Vertical Cavity Laser Hygrometer Manual

July 2008

Table of Contents

Description
Hazards
Operating Instructions
Maintenance
Software Upgrades
Calibration 5
Troubleshooting
RS232 Communications Format
Electronic Schematics
Mechanical Drawings
Parts List
Recommended Spare Parts List
Data Sheets
Software
Compliance Reports
Electrical Load
Certificate of Compliance

Contact person: Mark Paige	Telephone: (505)984-1322 Office
Southwest Sciences, Inc.	(505)455-7739 Home
1570 Pacheco St, Suite E-11	
Santa Fe NM 87505	Email: mpaige@swsciences.com

Description

The laser hygrometer measures water vapor concentration using optical absorption spectroscopy. The hygrometer is an open path system which mounts in a window sized cutout in the aircraft (see Fig. 1). The exterior portion of the instrument consists of an aerodynamic fin. This fin contains a multipass Herriott cell that provides 375 cm of optical path (25 passes \times 15 cm basepath). The electronics system resides inside the aircraft and is attached to the fin baseplate. The physical specifications of the system are noted below:

Fin Dimensions: $30 \times 24 \times 6$ cm Electronics Dimensions: $25 \times 14 \times 7$ cm Weight: 3.2 kg Electrical: 115 VAC, <20 W Output: RS232, 19.6 kBAUD

A fiberized vertical cavity surface emitting laser (VCSEL) located in the electronics box serves as the light source for the hygrometer. The light is fiber coupled to the multipass cell outside the aircraft. To cover the large dynamic range required, a weak (1853.3 nm) and a strong (1854.0 nm) absorption line are used for the measurement. A combination of wavelength modulation and normal direct absorption spectroscopy are employed. There are three measurement modes. At high concentrations (typically above -20 C frostpoints), second harmonic wavelength modulation is performed with the weak line. At intermediate concentrations (typically -20 C to -50 C frostpoints), the strong line is used in direct absorbance mode. At the lowest concentrations, the strong line is measured using wavelength modulation.

Full spectra are measured at a 1.5 kHz rate. Spectra are coaveraged for 40 msec prior to analysis. Thus, the instrument reports independent concentration measurements at a rate of 25 Hz. Reference spectra recorded at typical atmospheric conditions are used to fit the sample spectrum. Fitting is performed using singular value decomposition analysis. Data fitting for the wavelength modulation spectra is limited to the region between the troughs. This region of the spectra shows virtually no change in shape as a function of pressure and temperature. Thus, reference spectra can be readily compared to sample spectra with only minor correction (<2%) for lineshape changes . The scan width and modulation depth is adjusted once per second according to the calculated line width for ambient conditions. These adjustments are

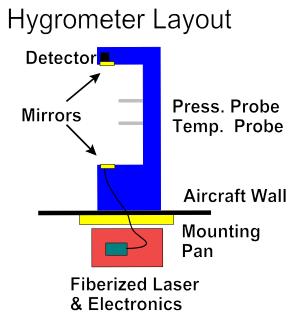


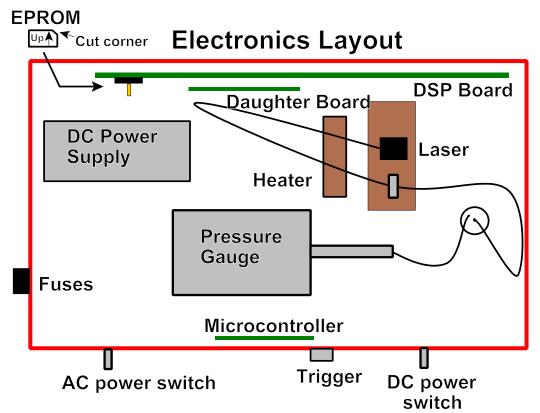
Figure 1 Instrument schematic

made to keep the trough to trough separation a constant fraction of the total scan width. Gain adjustment of the spectrum amplitude is performed once a second to keep the signal plus noise approximately constant.

The system outputs measured concentrations through an RS232 port. As detailed in the communications format section, instrument parameters are reported once per second. The water vapor concentration is reported 25 times a second as the measurements are made. A synchronization trigger from the plane is used to end each second of data collection. The ambient temperature as measured by the plane's Pitot probe (ATX) is sent to the instrument once a second. This temperature is needed because the instrument's temperature probe experiences dynamic heating.

Hazards

The laser is a class 3B device. Eyes should not be directly exposed to the output. The laser output is 0.5 mW and at a wavelength that does not penetrate the cornea. Diffuse scattering is not a hazard.


The electronics box contains 115 V AC voltage. All exposed AC leads are located in the corner of the box by the AC power switch (the fuses and switch). The strip heater on the bottom of the box runs on AC but has not exposed leads.

Operating Instructions

The instrument is clamped into a window sized cutout in the aircraft. The instrument pan seals against a gasket in the cutout. When handling the instrument take care not to touch the mirrors and be careful of the two projecting ambient probes. The instrument has three cables - a circular 3 pin AC power cable, a circular 6 pin communications cable, and a BNC trigger cable. These connect on the front of the electronics box. **The instrument has a ground wire that must be connected to the aircraft frame.** This ground wire prevents static buildup on the exterior fin.

The instrument has AC and DC power switches located on the front of the electronics box (see Fig. 1). The 6 V power supply requires the AC power to be turned on in order to operate. The normal sequence is to turn on the AC and then the DC power. However, the system is not particularly sensitive about this sequence and no damage is done if the sequence is reversed.

The system typically requires about 3 minutes to stabilize and begin making meaningful measurements. Power maybe be turned off at any time without damage to the instrument. However, if the mounting pan is cold (below 0 C), it is recommended that the system be left on to keep the laser from getting cold and to keep moisture from condensing inside the electronics box. The laser fiber coupling can be degraded if the laser is allowed to get below 10 C.

Figure 1 Electronics box layout viewed from top. The EPROM orientation on the DSP board is noted.

Maintenance

Short term maintenance (during measurement campaign)

1) Mirror inspection

A visual inspection of the mirrors will reveal if any foreign material has deposited on the optics. Also, the incident light intensity as reported by the instrument can be checked. This intensity is reported in mV. At the time of instrument delivery, a light intensity of 0.75 to 1 V was typical. The mirrors do have some minor scratches and in time, flying will wear away the coating (from the impact of aerosols, ice particles, etc). If the mirrors need to be cleaned, the use of methanol or hexane is recommended. A soft spray from a wash bottle can be used. Also a drop wipe using lens tissue can be performed. A drop wipe is performed by overlaying the lens tissue on the mirror, placing a drop of solvent on the tissue, and then pulling the tissue across the optic in a single motion. **Do not attempt to scrub the mirrors**! The coating will come off. It is not recommended to perform drop wipes very often for the same reason. The laser fiber optic is located in the mirror closest to the aircraft. The fiber optic is not sealed to the mirror. Spraying at the fiber optic will cause solvent to get inside the fin. Thus, spray this area minimally.

Spraying solvent will leave drops on the mirror that evaporate and leave residue. The drops can be blown off the mirrors but do not use compressed gas cans that contain freon. The freon leaves a residue that will distort the beam significantly. A squeeze bulb is a good way to blow off the mirrors. In general, flying through rain and clouds often cleans the mirrors.

2) Electronics inspection

Taking the cover off the electronics box and visually inspecting the interior will reveal if anything has gotten loose during flights. The power should be turned off during this process. The power supply and pressure gauge are the heaviest objects in the box. A gentle push of these objects with a finger is fine to check their security but make sure to be grounded when sticking a finger inside the box. Static charge can kill the components inside the box. The laser fiber is very delicate so avoid pushing it around when performing a physical inspection.

Long Term Maintenance

As indicated above, the mirror coating will eventually degrade due to atmospheric abrasion. Mirror replacement is a complicated process which will require demonstration by Southwest Sciences personnel. The electronics box is removed, the fin is disassembled, and the fiber optic and detector removed. The multipass cell is realigned using a red diode laser to visualize the multipass pattern.

No other long term maintenance issues are expected to arise.

Software Upgrades

The DSP system software can be upgraded by burning a new program on an EPROM chip and replacing the current chip. The EPROM chip resides in a socket near the processor end of the board. A handle has been glued onto the EPROM chip so that it can be removed from the socket without disassembly of the electronics box. The chip is removed by gently grasping the handle with a pliers and prying it out along the long axis of the chip. The orientation of the chip with respect to the board is shown in Fig. 1. Software upgrades on newly programmed EPROM chips should be obtained from Southwest Sciences.

Calibration

The instrument was calibrated for each mode. A single calibration constant (a span factor) was determined for each mode. The calibrations were performed with the instrument mounted in a vacuum can. Gas was flowed through the vacuum can and then through a commercial chilled mirror system. Readings were taken once the chilled mirror reading was stable for 30 minutes. For the weak line, a 0 C saturated stream was prepared by bubbling dry gas through an ice water bath. For the strong line, room air was drawn through a coil submerged in an acetonitrile slush (-45 C).

Reference spectra used for the fitting process were measured in an identical optical system mounted in a small vacuum can. Reference conditions were created that are typical of the atmospheric region where the specific mode would be employed (see Table 1). The vacuum can was placed in a cooling bath with moisture saturated air.

Table 1 Ret	ference Spectra	Conditions
-------------	-----------------	------------

Mode	T (K)	P (kPa)	Bath
Weak	273.1	78.7	ice/water
Strong Direct	227.4	52.8	Acetonitrile/N ₂ (l)
Strong	209.6	13.5	Chloroform/N ₂ (l)

The calibration of the instrument should be stable in the long term. The AC part of the signal is normalized by the DC transmission so changes in the transmitted optical intensity do not impact the calibration.

Troubleshooting

Examining the system parameters that are output once per second provides a good diagnostic for the instrument status. See the section on RS232 format to find these output parameters. The status indicator gives a quick indication of whether problems are being experienced. A discussion of how various parameters from the communications stream are relative is presented below:

Laser Transmission - Examining the laser intensity parameter indicates if poor laser transmission is a problem. At time of instrument delivery, 750 to 1000 was typical

Laser Temperature Control - Examining the laser temperature, temperature setpoint, and thermoelectric cooler current will show how well laser temperature is being regulated. The difference between the laser temperature and temperature setpoint should be no more than a couple of ohms (this is the thermistor value) once the system stabilizes. The thermoelectric cooler current range is +/-925. The plus range indicates cooling. If the TEC is approaching 925, it is working very hard to keep the laser temperature regulated. The electronics box temperature which is being regulated to 20 C by a strip heater may not very stable if the TEC is working hard.

Measurement Mode - The measurement mode indicator (W,D,S) and the peak bin location will reveal if the instrument is stable in regard to the measurement. Rapid flipping back and forth between modes may indicate instability (unless the atmosphere is rapidly changing). Mode changes can only occur once per second and after a mode change occurs, there is a waiting period of at least 2 seconds before changing modes again. If the reported concentration is 1.0, the system has determined that the measured concentration is out of range for the current mode (except for the initial warm up).

The spectral scan spans 98 bins. The system adjusts the laser temperature so that the spectral peak is at a specific bin. For W mode, this bin is 50. For S and D modes, this bin is 52. If the peak position is more than 9 bins off, fitting errors from reaching the scan edges may occur.

Ambient Temperature - The instrument receives ambient temperature information from the plane (ATX). The temperature probe on the instrument reads dynamic temperature. Static temperature is required for properly setting the scan width and modulation depth and for calculating the concentration. A bit on the error status indicates if ATX was received. The instrument keeps track of the most recent difference between ATX and the instrument temperature probe. If ATX is not received, this difference is added to the instruments temperature reading. So occasional misses of the ATX information is not critical. The weak peak is particularly temperature sensitive and is most impacted by incorrect temperature readings.

RS232 Output Format

19.2 kBAUD, 8 data bits, 1 stop bit, no parity, no flow control (all fields filled with spaces, one space between fields) ASCII CHARACTERS

Firmware ID (1 time transmission at boot up) (42 characters)								
Field	Format		string index[0n]					
SWS54	.09	7c_	0-7 Hardware ID					
SN xxx	6c	4-15	serial number					
GV	7c_	16-23	Aircraft					
VX.XX	5c	24-31	Software version #					
xx-xx-x	x	8c	32-39 Date					
\r\n	2c	40-41	Line Termination - Carriage return, Newline					

One Hz System Information Data (84 characters)

One Hz System Infor		•		15)		
Field Format		index[0				
SWS 3c_ 0-3	Comm	unicatior	n check			
Elapsed Time (sec)	XXXXXX	_	4-10	Counter		
Status code xxxx		Error re	eport			
Temp (K) xxx.x				erature		
Pressure (torr) xxx.x						
LaserTemp(ohms)						
Set Temp (ohms)	^^^^_			Temperature Set Point		
Set Temp (onns)	*****	34-39	Lasei	remperature Set Point		
TEC Current (Counts)	sxxxx_	40-45	Thermo	pelectric cooler current in DAC counts		
Spectral line 1c_	46-47	W, D, c	or S - we	ak, direct, or strong mode		
Δv_{voigt} (cm ⁻¹) x.xxx	<u>48-54</u>	Voight	width fo	r ambient conditions		
Center current (Count	s) xxxx_	55-59	Scan c	enter current in DAC counts		
Current step size (Co	unts)	xx_	60-62	Current step size in DAC counts		
Modulation Depth (Co	unts)	xxxx_	63-67	Modulation depth in DAC counts		
peak bin xx_	68-70	Peak n	osition i	n scan		
Pregain setting x_						
ac gain $xx.x_ 73-77$	Postla	n rogan	ain			
Transmitted Laser I (n				Ave Transmitted Laser Intensity		
	10)	~~~~	10-01	Ave Transmitted Laser Intensity		
\r\n 2c 82-83	Line te	rminatio	n			
25 Hz Data (33 characters)						
Field Format	,	index[0	nl			
Conc H ₂ O sx.xx				re Number Density (molecules/cm3)		
Std dev H ₂ O x.xxE	sxx	10-18	Fit Erro)r		
Frost/dew Point (°C)			19-26			
Number good coop			10 20			

Frost/dew Point (°C)sxxx.xx_Number good scansxxxx28-30

\r\n 2c 31-32 Line termination - Carriage return, newline

11-BIT STATUS CODE

SIG_BLOCKED	000	0000 00	0001	1	
CALC_ERR_COM	NC 000	0000 00	0010	2	
CALC_WARN_N	OISE 0000 0000 (0100	4		
LL_WARN	0000 0000	1000	8		
GAIN_AC_SAT	0000 0001	0000	16		
GAIN_DC_SAT	0000 0010	0000 (32		
P_ERR	0000 0100 0000	64			
T_ERR	0000 1000 0000	128			
T_LIMIT_LASER	C	001 000	00 0000	2	256
ATX_ERR	0010 000	0000 00	512		

Sample Output Lines

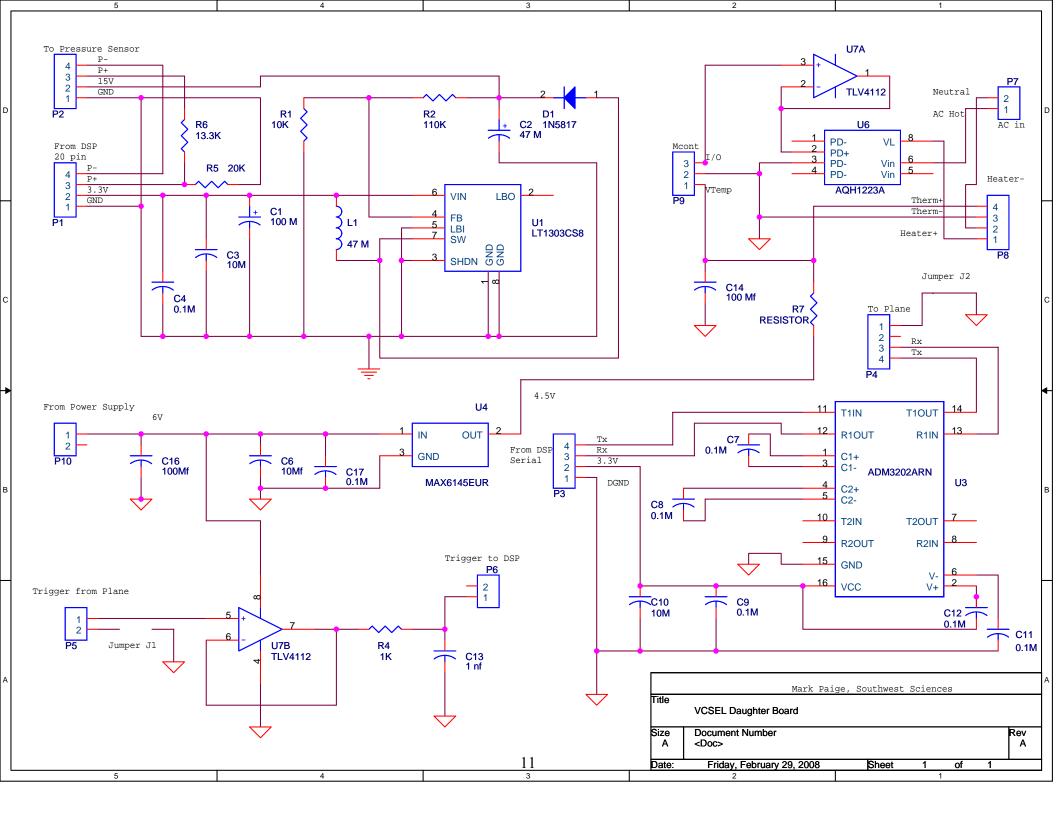
0123456789012345678	901234567	890123	4567890	123456	578901234	456789012	2345678901234567				
89012345	Posit	Position									
10	20	30	4	0	50	60	70				
80	Posit	ion									
SWS5402 SN 001 GV	V1.0	0 12	-08-05				Firmware ID				
SWS 11455 512 297	.4 594.5	8914	8915	402 V	≬ 0.0221	2000 16	2255 50 1 8.7				
684											
4.00E+16 1.97E+15		60									
4.03E+16 1.94E+15		60									
	-16.73	60									
4.00E+16 1.85E+15	-16.83	60									
4.01E+16 1.93E+15	-16.81	60									
4.00E+16 1.91E+15	-16.82	60									
4.00E+16 1.90E+15	-16.83	60									
4.00E+16 1.86E+15	-16.82	60									
4.01E+16 1.92E+15	-16.80	60									
4.00E+16 1.88E+15	-16.84	60									
3.99E+16 1.92E+15	-16.87	60									
4.00E+16 1.91E+15	-16.84	60									
3.98E+16 1.94E+15	-16.88	60									
3.99E+16 1.88E+15	-16.87 -16.86	60 60									
3.99E+16 1.90E+15 3.98E+16 1.84E+15	-16.86	60 60									
	-16.88	60 60									
	-16.83	60 60									
3.99E+16 1.83E+15		60									
	-16.92	60									
	-16.92	60									
4.01E+16 $1.82E+15$	-16.82	60									
3.97E+16 $1.84E+15$	-16.93	60									
3.96E+16 1.89E+15	-16.95	60									
3.98E+16 1.87E+15	-16.89	61									
	,	~ -									
1 Hz System Info											
Deck line terminete											

