STINKING C18/C24 RELEASE MICROCHIP DOES!    SteveS nicely 

documented his code (more later if finding where the heck that is) indicating you must select PORTA 

or PORTC:  

Software I2C control lines can be either  PORTC or PORTA depending on the board being used.  the default is PORTC.    

PORTC0 = i2c clock   PORTC1 = i2c data 

If you need PORTA lines then you must go into the sw_i2C.h and enable a define statement. (c:\mcc18\h\sw_i2c.h) 

PORTA4 = clock PORTA2 = data 

But a newer version: mplabc18/v3.43 for example doesn’t have C0/C1 under any ex. #if defined(SW_I2C_IO_V1), etc.; 

so you either need to add it in a local or the library version of sw_i2c.h.    Fortunately the functions in 

the lib .c files are the same as older versions. 

ParWand Schematic / Layout: 

 
 

 



10/17/2014 Wisard_Boards_V2  55/60 

WhiteBox - SensorNode Version2 - Release 13Aug10 
The Version2 boards are based on the PIC64GB004 processor and are the only boards/wisard-code that have been deployed in the field for official 

projects: PCAPS,SCP,SOAS,METCRAXII, etc. 

 



10/17/2014 Wisard_Boards_V2  56/60 

Version 2.0 Release 13Aug10 
 

 
 

 

 

 



10/17/2014 Wisard_Boards_V2  57/60 

WhiteBox – SensorNode Version 3 Prototype 05Jun11 
Because the Version2 board processor didn’t have enough program memory for additional functionality and limited data memory for caching, or usb, 

etc. a prototype 3
rd

 generation was built and wisard software functionality transferred to it (as of end of 2011).  It has not been fielded. 

 
 



10/17/2014 Wisard_Boards_V2  58/60 

 

 



10/17/2014 Wisard_Boards_V2  59/60 

Inner Power Layer 

 
Inner Ground Layer 

  



10/17/2014 Wisard_Boards_V2  60/60 

Version 3.0 Prototype 05Jun11 

 
 


	Wisard Version2 / 3 Reference
	Overview
	Differences between PIC24F and PIC24H Processors
	Comparison of PIC Processor Specifications:
	MicroChip Support:

	Version2 Board Notes
	PIC Hardware Serial Port:
	PIC I2C:
	PIC Interruptible Control Lines:
	Version2 Board PIC24FJ64GB004 – Pin Assignments

	Version3 Board Notes
	Version3 Board PIC24FJ256GB206 – Pin Assignments
	Changes in V3 Board/Schematic from V2
	Issues: V3 Differences from other PIC/Board
	V3 - PIC Hardware Serial Port:

	PIC Programming-MPLAB Setup:
	MPLAB C30 Install Directory:
	MPLABC30 Build Tool Suite/Locations:
	Programmer Setup:
	Configuring the Device Operation:
	MPLAB C30 Compiler Code Optimization Levels:
	MPLAB Errors:
	Compiler/Linker:
	Language / Run-Time Environment:
	License Key for MPLAB C30 Compiler Standard Edition
	Peripherals Support Library:
	WatchDog Timer:
	Code Support Files:
	CPU Clock/Oscillator Source:
	RTCC:
	I2C:
	FS – File System:
	ADC:
	Power Saving Modes:
	Timers / Interrupts:

	GPS – U-BLOX Notes
	U-Center:
	TimePulse:
	Comparison of PIC24 Processor Power Consumption Specs:
	Component Voltage Limits:
	Power Consumption / Solar Charging:

	Wiring & Cables:
	MPLab PIC Programmer Cables:
	WhiteBox Console Cable (Serial/Power)
	Sensor MiniDIN Cables
	Difference Between PAR-Wand and Wisard Sensor Cables
	How To Pot Bulgin Connectors:

	PCB Board Design / Manufacturing
	Board Design / Layout Software:
	PCB Component Stuffing and Assembly
	Thermal Considerations in PCB Board Design and Layout:
	Coating PCB Boards:
	Nominal Current Capacity for PCB trace sizes.
	Chart of PCB Current Capacities vs Temperatures
	Design: Tank Capacitors
	Design: PCB Trace Impedances

	Schematics / Layouts:
	PIC-MCP3421-SingleChannel: Echo, Rnet, HFT
	PIC-MCP3424-Four Channel Board
	TPO1
	PIC-Tsoil
	PIC Everest IRT
	NCAR SHT75-TRH
	ParWand – Niwot08
	WhiteBox - SensorNode Version2 - Release 13Aug10
	WhiteBox – SensorNode Version 3 Prototype 05Jun11