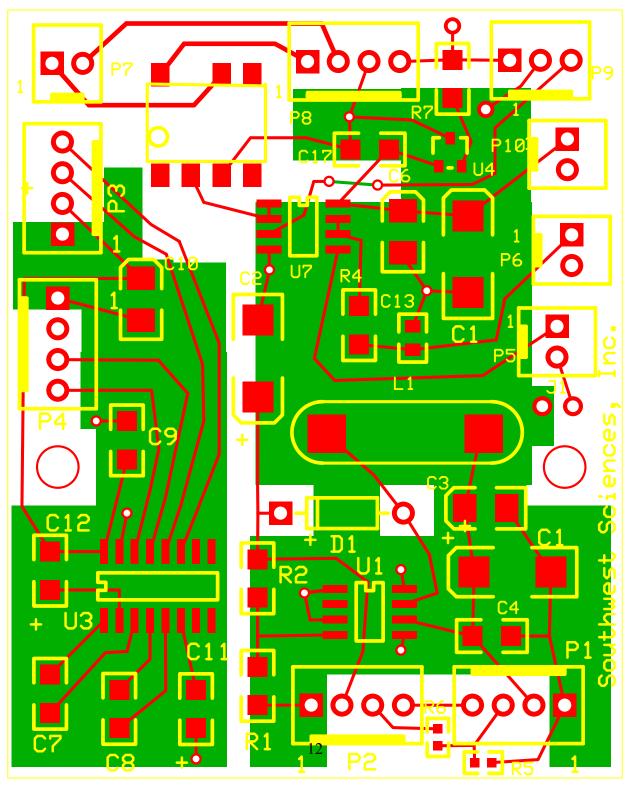
Each line terminated with $\r\n$

The plane timestamps each line so the data stream coming from the plane looks like:

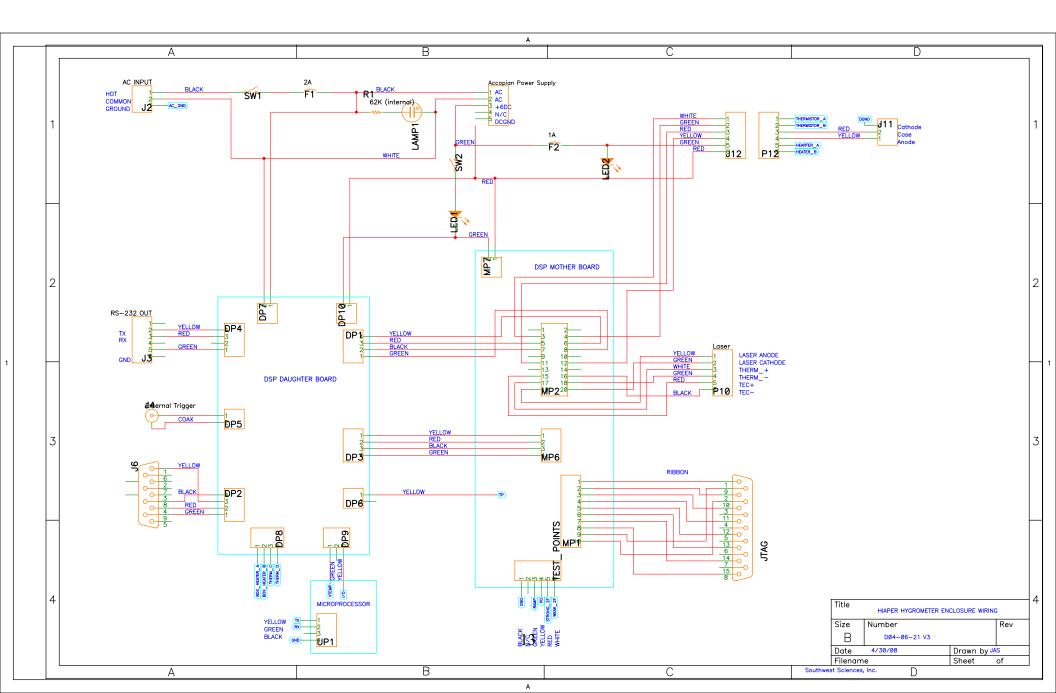
2008 06 16 15:38:26.0422	0.03713 85	SWS 51	L 9 277.	1 628.9	8849	8848	-622 W 0.0235	2000 21	2137 78 1	1.5	898
2008 06 16 15:38:26.0860	0.04376 34	1.00E+00	0.00E-01	99.99	60						
2008 06 16 15:38:26.1079	0.02188 34	1.00E+00	0.00E-01	99.99	60						
2008 06 16 15:38:26.1251	0.01719 34	1.00E+00	0.00E-01	99.99	60						
2008 06 16 15:38:26.1651	0.04 34	1.00E+00	0.00E-01	99.99	60						

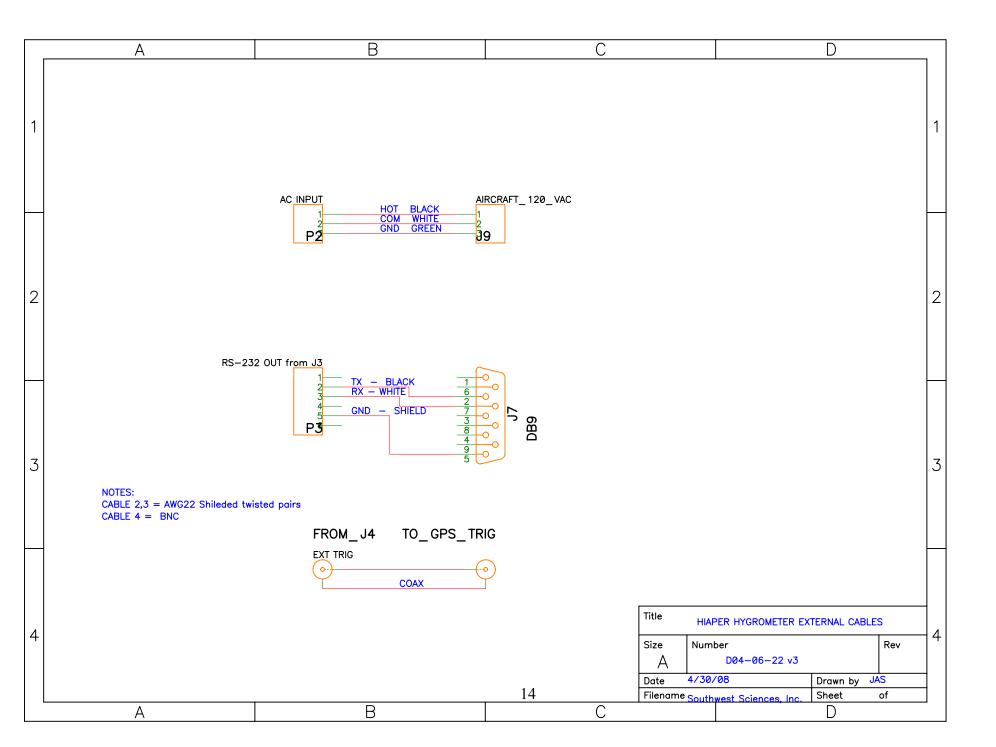
2008	06	16	15:38:26.2051	0.04002	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.2451	0.03997	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.2853	0.04023	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.3251	0.03977	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.3651	0.04	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.4051	0.04	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.4451	0.04002	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.4851	0.03998	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.5251	0.04001	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.5651	0.03999	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.6051	0.04004	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.6476	0.04253	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.6851	0.03744	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.7251	0.04	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.7651	0.03999	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.8051	0.04001	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.8451	0.04	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.8851	0.04003	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.9251	0.03998	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:26.9651	0.04001	34	1.00E+00	0.00E-01	99.99	60
2008	06	16	15:38:27.0051	0.04002	34	1.00E+00	0.00E-01	99.99	61

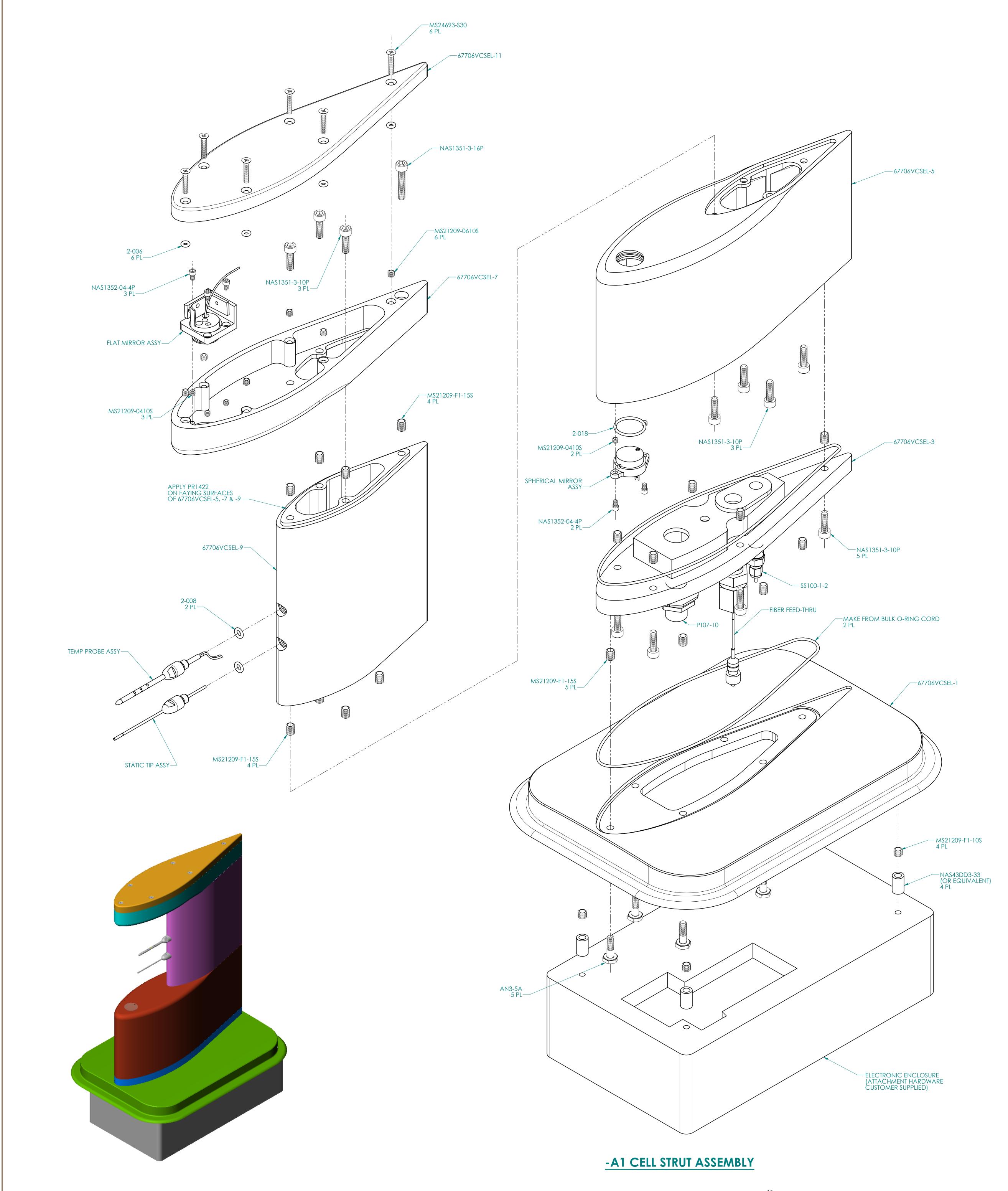

<u>Input</u>

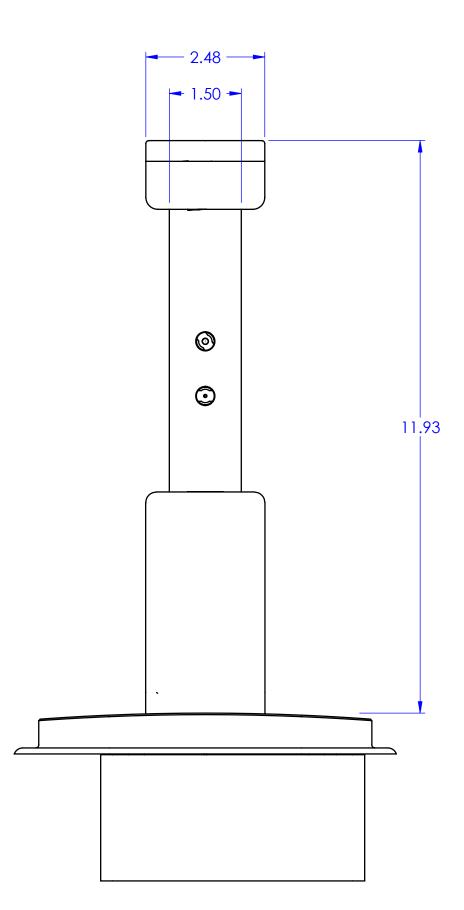

The sole input over the RS232 port is the ambient temperature from the plane's Pitot probe (ATX). This information is sent once a second as an integer in the format T*100 where T is in Celsius.

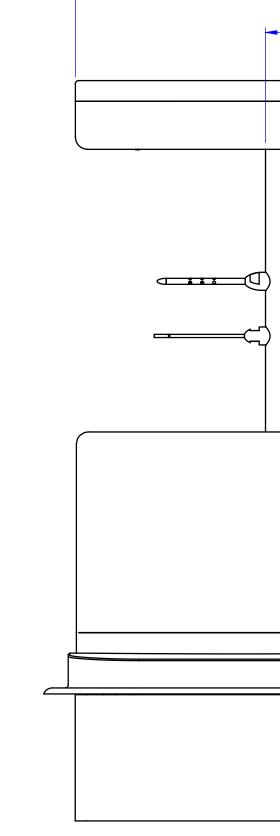
Software code for output

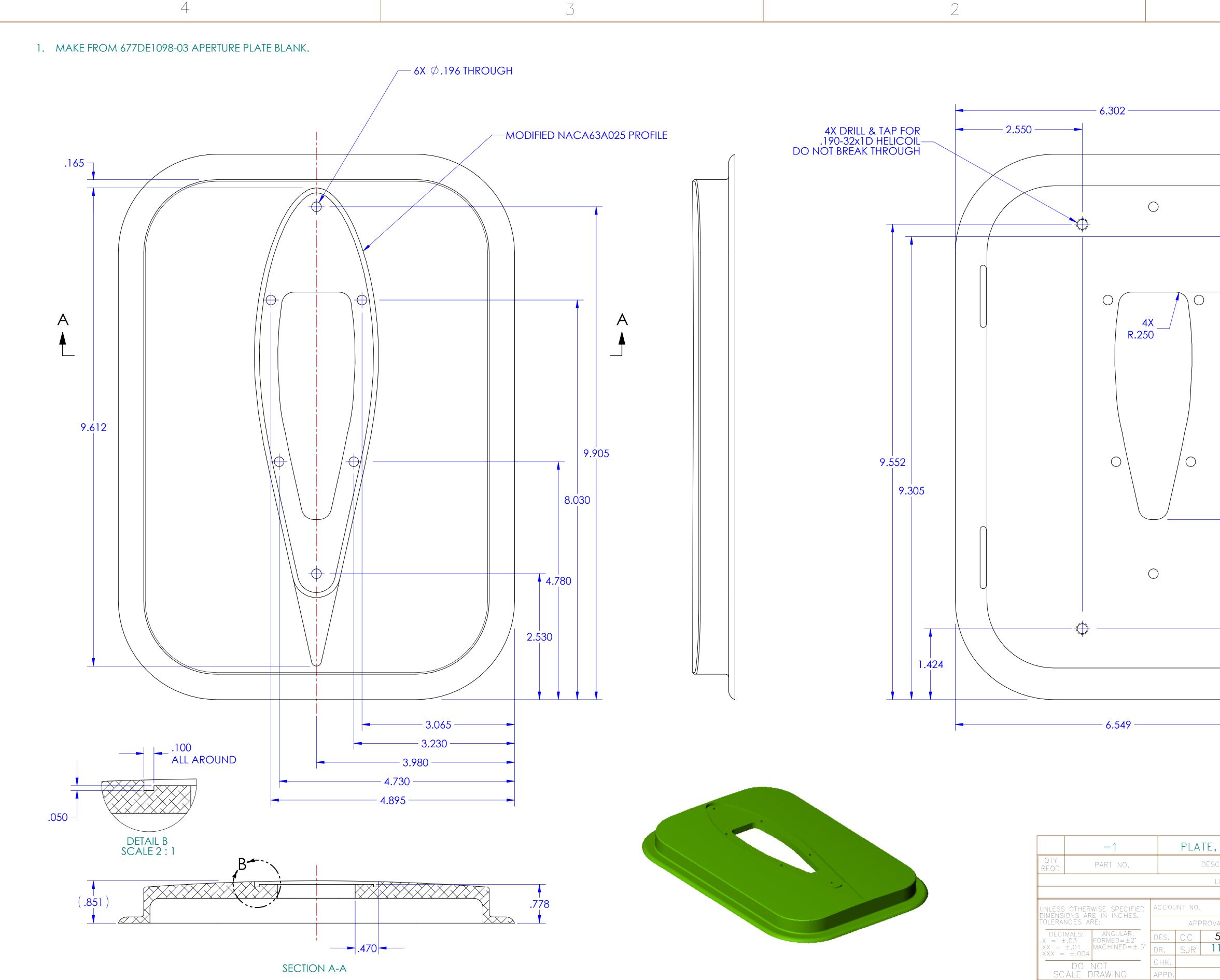

```
if (iLoop==1) // iLoop is data pt number in one second interval
 {
 while (isrTxInProgress==TRUE) {};
 WorkBuf[0]='S';
 WorkBuf[1]='W';
 WorkBuf[2]='S';
 lintoAI(Timestamp, &WorkBuf[3],7,0);
 Timestamp++;
 // Error status word update
 if (abs(ioffcenter)>5) ErrStatus=ErrStatus+8; // Linelocking warning
 if (Saturated==1) ErrStatus=ErrStatus+16;
 if (Saturated==2) ErrStatus=ErrStatus+32;
 if ((Pressure<30)||(Pressure>825)) ErrStatus=ErrStatus+64;
 if ((Temperature<160)||(Temperature>345)) ErrStatus=ErrStatus+128;
 IintoAI(ErrStatus, &WorkBuf[10],5,0);
 ErrStatus=0;
 FintoAF(Temperature, &WorkBuf[15], 5, 1);
 FintoAF(Pressure, &WorkBuf[21], 5, 1);
 IintoAI(ThermOhm, &WorkBuf[27],6,0);
 IintoAI(Tsetpoint, &WorkBuf[33],6,0);
 FintoAF(TECcurrent, &WorkBuf[39],6,0);
 if (PeakType==0) FintoAF(VoightHW5395, &WorkBuf[46],4,4);
 else FintoAF(VoightHW5393, &WorkBuf[46],4,4);
 WorkBuf[45]=' ';
 if (PeakType==2) WorkBuf[46]='S';
 else
  if (PeakType==1) WorkBuf[46]='D';
  else WorkBuf[46]='W';
 IintoAI(CenterCurrent, &WorkBuf[54],5,0);
 IintoAI(RampStepNew, &WorkBuf[59],3,0);
 IintoAI(iModNew, &WorkBuf[62],5,0);
 lintoAI(iPeak, &WorkBuf[67],3,0);
```


```
IintoAI(iPreGain2, &WorkBuf[70],2,0);
 FintoAF(ACGain, &WorkBuf[72],4,1);
 IintoAI(I0, &WorkBuf[77],5,0); // approximately mV
 WorkBuf[82]='\r'; WorkBuf[83]='\n';
                             // send header info
 TxString(83);
 FintoAE(Concentration, &TempBuf[0]);
 FintoAE(ChiSq,&TempBuf[9]);
 FintoAF(FrostPoint,&TempBuf[18], 6, 2);
 IintoAI(nGoodScans, &TempBuf[26], 5, 0);
 TempBuf[31]='\r'; TempBuf[32]='\n';
 }
if (iLoop==2)
 {
 while (isrTxInProgress==TRUE) {};
 for (iRow=0;iRow<33;iRow++) WorkBuf[iRow]=TempBuf[iRow];
 FintoAE(Concentration, &WorkBuf[33]);
 WorkBuf[33]=' ';
 FintoAE(ChiSq,&WorkBuf[42]);
 FintoAF(FrostPoint,&WorkBuf[51], 6, 2);
 IintoAI(nGoodScans, &WorkBuf[59], 5, 0);
 WorkBuf[64]='\r'; WorkBuf[65]='\n';
             TxString(65);
 }
if ((iLoop==0)||(iLoop>2))
 {
 while (isrTxInProgress==TRUE) {};
 FintoAE(Concentration, &WorkBuf[0]);
 FintoAE(ChiSq,&WorkBuf[9]);
 FintoAF(FrostPoint,&WorkBuf[18], 6, 2);
 IintoAI(nGoodScans, &WorkBuf[26], 5, 0);
 WorkBuf[31]='\r'; WorkBuf[32]='\n';
 TxString(32);
 }
```






C:\Documents and Settings\Mark\My Documents\Schematics\Hiaper\DaughterBoardE.pcb (Silkscreen, Top layer, Bottom layer)


AR	36	PR1422	SEALANT
	35		
1	34	CUSTOMER SUPPLIED	FEED THRU FITTING
1	33	CUSTOMER SUPPLIED	TEMPERATURE PROBE ASSY
1	32	CUSTOMER SUPPLIED	STATIC TIP ASSY
1	31	CUSTOMER SUPPLIED	FLAT MIRROR ASSY
1	30	CUSTOMER SUPPLIED	SPHERICAL MIRROR ASSY
1	29	CUSTOMER SUPPLIED	ELECTRONIC ENCLOSURE
	28		
1	27	SS100-1-2	FITTING, 1/16 TUBE TO 1/8 NPT
1	26	PT07-10	CONNECTOR
1	25	9407K21	LOWER STRUT O-RING
	24		
1	23	2-018	O-RING, 0.74 ID x 0.07
2	22	2-008	O-RING, 0.18 ID x 0.07
6	21	2-006	O-RING, 0.11 ID x 0.07
	20		
6	19	NA\$1352-04-4P	SCREW, SHC, .112-40x.19
1	18	NA\$1351-3-16P	SCREW, SHC, .190-32x1.00
12	17	NA\$1351-3-10P	SCREW, SHC, .190-32x.62
4	16	NA\$43DD3-33	SPACER, 0.19 ID x 0.52
6	15	MS24693-S30	SCREW, FLUSH HD, .138-32 x .75
19	14	MS21209-F1-15S	INSERT, HELICOIL, .190-32 x 1.5D
4	13	MS21209-F1-10S	INSERT, HELICOIL, .190-32 x 1D
6	12	MS21209-0610S	INSERT, HELICOIL, .138-32 x 1D
5	11	MS21209-0410S	INSERT, HELICOIL, .112-40 x 1D
6	10	AN3-5A	BOLT, HEX HD, .190-32 x .66
	9		
1	8	67706VCSEL-11	STRUT CAP
1	7	67706VCSEL-9	STRUT, MIDDLE
1	6	67706VCSEL-7	STRUT, UPPER
1	5	67706VCSEL-5	STRUT, LOWER
1	4	67706VCSEL-3	PLATE, INTERFACE
1	3	67706VCSEL-1	PLATE, APERTURE
	2		
	1	-A1	CELL STRUT ASSEMBLY
QTY	ITEM	PARTNUMBER	DESCRIPTION

PROPRIETARY AND CONFIDENTIAL © UNIVERSITY CORPORATION FOR ATMOSPHERIC RESEARCH (UCAR) 2006. ALL RIGHTS RESERVED. THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF UCAR. ANY REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF UCAR IS PROHIBITED.

UNLESS OTHERWISE SPECIFIED ACCOUNT NO. DIMENSIONS ARE IN INCHES. TOLERANCES ARE: APPROV APPROVALS $\begin{array}{c|c} \hline \text{DEC IMALS:} \\ X = \pm .03 \\ XX = \pm .01 \\ XXX = \pm .004 \end{array} \begin{array}{c|c} \text{ANGULAR:} \\ \text{FORMED=\pm 2^{\circ}} \\ \text{MAC HINED=\pm .5^{\circ}} \end{array} \begin{array}{c|c} \text{DES.} & \text{CC} & \textbf{5/9/2006} \\ \hline \text{DR.} & \text{SJR} & \textbf{120406} \\ \hline \text{OHMMED} \end{array}$ DO NOT Scale drawing INISH TREATMENT

5/9/2006

9.62 5.66		С
		В
PRC Image: Problem	.10 .06 4.50 0.033 .10	
	.08 0.012 0.04 0.31	A
MATERIAL SPECIFICATION MATERIAL SPECIFICATION DESIGN & FABRICATION SERV ATMOSPHERIC TECHNOLOGY DIV NATIONAL CENTER FOR ATMOSPHERIC RES C ELL STRUT ASSEMBLY VC SEL HYGROMETER SIZE PROJECT DWG NO. 67706VCSEL-A1 SCALE 1:1 SHEET 1 0 1	1.886 0.548 2.301 0.625 2.243 12.85 WT ICES ISION EARCH	

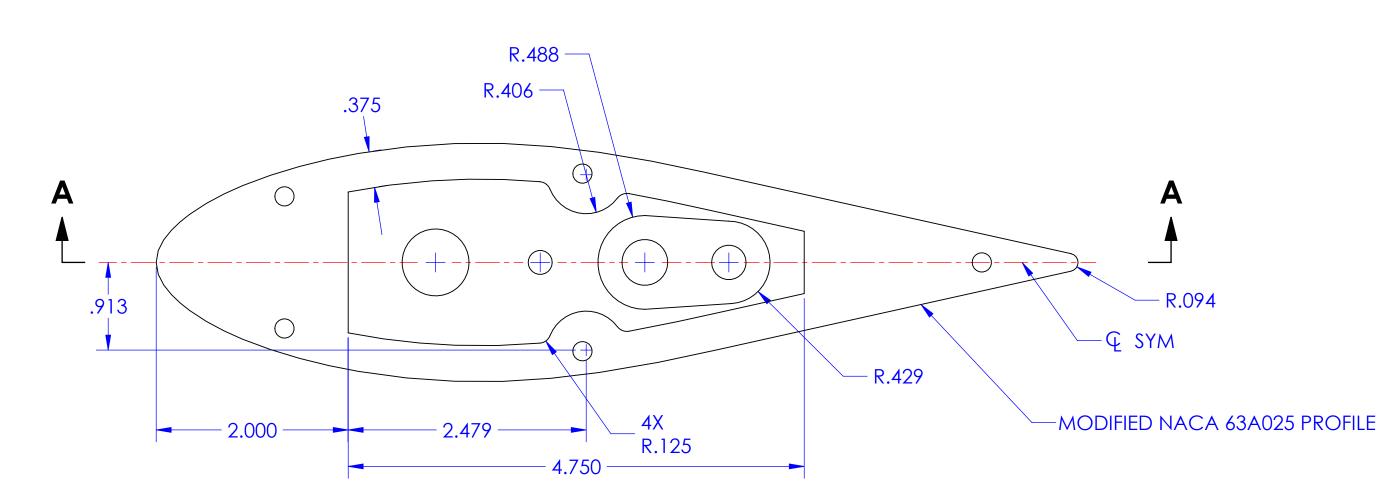
В

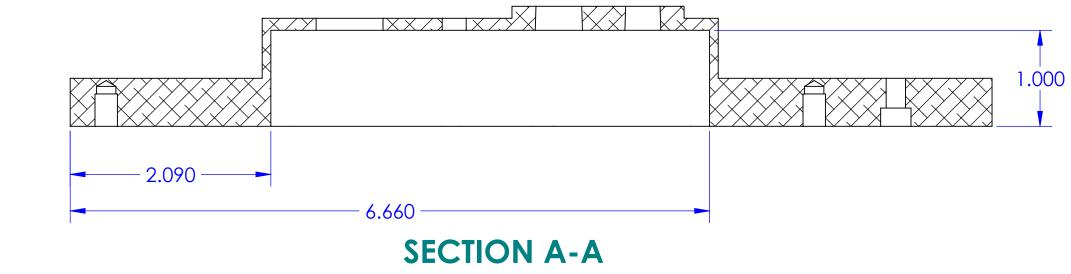
А

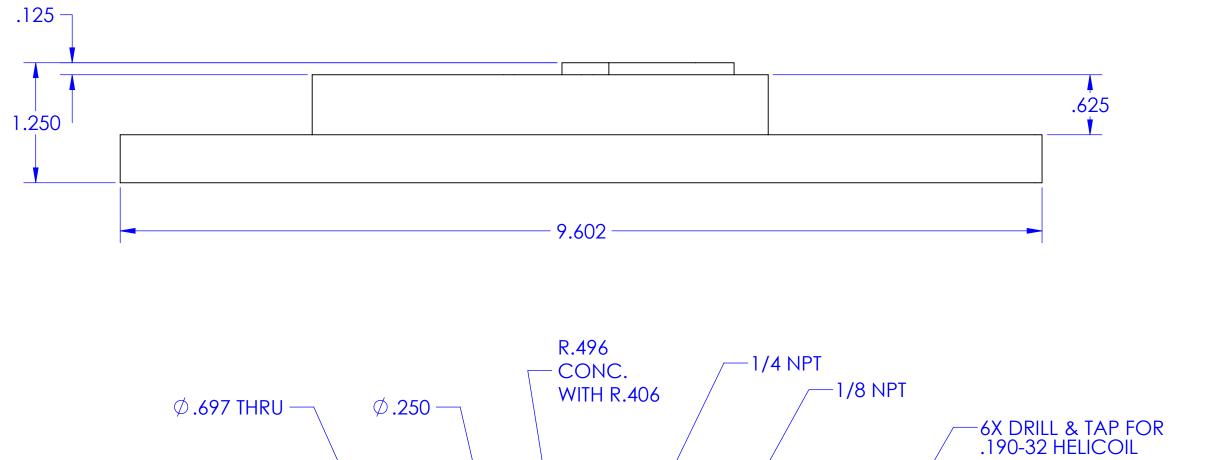
3

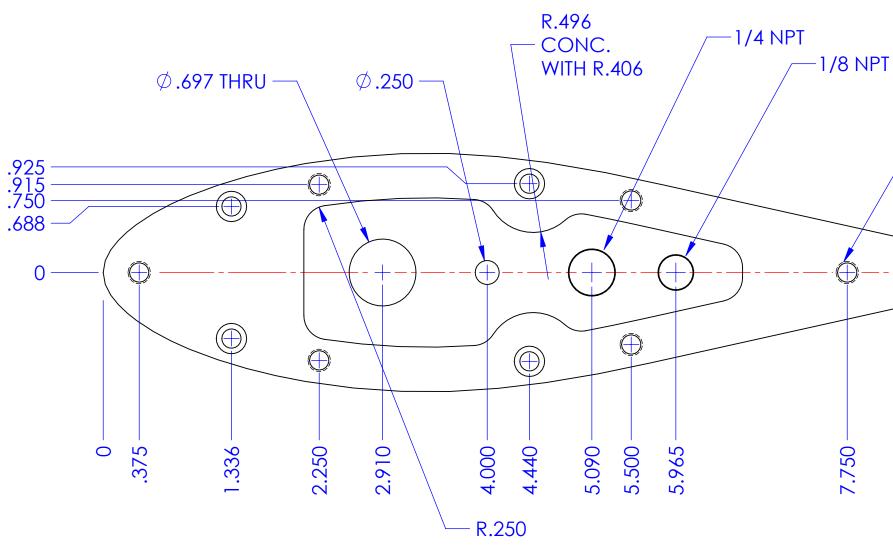
		— 1			PLA	TE,
QTY REQD		PART NO.				DESCI
						LIS
					UNT NO.	
DIMENS		WISE SPECIFIED Re in inches. Re:	A		-	PROVAI
	MALS: .03	ANGULAR: FORMED=±2°	D	ES.	СС	5,
.XX =		MAC HINED = $\pm .5^{\circ}$	D	R.	SJR	11
	DO	NOT	С	HK.		
SC		RAWING	A	PPD.		
FINISH	-			TREA	IMENT	
	IRRID	ITE				NOI

						ו
ZON	ie Rev		REVISIONS DESC RIPTION	DATE	APPROVED	
			2.135			B
. APERTUR SC RIPTION	RIALS OF	r parts lis	DESIGN & FA ATMOSPHERIC NATIONAL CENTER PERTURE SEL HYGF DWG NO.	C TECHNOLOG	SERVICES Y DIVISION c research REV.	


В


А





4

8.600

NOTES:

1) REMOVE BURRS AND BREAK SHARP EDGES.

2) MATERIAL CERTS REQUIRED.

3) ANODIZE PER MIL-A-8625, GOLD.

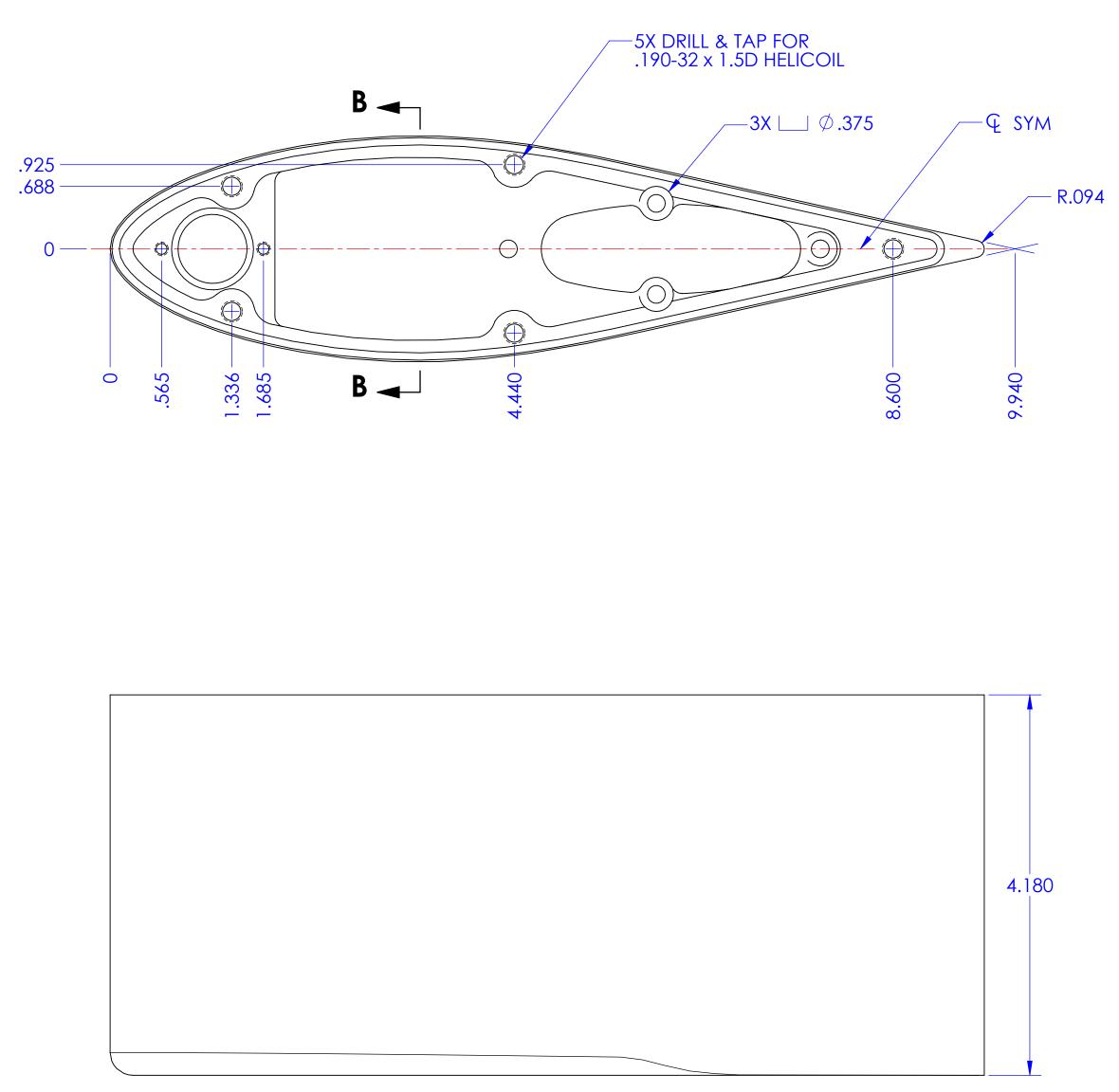
PROPRIETARY AND CONFIDENTIAL

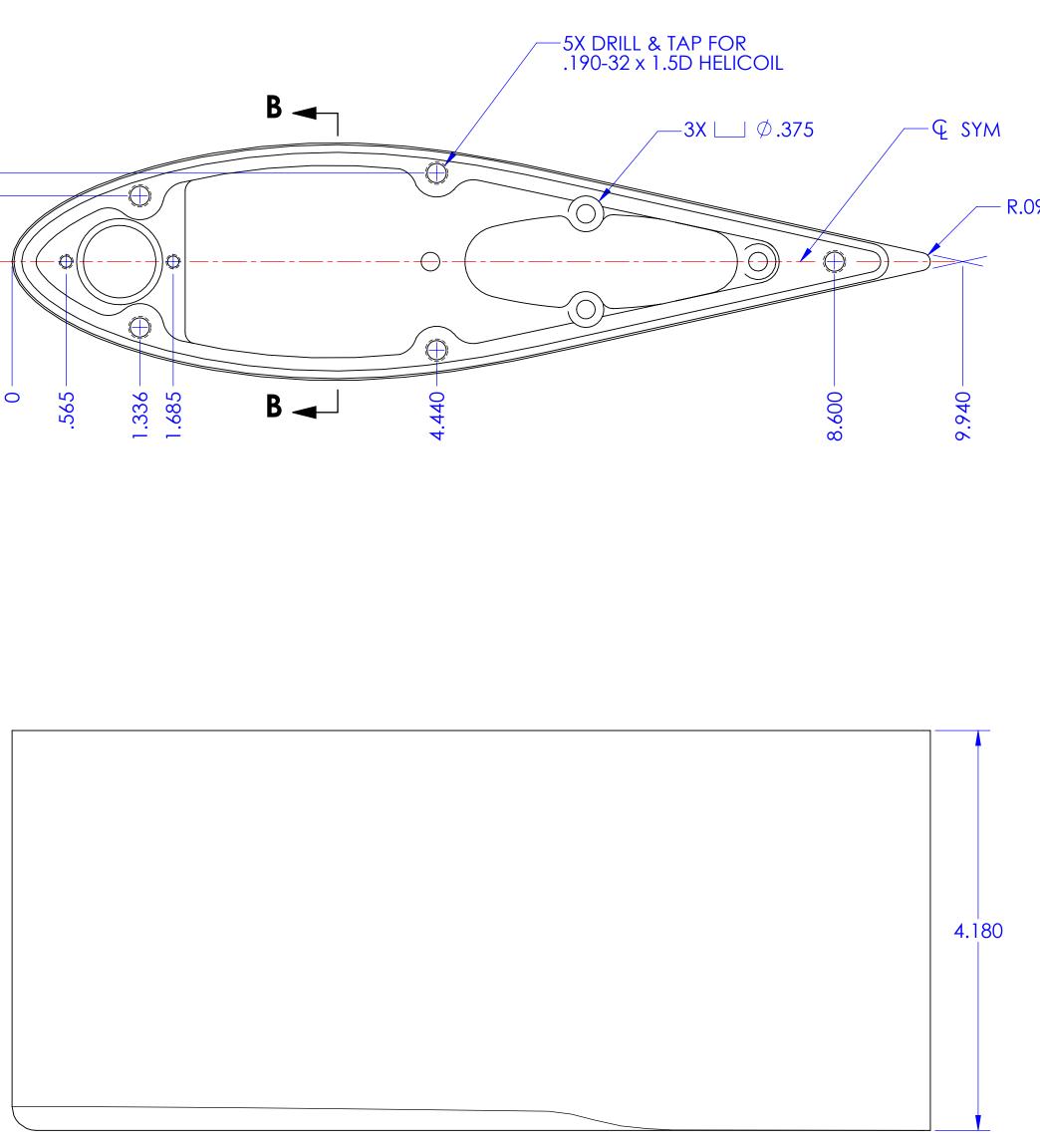
2

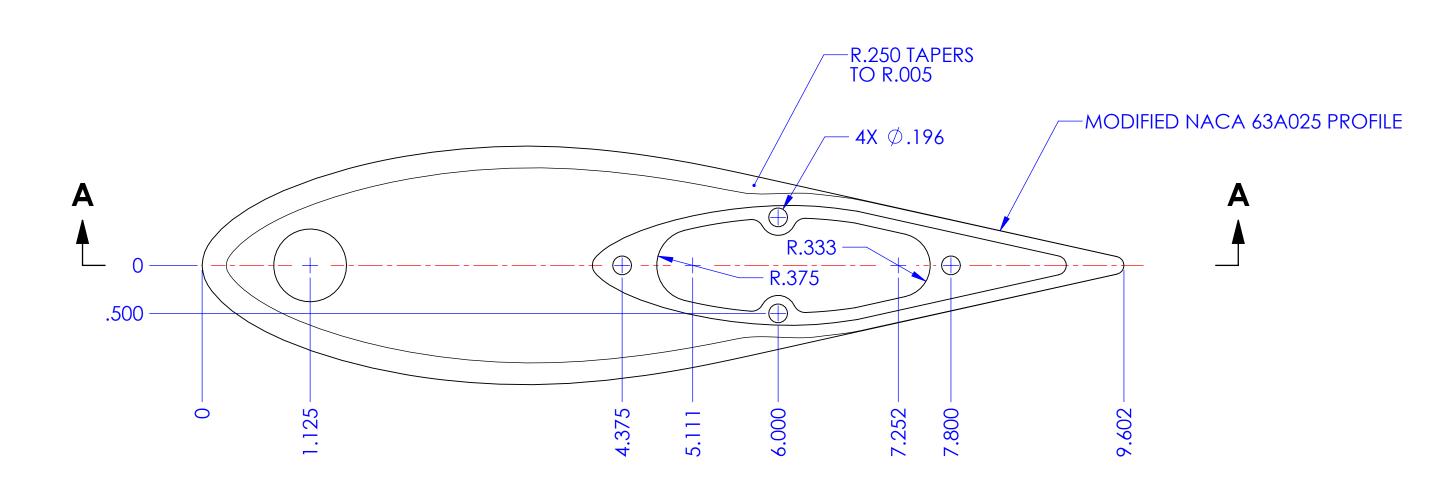
© UNIVERSITY CORPORATION FOR ATMOSPHERIC RESEARCH (UCAR) 2006. ALL RIGHTS RESERVED. THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF UCAR. ANY REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF UCAR IS PROHIBITED.

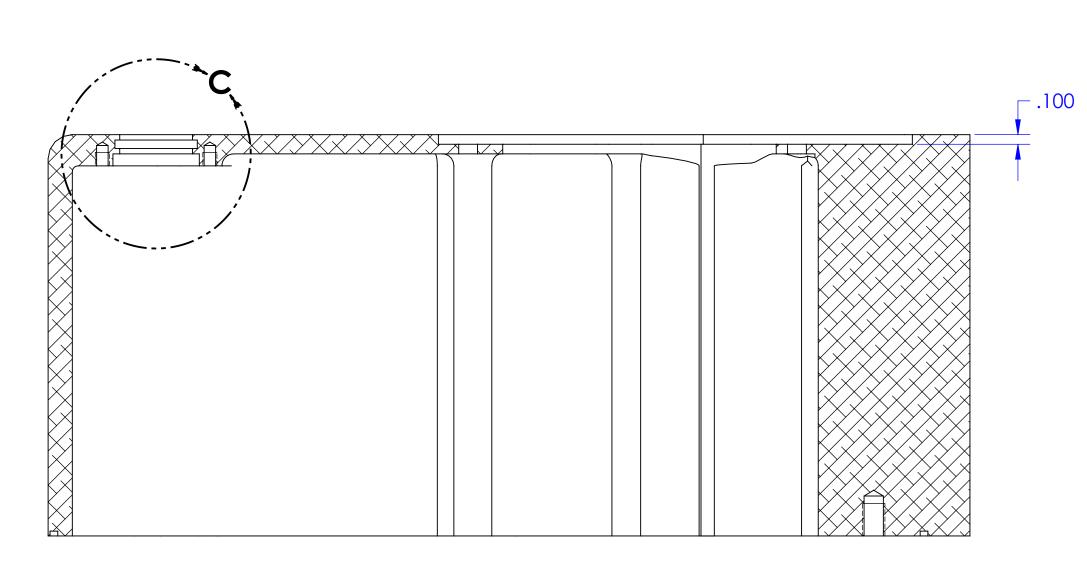
2

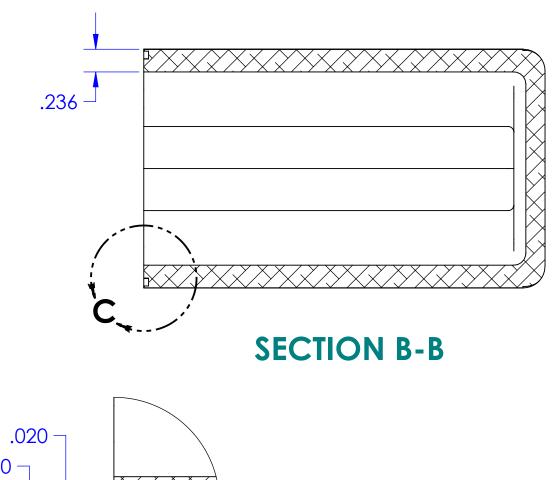
	- 7

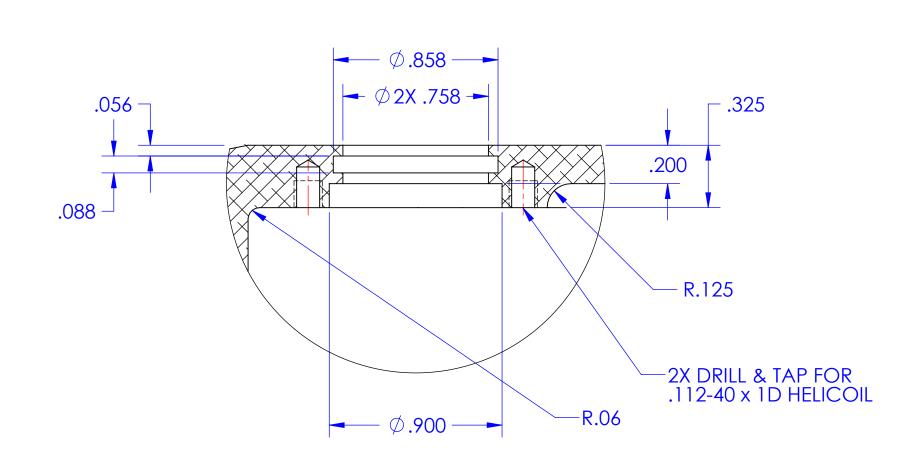

Υ. ο. ,

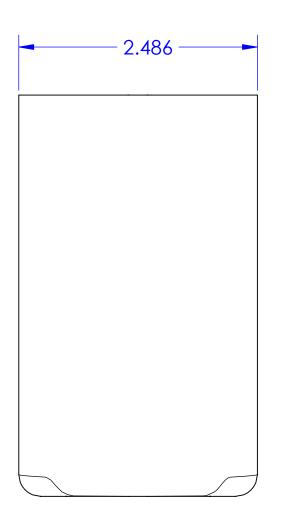

		-3		PLATE,			
QTY REQD		PART NO.				DESC	
						LI	
		WISE SPECIFIED F IN INCHES.	A	CCOL	UNT NO.		
TOLERA					APF	PROVA	
	MALS:	ANGULAR: FORMED=±2°	D	ES.	СС	5,	
.XX =		MACHINED= $\pm.5^{\circ}$	D	R.	SJR	1	
	DO	LOT	С	HK.			
SC		RAWING	A	PPD.			
FINISH		NOTES		TREA	TMENT	NOI	


		REVISIONS		
ZONE	REV	DESCRIPTION	DATE	APPROVED


В

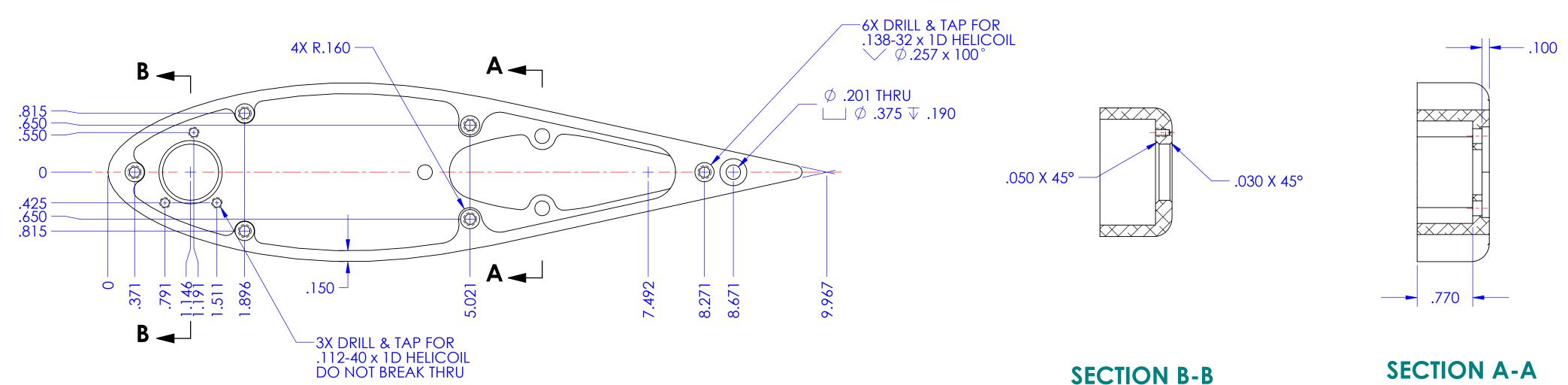

INTERFAC	CE	6	061-T6		
CRIPTION			MATERIAL	SPECIFICATION	ZONE
LIST OF MATER	rials c	r parts list			
/ALS			ESIGN & FABRIC, ATMOSPHERIC TECH NATIONAL CENTER FOR AT	HNOLOGY DIVIS	ION
5/8/2006 120406			ERFACE PLA El hygrome		
ONE	SIZE D SCALE	PROJECT [1:1	dwg no. 67706VCS		NC 1

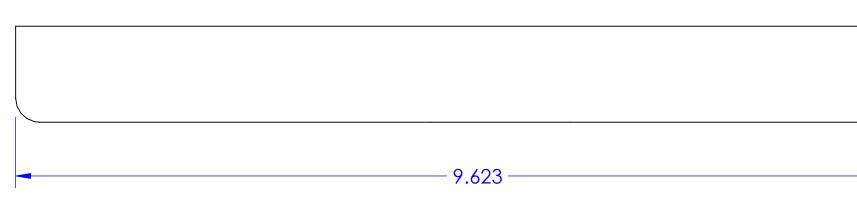


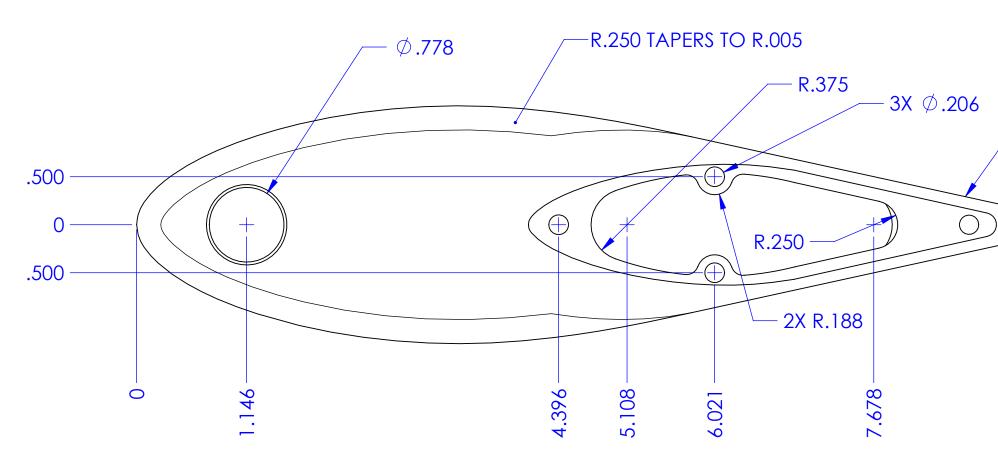


.080

SECTION A-A

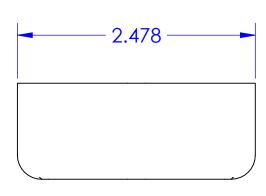

DETAIL C SCALE 2 : 1


				-5		ST	RUT, LOWE	R
		QTY REQD	PA	RT NO.			DESCRIPTION	
							list of ma	TERIAL
				e specified	ACCOU	UNT NO.		5
S:			NCES ARE I			APP	ROVALS	
— VE BURRS AND BREAK SHARP EDGES.	PROPRIETARY AND CONFIDENTIAL © UNIVERSITY CORPORATION FOR	DECI .X = ±		ANGULAR: RMED=±2°	DES.	СС	5/9/06	
	ATMOSPHERIC RESEARCH (UCAR) 2006.	.XX =		CHINED=±.5°	DR.	SJR	112706	
RIAL CERTS REQUIRED.	ALL RIGHTS RESERVED. THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE		DO NO		CHK.			SIZ
IZE PER MIL-A-8625, GOLD.	PROPERTY OF UCAR. ANY REPRODUCTION	SC FINISF	ALE DRA	awing	APPD. trea	TMENT		— F
	IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF UCAR IS PROHIBITED.		SEE NO	DTES			NONE	SC /
	\bigcirc				•			

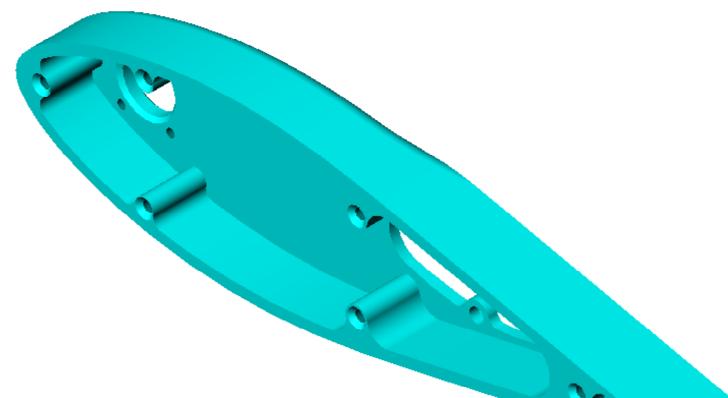

ONE REV		REVI: DESC RIPTION	SIONS		DATE	/	APPROVED		
								С	
								R	
								A	
		6061—1 MATERIAL				Λ.Τ)n zon	F	
	R PARTS LIS	T	& FABRI						
	FS	ATMOSF National	PHERIC TEC	С Н N Атмс	OLOGY SPHERIC	DIV	VISION	_	
		SEL F	T, LOW Hygron	lr NE	TER				
E	PROJECT	dwg no.	06VC	SE					
SCALE	1:1	1		S	HEET	1 (of 1		

В

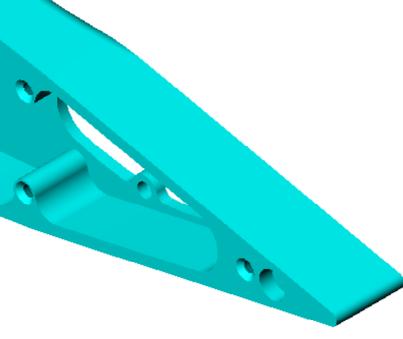
А



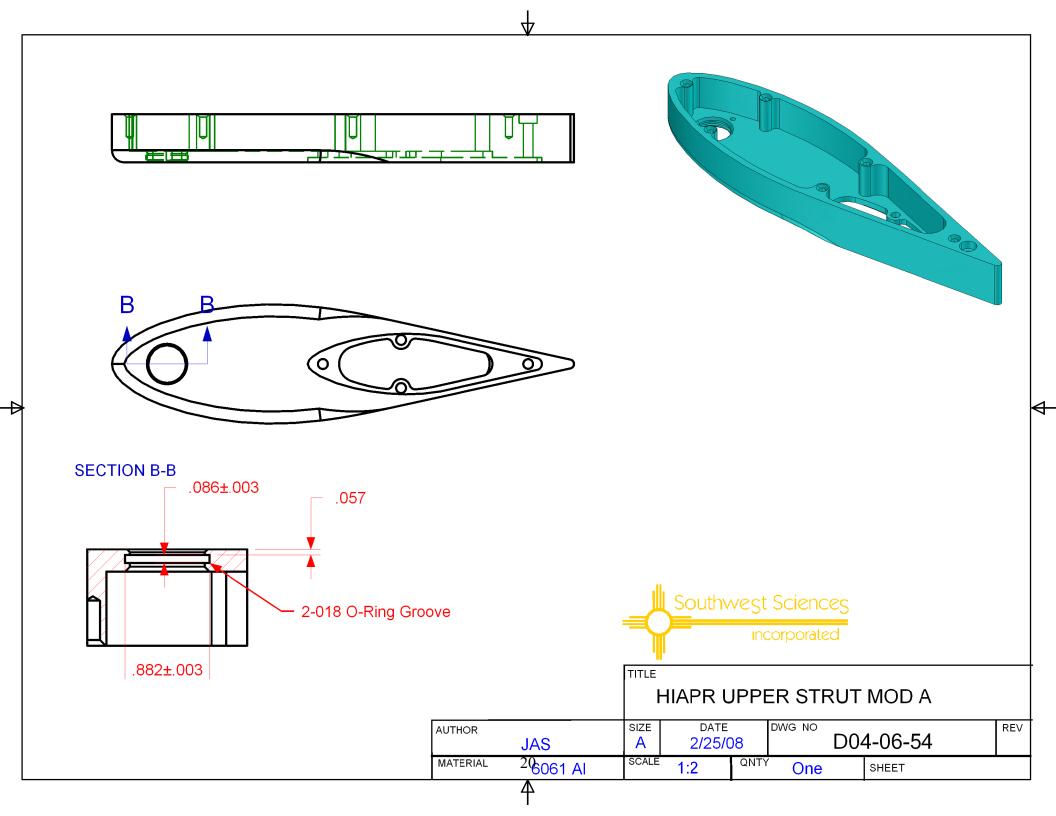
NOTES:

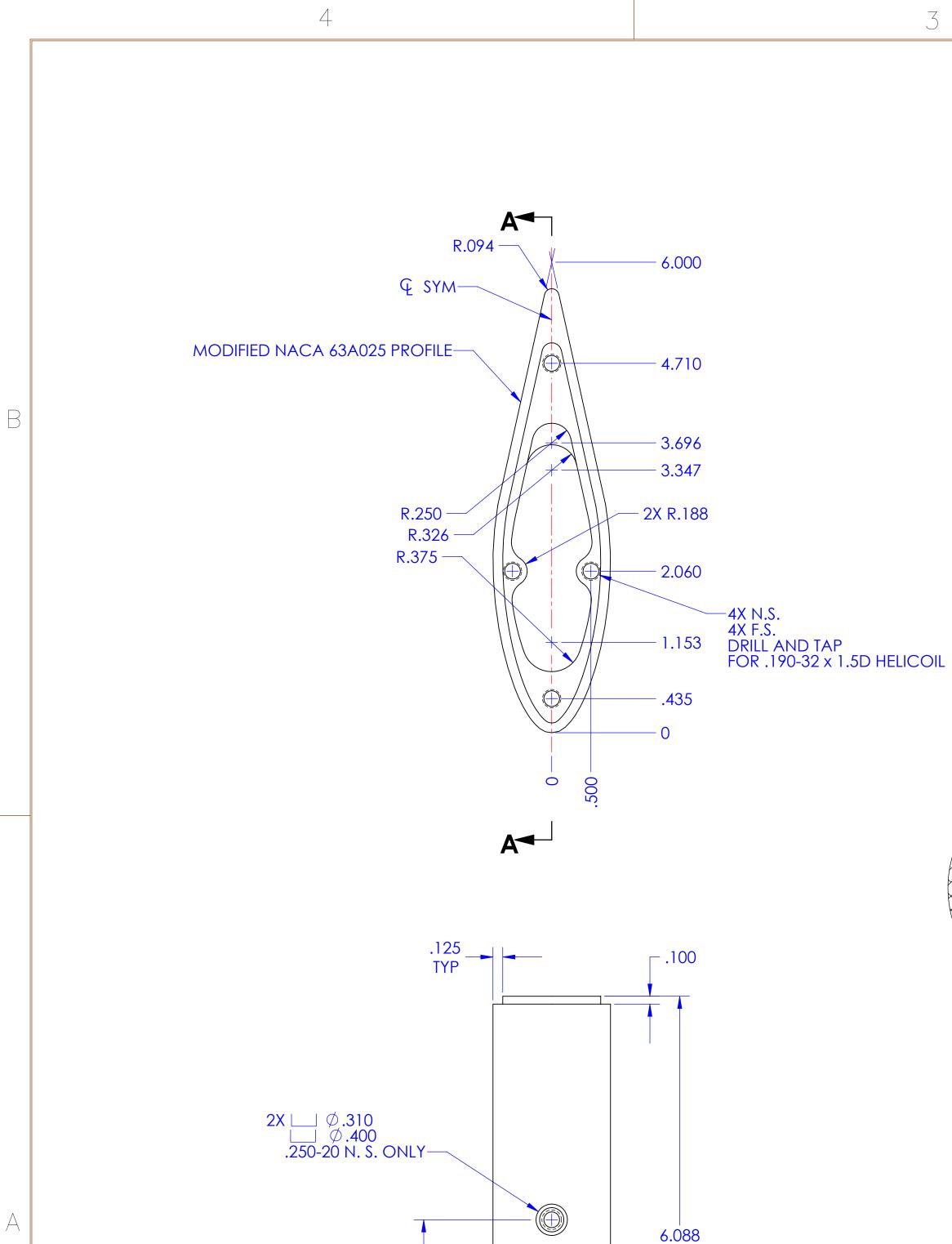

SECTION B-B

1.000


-MODIFIED NACA 63A025 PROFILE

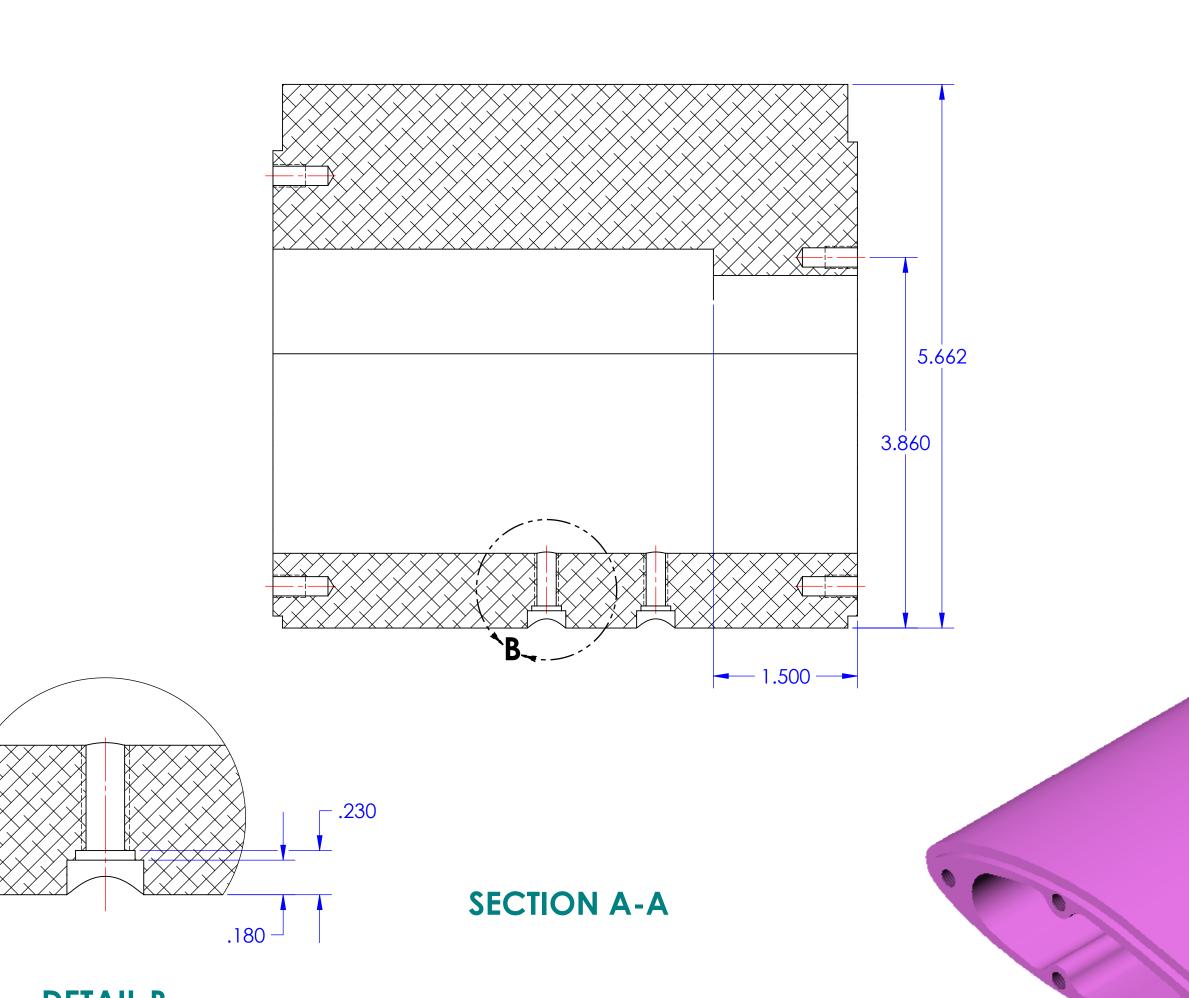
- R.094



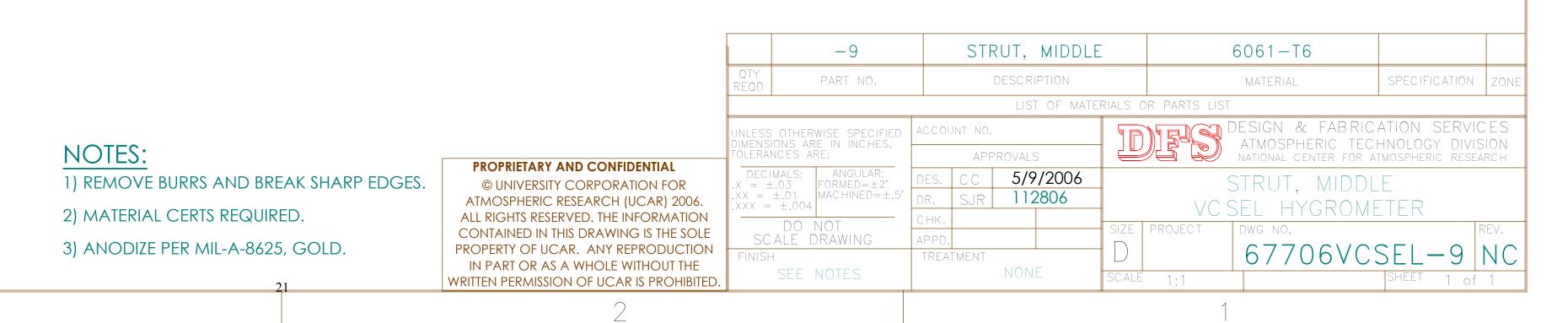

-7 STRUT DESC PART NO. UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES. TOLERANCES ARE: ACCOUNT NO. APPROVA PROPRIETARY AND CONFIDENTIAL ANGULAR: FORMED=±2° MACHINED=±.5° 1) REMOVE BURRS AND BREAK SHARP EDGES. DECIMALS= $\pm.03$ © UNIVERSITY CORPORATION FOR $X = \pm .01$ SJR ATMOSPHERIC RESEARCH (UCAR) 2006. 2) MATERIAL CERTS REQUIRED. $XX = \pm .004$ ALL RIGHTS RESERVED. THE INFORMATION DO NOT Scale drawing CONTAINED IN THIS DRAWING IS THE SOLE 3) ANODIZE PER MIL-A-8625, GOLD. PROPERTY OF UCAR. ANY REPRODUCTION FINISH TREATMENT IN PART OR AS A WHOLE WITHOUT THE SEE NOTES WRITTEN PERMISSION OF UCAR IS PROHIBITED. 2

T, UPPER		6			
CRIPTION			MATERIAL	SPECIFICATION	ZONE
list of mater	rials c	r parts list			
VALS 05/08/06 112806		NG S	ESIGN & FABRIC, atmospheric tech vational center for a TRUT, UPPE EL HYGROME	hnology divis imospheric reseat	ION
ONE	SIZE D SCALE	PROJECT [1:1	owg no. 67706VCS		EV. NC 1
		1			

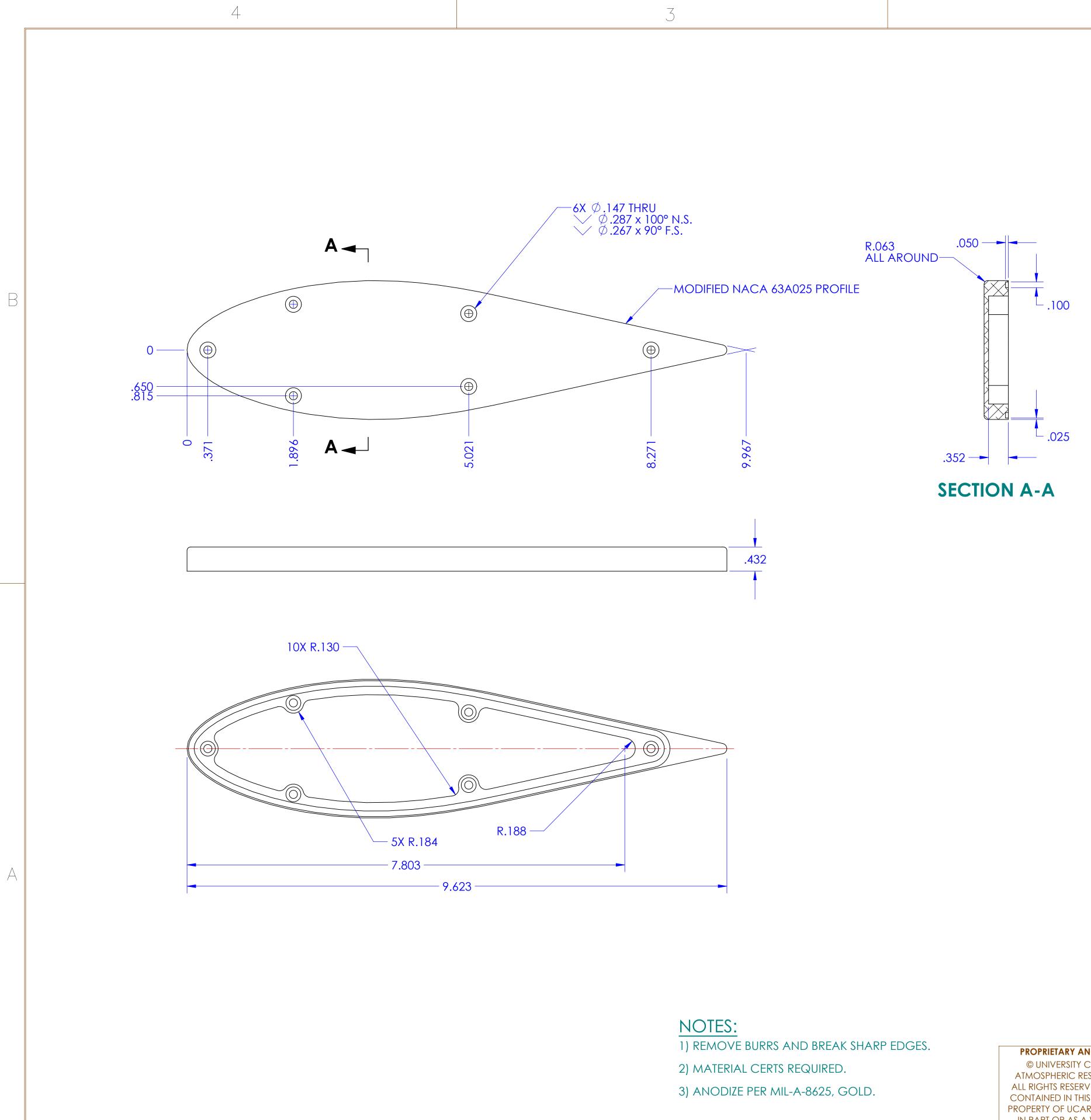
В

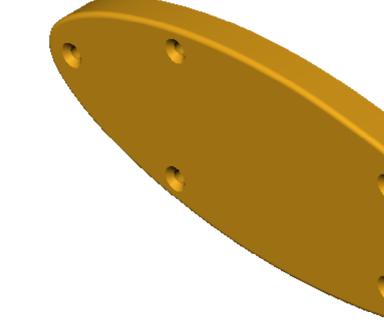

└.100

3.238


2.100

4

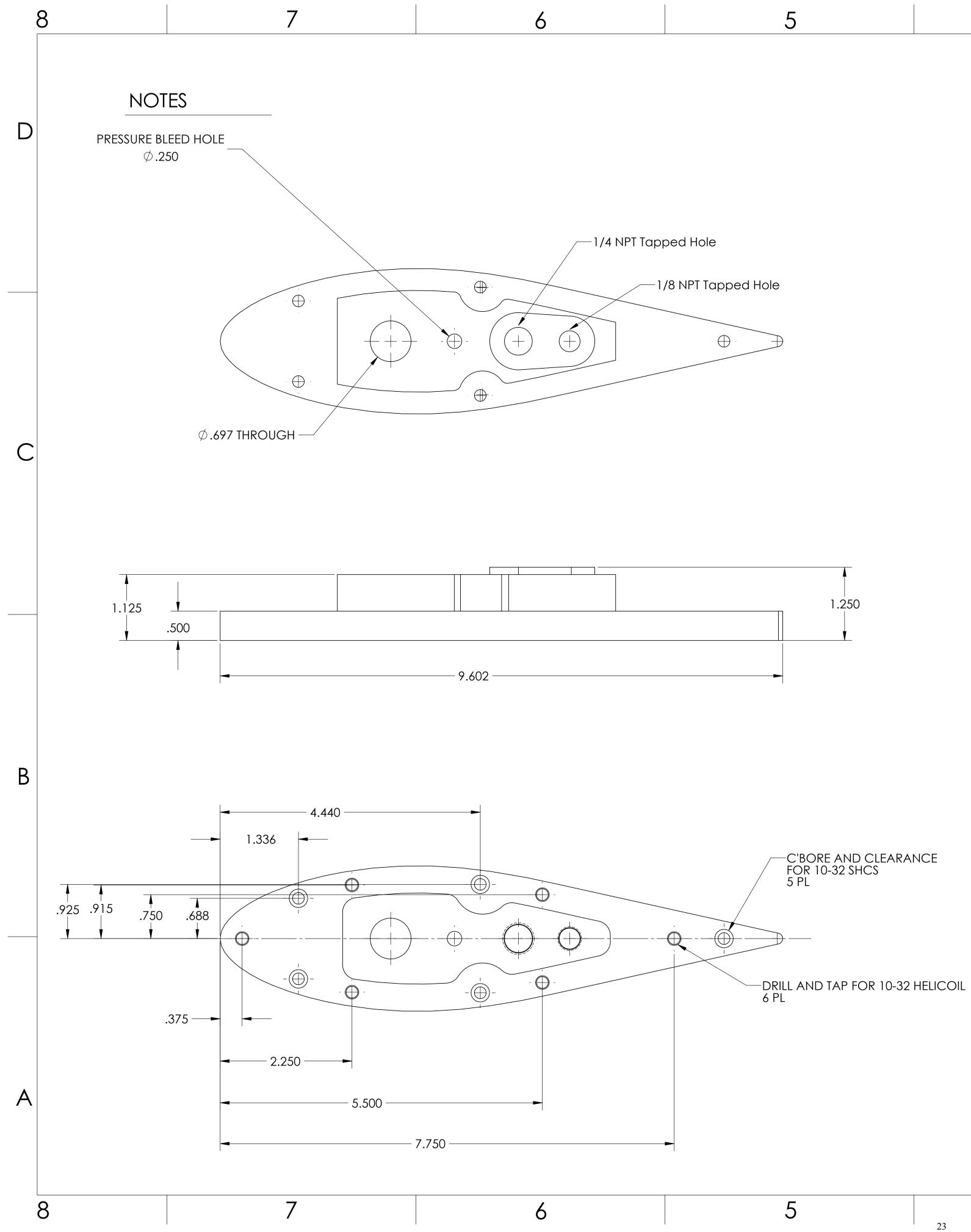


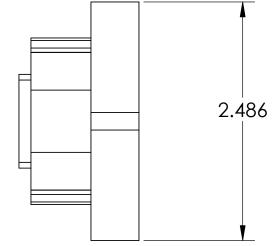


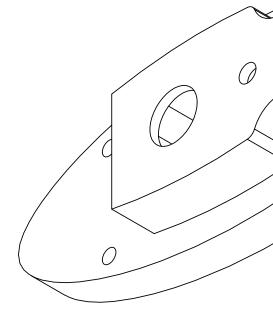
		REVISIONS		
ZONE	REV	DESCRIPTION	DATE	APPROVED

В

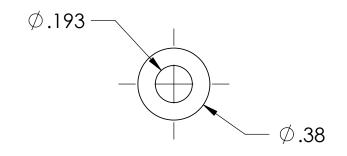
3

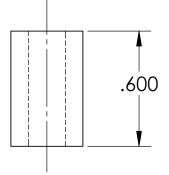



					-11		S	TRU
			QTY REQD		PART NO.		[DESCF
								LIS
DTES:			0.12200	0 11 1 - 1	WISE SPECIFIED	ACCOL	JNT NO.	
REMOVE BURRS AND BREAK SHARP	EDGES.		TOLERAN		RE IN INCHES. Re:		APP	ROVAL
				MALS:	ANGULAR:	DES.	СС	5/8
MATERIAL CERTS REQUIRED.		© UNIVERSITY CORPORATION FOR ATMOSPHERIC RESEARCH (UCAR) 2006.	$X = \pm$ $X = \pm$	±.01	$FORMED = \pm 2^{\circ}$ $MAC HINED = \pm .5^{\circ}$	DR.	SJR	112
ANODIZE PER MIL-A-8625, GOLD.		ALL RIGHTS RESERVED. THE INFORMATION	.XXX =			СНК.	0011	
ANODIZE I EK MIL-A-0023, GOLD.		CONTAINED IN THIS DRAWING IS THE SOLE	SC	DO ALF [DRAWING	APPD.		
		PROPERTY OF UCAR. ANY REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE	FINISH			TREAT	TMENT	
2'	2	WRITTEN PERMISSION OF UCAR IS PROHIBITED.		SEE	NOTES			NON
		2	<u> </u>			<u> </u>		

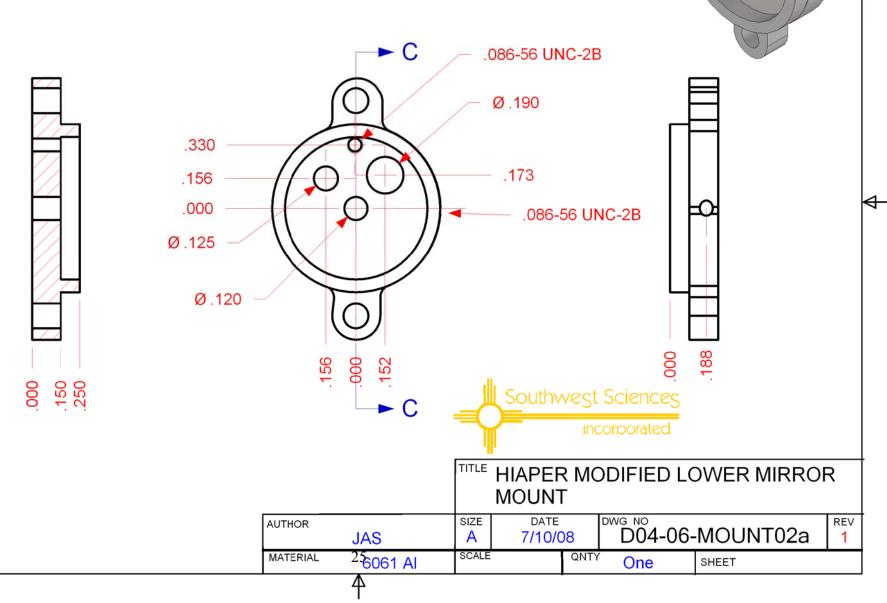

		REVISIONS		
ZONE	REV	DESCRIPTION	DATE	APPROVED

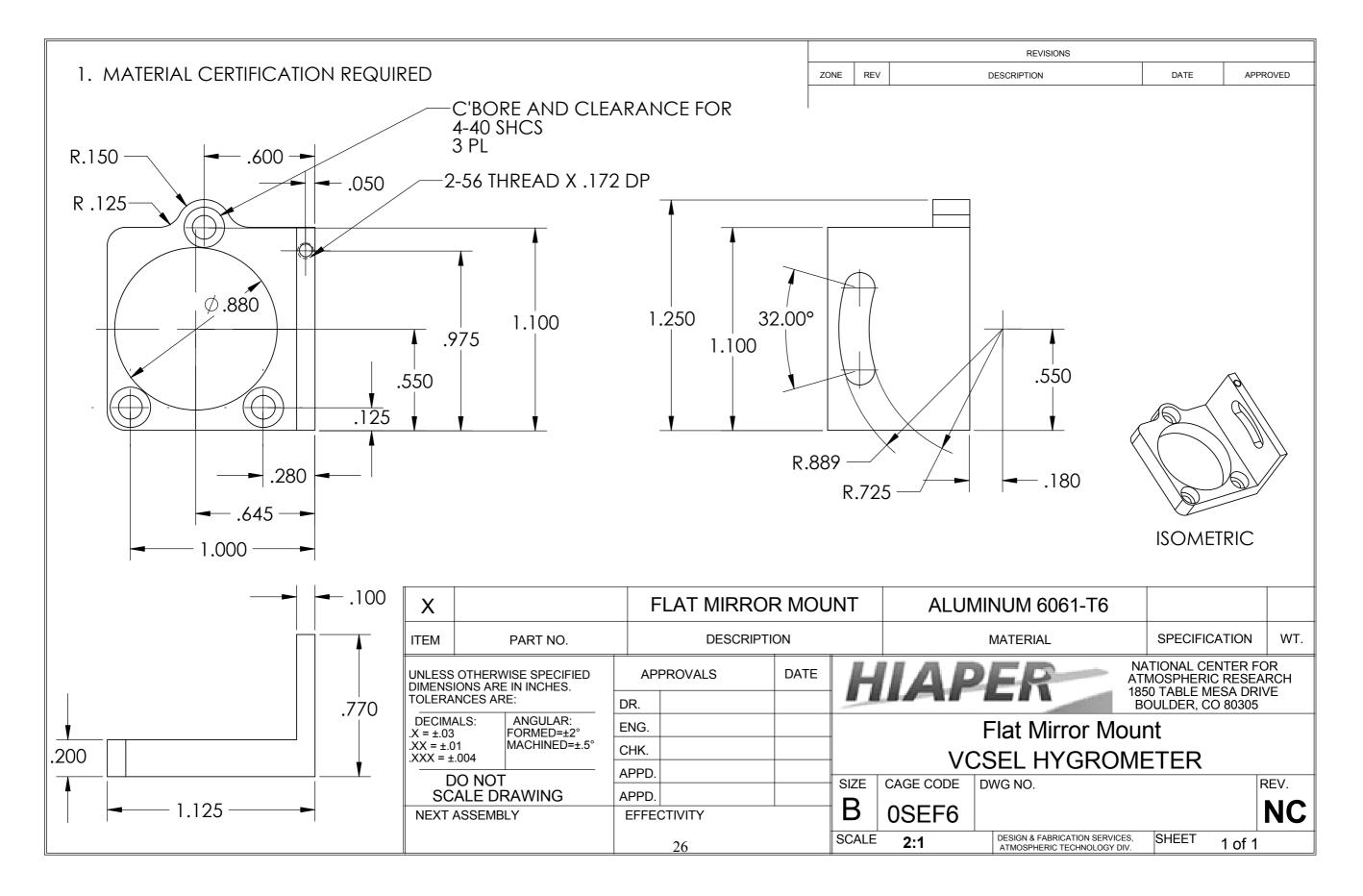
В

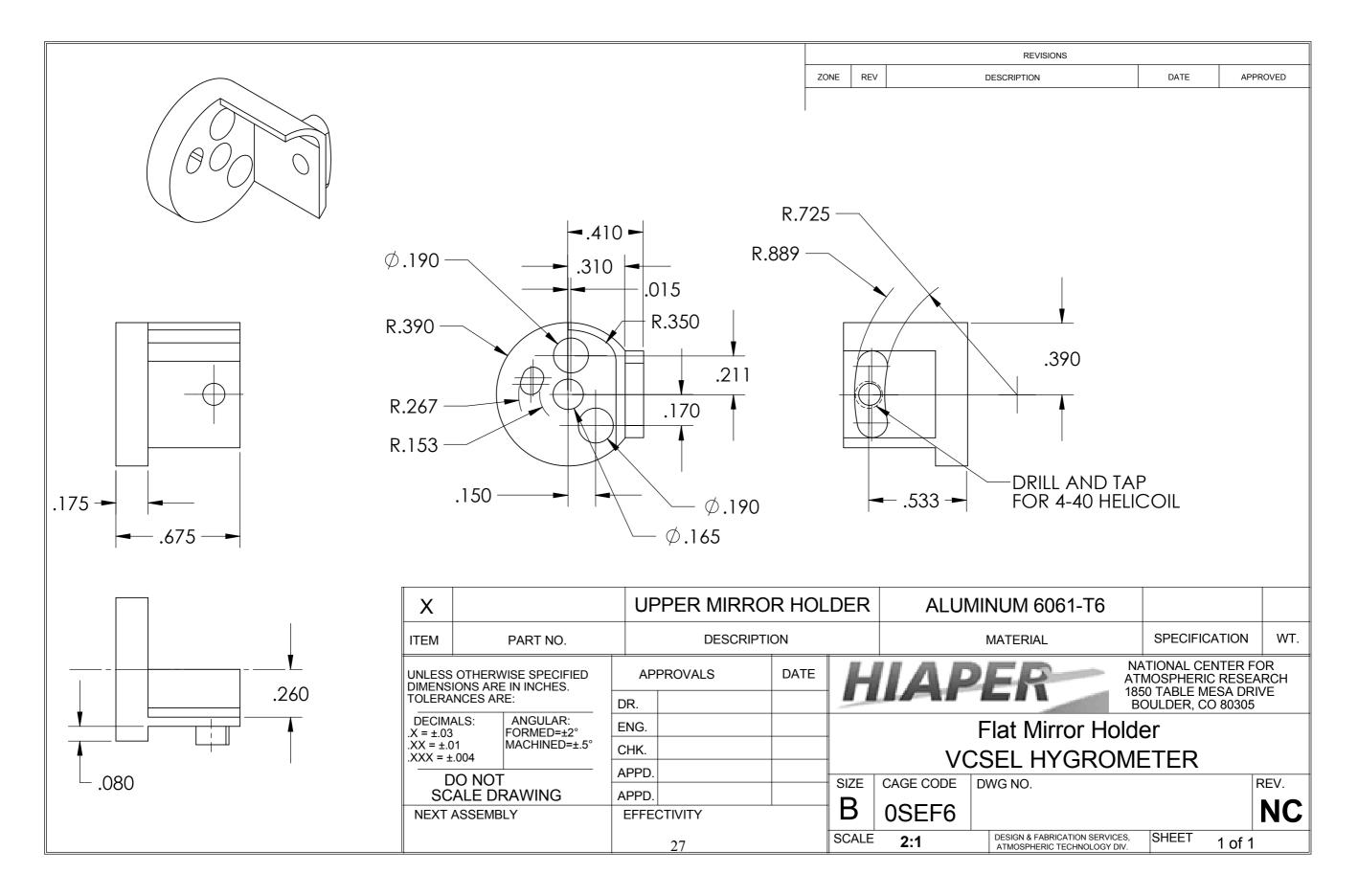

UT CAP		6	061-T6							
CRIPTION			MATERIAL	SPECIFICATION	ZONE					
list of mater	RIALS O	r parts list								
ALS DESIGN & FABRICATION SERVICE										
5/8/2006 12806	-	VC S	STRUT CAP El hygrome	ETER						
ONE	SIZE D SCALE		dwg no. 67706VCS		EV. 1					

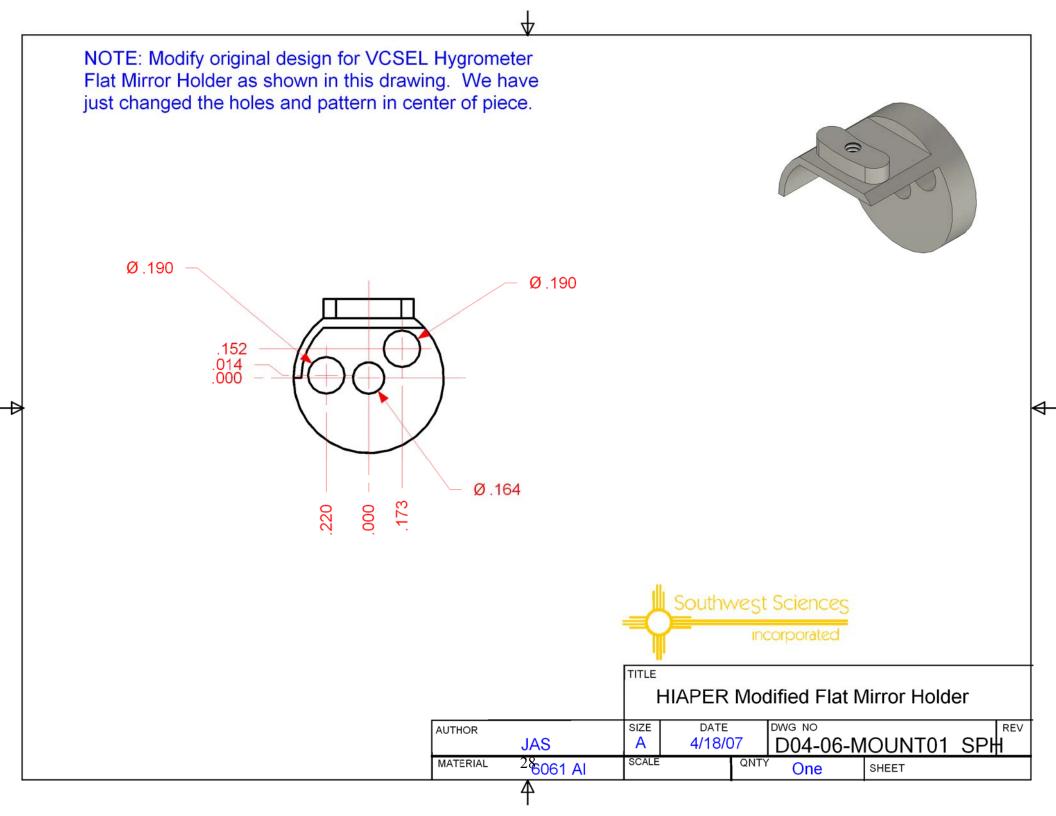


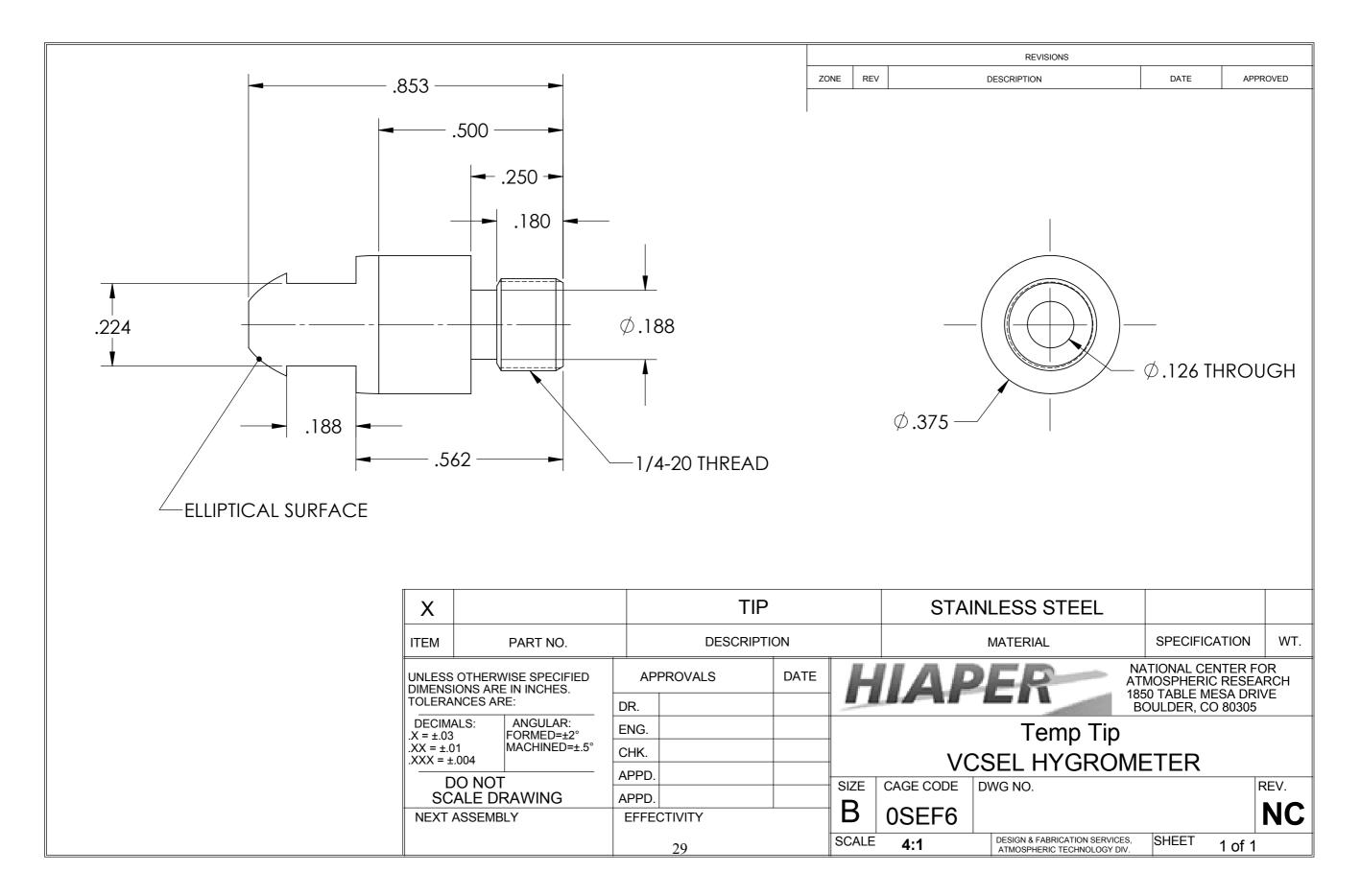
4	3	2 1
		REVISIONS ZONE LTR DESCRIPTION DATE APPROVED Image: Ima
		D
2.486		
		B
	ITE	Image: Part or NO. NOMENCLATURE OR DESCRIPTION MATERIAL/SPECIFICATION ZONE
	DIMENSIONS ARE IN INCHES TOLERANCES	PARTS LIST CONTRACT NO. DRAWN DATE DRAWN DATE DRAWN DATE DRAWN DATE DRAWN
	DECIMALS ANGOLAR C .XX ± .01 ± 30' C .XXX ± .005 C DO NOT SCALE DRAWING	CHECK VCSEL HYGROMETER A
-1 1 1 1-XXXX PROJECT PART NEXT FINAL NEXT ASSY USED ON	FINISH TE	I LATE, INTERACE IECHNICIAN SIZE D A
DASH QTY REQD NO. PER ASSY APPLICATION 4	3	PROJECT SCIENTIST
1		

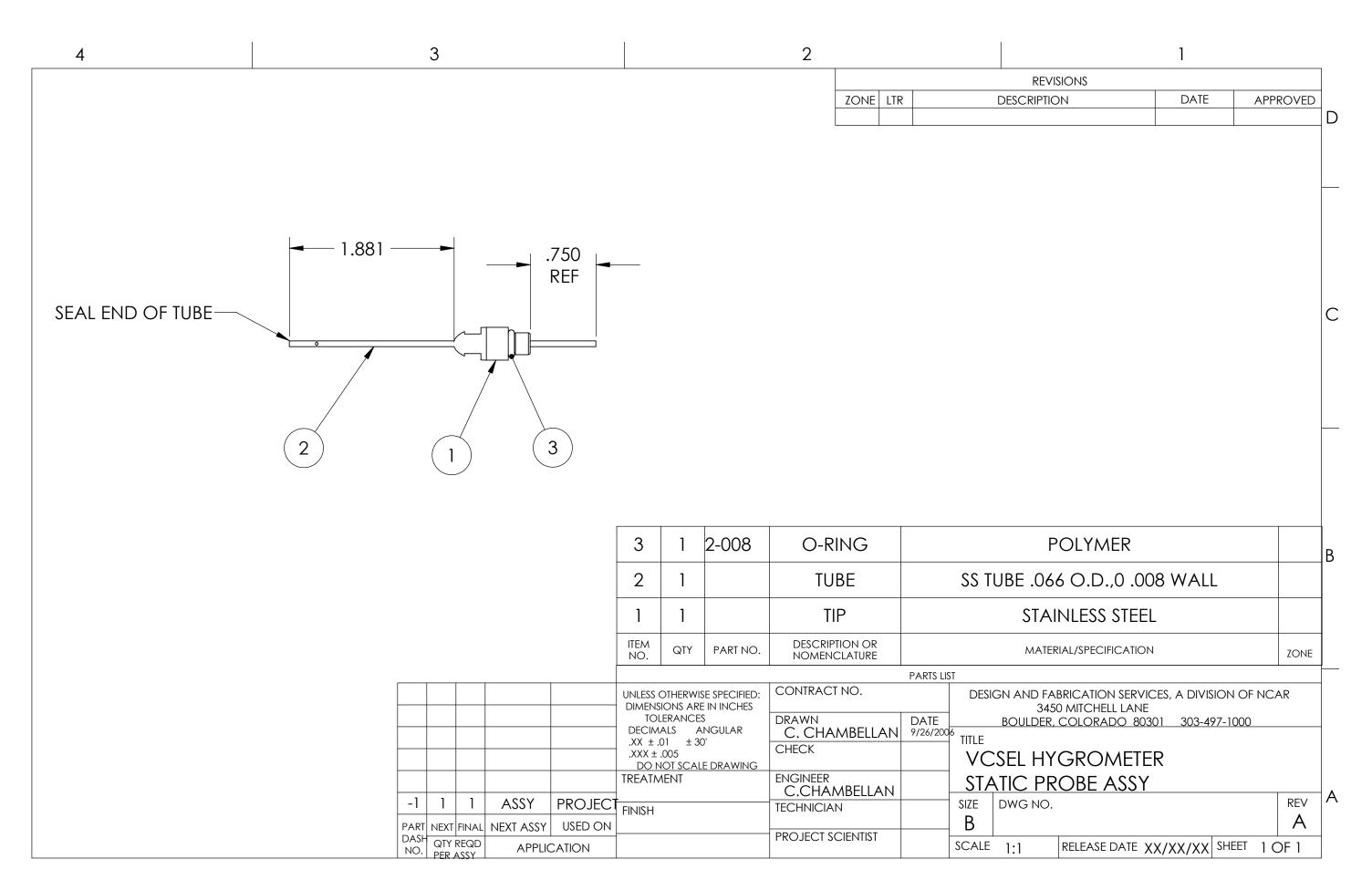



VCSEL HYGROMETER

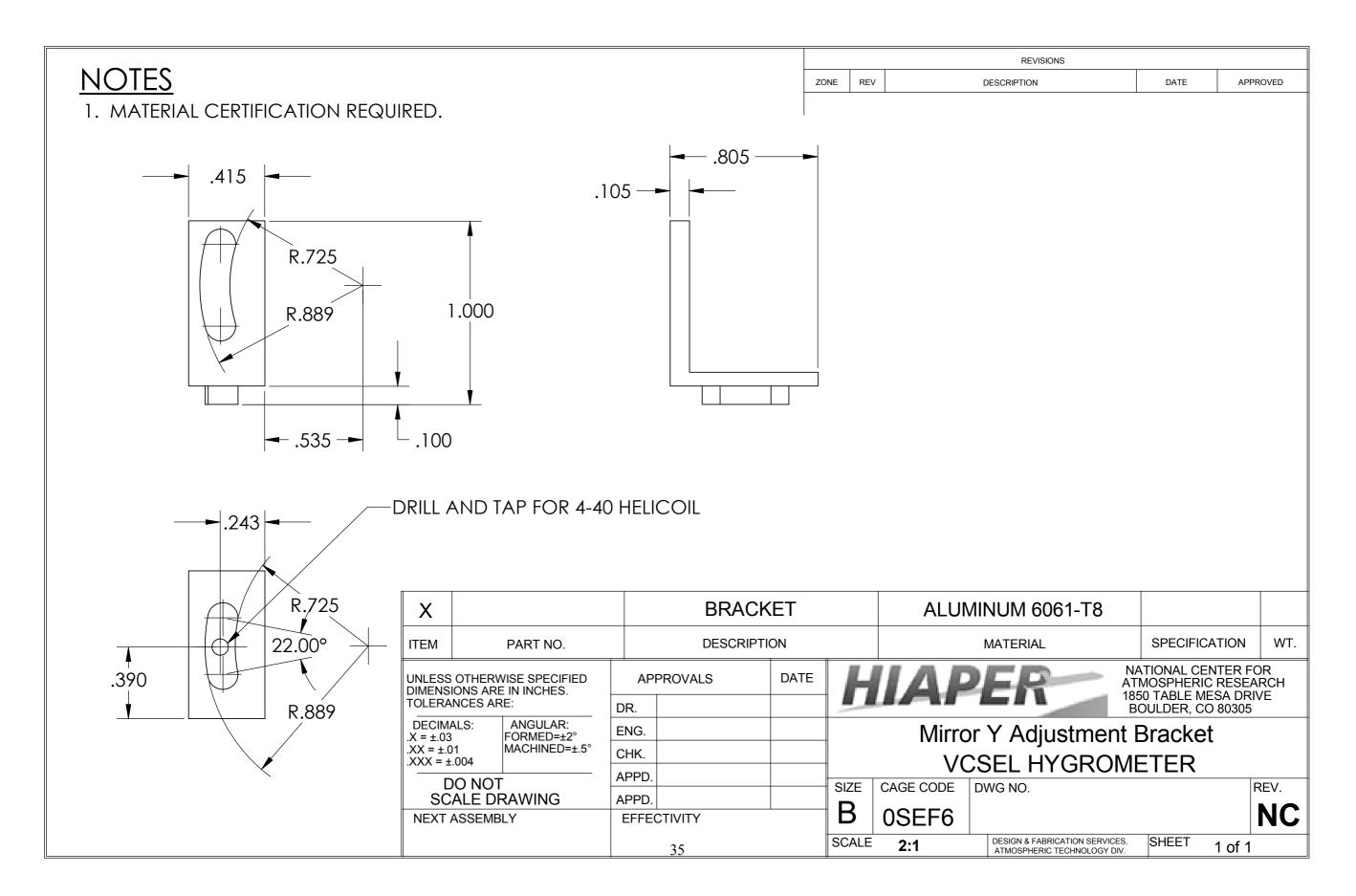

			DIMENSIONS ARE IN INCHES TOLERANCES:	DRAWN	NAME CHAMBELLAN	DATE	DFS A DIVISION OF NCAR			
			FRACTIONAL± ANGULAR: MACH± BEND± TWO PLACE DECIMAL ±	CHECKED ENG APPR.			SPACER			
PROPRIETARY AND CONFIDENTIAL			THREE PLACE DECIMAL ±	MFG APPR.						
THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF <insert company="" here="" name="">. ANY</insert>			MATERIAL ALUMINUM 6061-T6	Q.A. COMMENTS:			_			
REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF <insert company="" here?="" is<="" name="" td=""><td>NEXT ASSY</td><td>USED ON</td><td>FINISH 24</td><td colspan="3">-</td><td colspan="4">SIZE DWG. NO. Elec box spacer</td></insert>	NEXT ASSY	USED ON	FINISH 24	-			SIZE DWG. NO. Elec box spacer			
PROHIBITED.	APPLIC	ATION	do not scale drawing					· · ·		


NOTE: Modify original design for VCSEL Hygrometer Cell, Lower Mirror as shown in this drawing. we have changed holes and positions in center of piece, added TWO #2-56 THD and changed thicknesses.

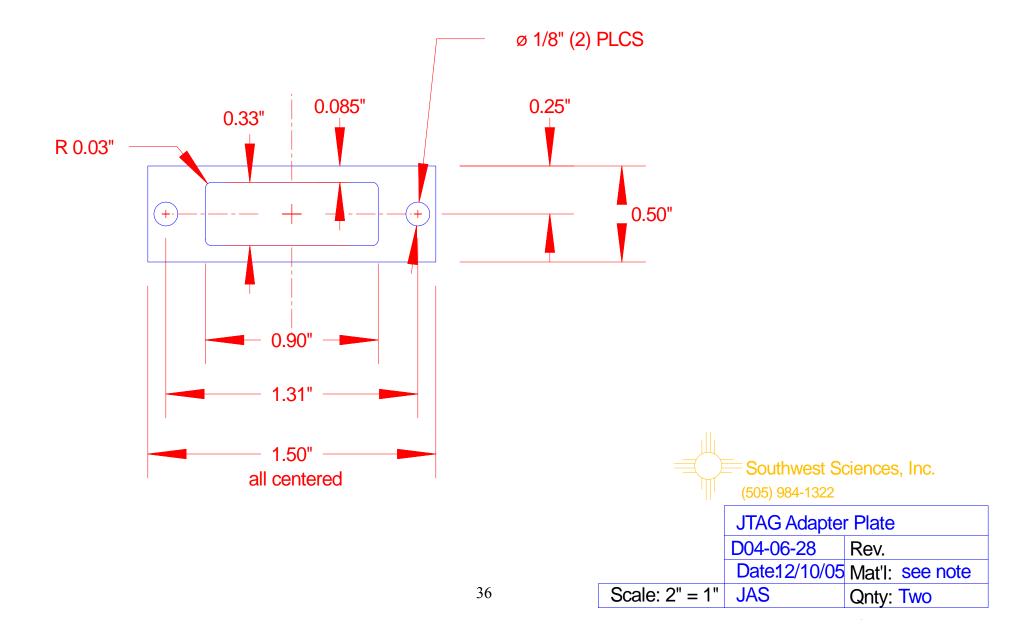

SECTION C-C

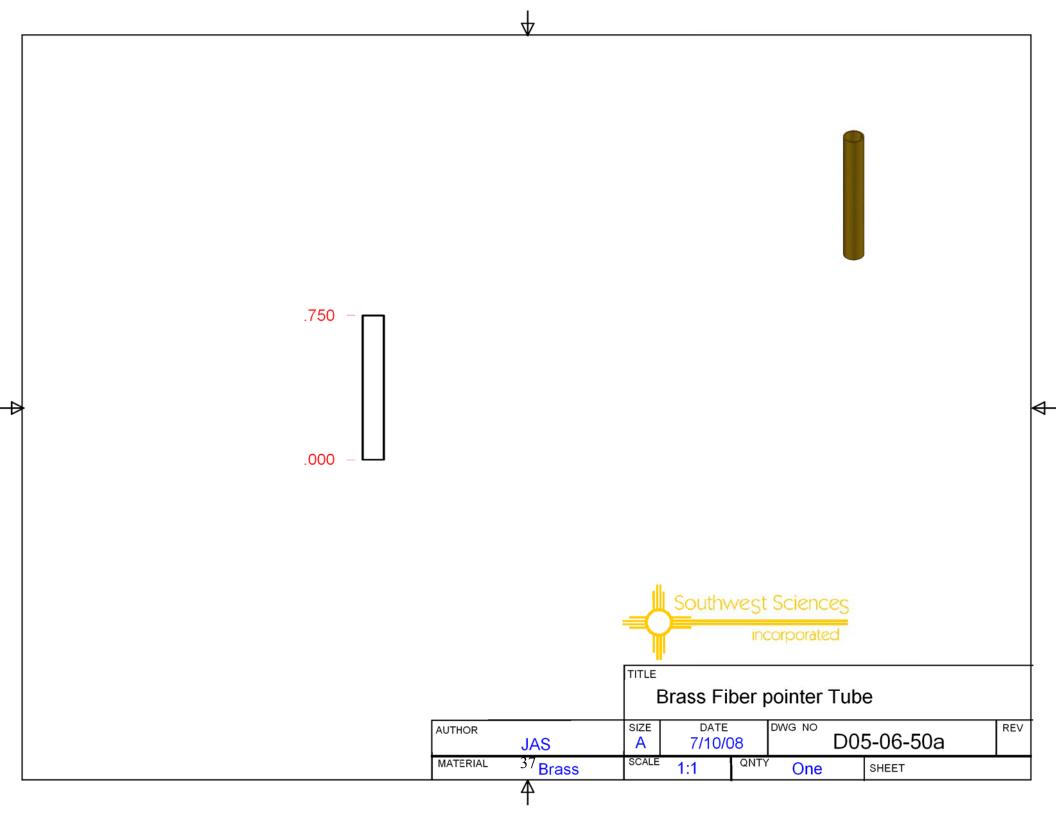


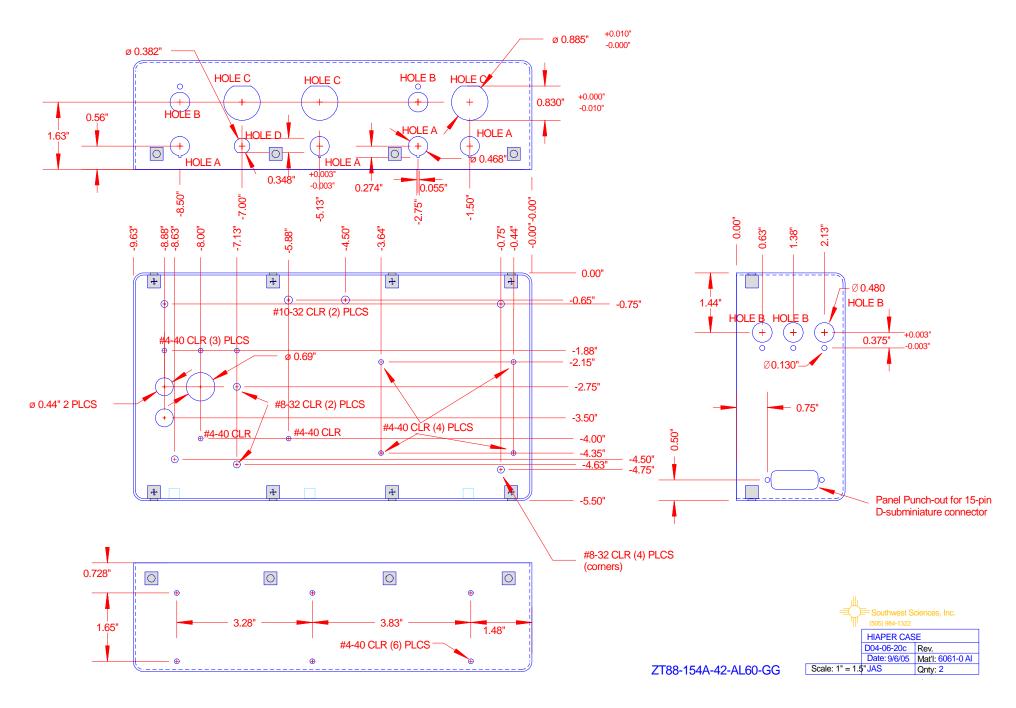
		REVISIONS						
		ZONE	REV	DESCRIPTION	DATE AF	PROVED		
	Ø.060 12 PL			Ø.125 TU .006 WA				
X	TUBE			SS TUBE				
ITEM PART NO.	DESCRIPTION			MATERIAL	SPECIFICATION	WT.		
DIMENSIONS ARE IN INCHES. TOLERANCES ARE: DR.	OVALS D.	ATE	H	IATIONAL CENTER I TMOSPHERIC RESE 350 TABLE MESA DF 30ULDER, CO 80305	ARCH			
$\begin{array}{c c} DECIMALS: \\ X = \pm.03 \\ .XX = \pm.01 \\ .XXX = \pm.004 \end{array} \begin{array}{c} ANGULAR: \\ FORMED=\pm2^{\circ} \\ MACHINED=\pm.5^{\circ} \\ OD NOT \end{array} \begin{array}{c} ENG. \\ CHK. \\ APPD. \end{array}$			Temp probe tube VCSEL HYGROMETER					
SCALE DRAWING APPD. NEXT ASSEMBLY EFFECT	IVITY			CAGE CODE DWG NO.		rev.		
	30	SC	CALE	2:1 DESIGN & FABRICATION SERVICES, ATMOSPHERIC TECHNOLOGY DIV.	SHEET 1 of 1	1		

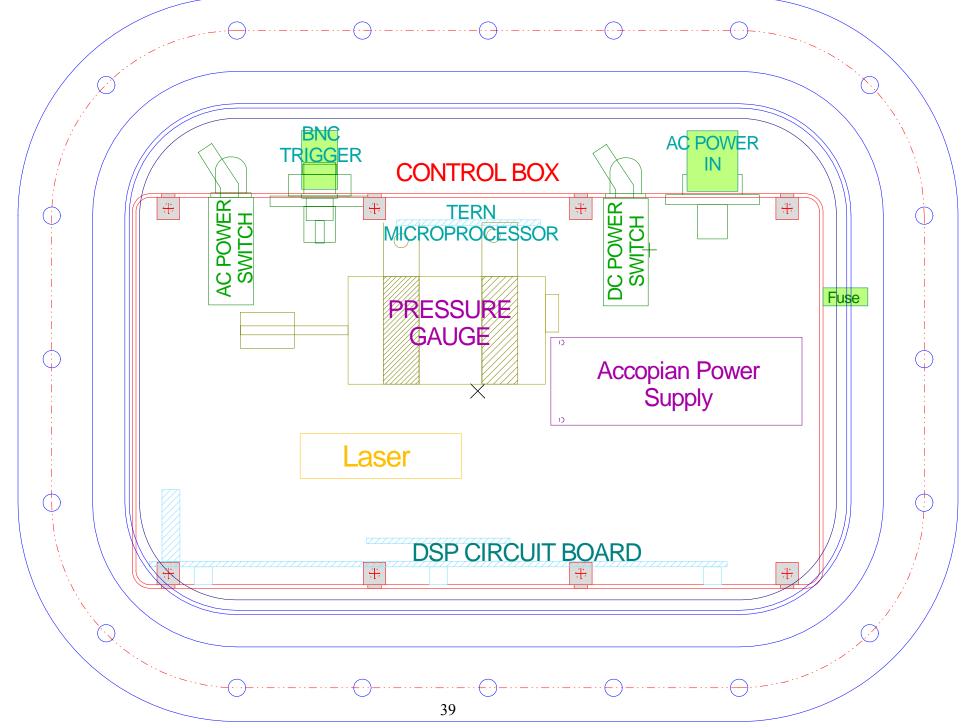

4			3							2			
										ZONE LT	2		REV DESCRIPTI
				6			3)					
	4		, <u> </u>		.500 -		6	1	2-008	O-RING			
	2					-	5	1		EPOXY			
						-	4	1		PROBE TIP			ST
							3	1	BR23KB 4N-CDE	27 THERMISTER	2	GEN	IERAL
							2	1		TUBE			
							1	1	-1	TIP			ST
							ITEM NO.	QTY	PART NO.	DESCRIPTION OR NOMENCLATURE			MA
		-1	1	1	ASSY	PROJEC	DIME T DECI .XX = .XXX DC TREA	NSIONS AF OLERANC IMALS ± .01 ± : ± .005 <u>> NOT SCA</u> IMENT	ANGULAR	CONTRACT NO. DRAWN C. CHAMBELLAN CHECK ENGINEER C.CHAMBELLAN TECHNICIAN		DESIG TITLE VCS THEF SIZE	SN AND F/ 34 BOULDER SEL HY RMIST DWG NO
		PART DASH NO.		REQD	NEXT ASSY APPLIC	USED ON CATION		-		PROJECT SCIENTIST		B SCALE	1:1

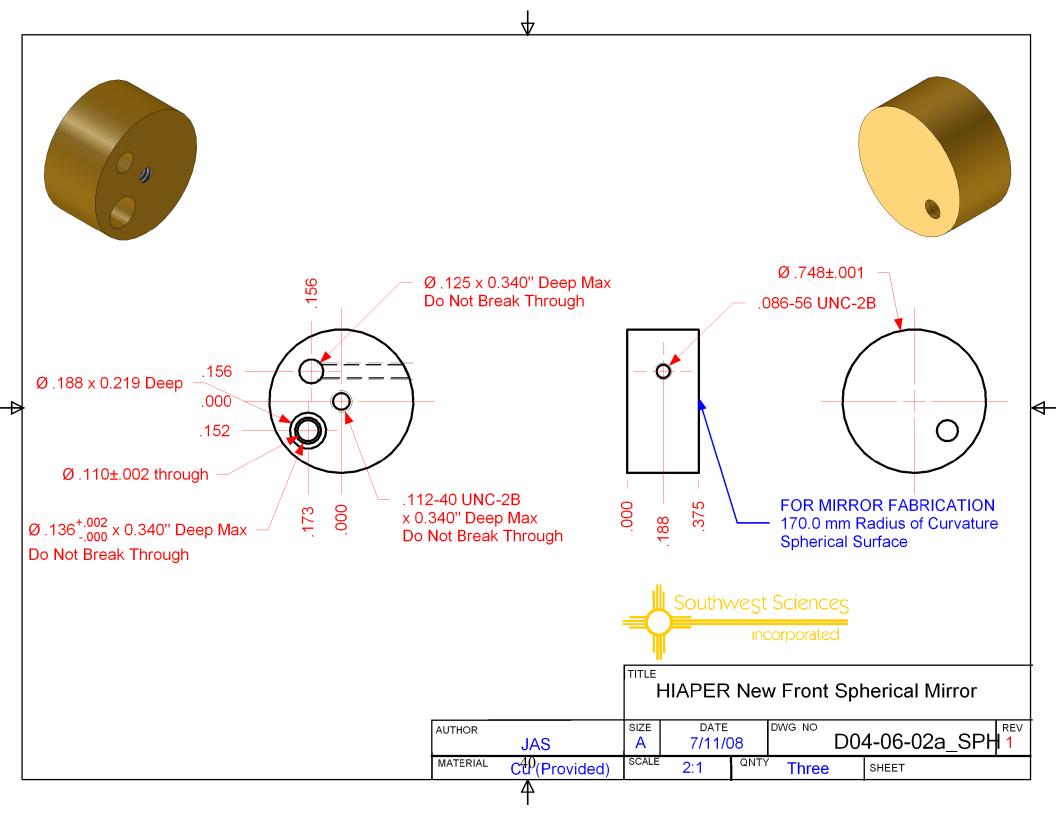
EVI	SIONS				
PTIC	N	DATE	APP	ROVED	
					D
					<u> </u>
					C
					1
	POLYMER				-
	EPOXY				
					-
51A	INLESS STEE	:L			
			П		
	LECTRIC TH	ERIMISTE	ĸ		В
	SS TUBE				
	33 TUDE				
ΤA	INLESS STEE	L			
					-
MAII	ERIAL/SPECIFICATIO	Ν		ZONE	
	BRICATION SERVIC	:es, a divisic	IN OF NCA	٩R	
ER,	COLORADO 8030	01 303-497-	-1000		-
IV		П			
	GROMETE	Х			
	R ASSY			REV	A
Ю.				A	
	RELEASE DATE X		HEET 1 C		
		^, / / / / / / / / `'	I C		1

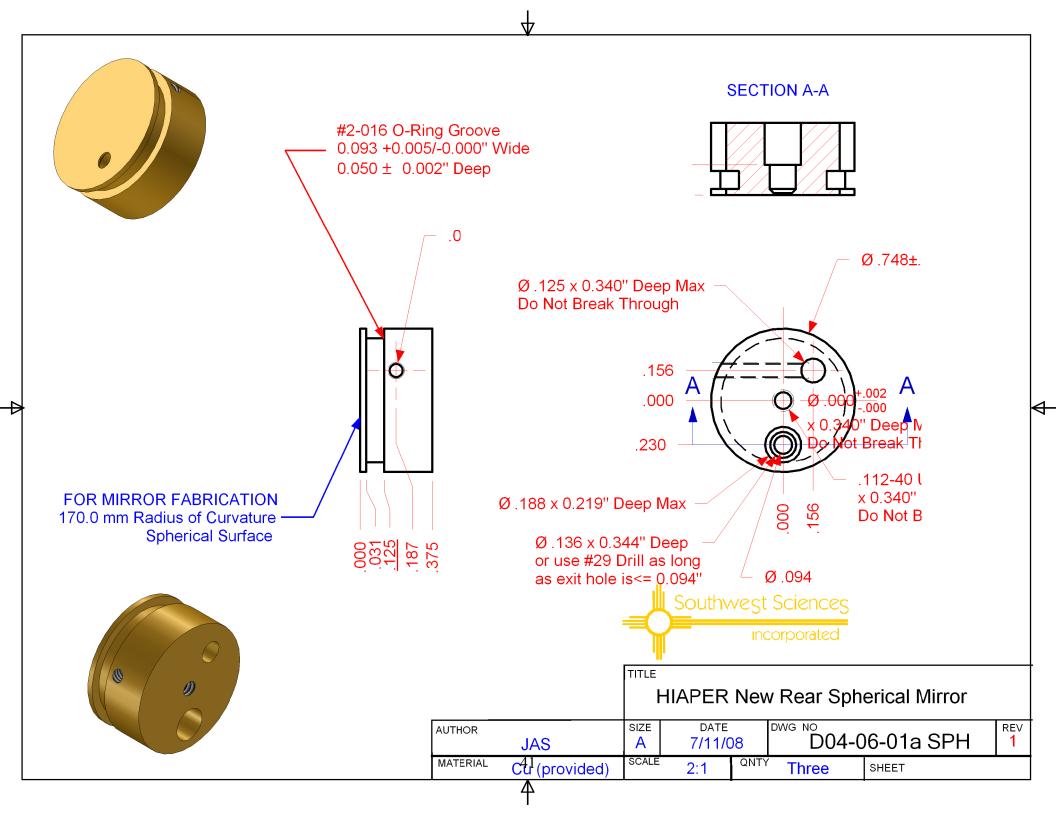

								REVISIONS		
					Z	ONE	REV	DESCRIPTION	DATE APP	PROVED
ELLIPSE		.500 - 250 - .250 - .25	4-20	THREAD				Ø.375		
	X			TIP				STAINLESS STEEL		
	ITEM	PART NO.		DESCRIPTI	ON			MATERIAL	SPECIFICATION	WT.
	DIMENSIO	OTHERWISE SPECIFIED INS ARE IN INCHES. CES ARE:	API DR.	PROVALS	DATE		H		IATIONAL CENTER F TMOSPHERIC RESE/ 350 TABLE MESA DR BOULDER, CO 80305	IVE 🛛
	DECIMAL X = ±.03	FORMED=±2°	ENG.					Static Tip v2		
	.XX = ±.01 .XXX = ±.0	04 MACHINED=±.5°	CHK.					VCSEL HYGROM		
		D NOT LE DRAWING	APPD. APPD.			SIZI		CAGE CODE DWG NO.		REV.
		SSEMBLY		CTIVITY	1	— B		0SEF6		NC
				32		SCA	ALE	2:1 DESIGN & FABRICATION SERVICES, ATMOSPHERIC TECHNOLOGY DIV.	SHEET 1 of 1	




					ZONE	REV		DESCRIPTION	DATE	APPROVED
030 PL	3.500								Ø.066 STOCk	
X			TUBE	Ε		S	S TUBE .	066 O.D.,0 .008	WALL	
ITEM	PART NO.		DESCRIPTI	ION				MATERIAL	SPECIFIC	CATION WT.
DIMENS	OTHERWISE SPECIFIED IONS ARE IN INCHES. INCES ARE:	DR.	PROVALS	DATE		Η	IA	PER	NATIONAL CE ATMOSPHERI 1850 TABLE M BOULDER, C	C RESEARCH ESA DRIVE
DECIM/ .X = ±.03	FORMED=±2°	ENG.						Pitot tub		
$XX = \pm .0$ $XXX = \pm .0$ $XXX = \pm .0$)1 MACHINED=±.5°	CHK.					V	CSEL HYGR		
		APPD.			SIZ	IZE (CAGE CODE	DWG NO.		REV.
H	ALE DRAWING	APPD.	CTIVITY		- E	3	0SEF6			NC
			34		SC	CALE	2:1	DESIGN & FABRICATION SER ATMOSPHERIC TECHNOLOG	RVICES, GY DIV.	1 of 1


Use any nonmagnetic SS plate 0.020" - 0.050" thick





APERTURE PLATE

HIAPER HYGROMETER PARTS INFO

Southwest Sciences, Inc.

Designation	Part	Part Number	MIL SPEC #	Manufacturer	Supplier	Specs
ELECTRICAL	Fdit		MIL OF LO #	manuracturer	Supplier	
ELECTRICAL						
14/4	wire [‡]	1-1 # 077 0245 00 0/05		On a sight		
W1			M22759/11-22-9 LR458	Specialty	All-Cable	22 AWG, red
W2	wire [‡]	lot # 677-9345-08 2/05	M22759/11-22-9 LQ955	Specialty	All-Cable	22 AWG, black
W3	wire [‡]	lot # 12944 3/99	M22759/11-22-9 KL662	Alcatel	All-Cable	22 AWG, green
W4a	wire [‡]	22-TE-1932(2)STJ	M16878/4 BFE-9 677F-12	Thermax	All-Cable [NCAR]	22 AWG, white
W5	wire [‡]	lot # 778846 7/03	M22759/11-22-9 KR913	Thermax	All-Cable	22 AWG, yellow
CAB1	Shielded twisted pair cable [‡]	lot 1050006 8/04	MIL-W-16878/4 tef2202STJ	Thermax	All-Cable	22 AWG
CAB2	coax cable [‡]	S44193	ves	PIC Wire & Cable	PIC Wire & Cable	50 ohm coax
F2	circuit breaker	7274-11-1	MS 22073-1	Klixon (TI)	Flame Enterprises	1 A
F1	circuit breaker	7274-11-2	MS 22073-2	Klixon (TI)	Flame Enterprises	2 A
SW1,SW2	switch	8500K9	MS 24523-22	Eaton	RPA	SPST
0001,0002	Cartridge heater	SU12505024V15W	100 24020-22	Sun Electric Heater	iProcessMart	for mirrors metal, ceramic, #24 gauge insulated with Teflon / Fiberglas,
	Carlinge heater	301230302401300			FIOCESSIVIAIL	rated to 482 F, 12" long
LAMP1	lamp housing w/neon clr	361-8836-0937-552	LH74/1, LC13CN2	Dialight	PEI-Genesis	125V uses T-2 midget flange base neon lamp
	······p························					Has internal 62 k Ω resistor
	lamp housing - LED clear	162-8430-0937-502	MS25256-8	Dialight	Newark 25F1206	
LED2	LED	586-1102-101		Dialight	PEI-Genesis	LED 6 V, green for incandescent replacement
LED1	LED	586-1105-101		Dialight	PEI-Genesis	LED 6 V, blue for incandescent replacement
LAMP1+A6	Neon lamp	521-9047	C7A	Dialight	Newark 05B4378	T-2 midget flange base
J4	BNC bulkhead isolated	31-4890-1	0/7	Amphenol	Newark 90F8467	teflon insulator
J2	Circular connector	01 1 030-1	MS27473T8B98S	ITT/Canon	PEI-Genesis	3 pin (#20 - AC power
P2	Circular connector		MS2747318B988 MS27474T8B98P	ITT/Canon	PEI-Genesis	
	Circular connector		MS2747476B96P MS27473T8B35P	ITT/Canon	PEI-Genesis	3 pin (#20 - AC power 6 pin (#22) - for RS-232 signals
J3 P3					PEI-Genesis	
P3	Circular connector		MS27474T8B35S	ITT/Canon		6 pin (#22) - for RS-232 signals
10 17	Right angle strain relief		M85049/47W8	Sunbank	Newark 91C6908	
J6, J7	9-pin D connector socket	205555-2	M24308/2-1F	Amphenol		9S-pin D for RS-232 connector to aircraft
	9-pin d backshells	82H7823	M85049/48-2-1	ITT/Canon	Newark	9S-pin D backshell
	9-D slide lock			- · ·		
J14	15-pin D connector socket		M24308/2-2F	Cinch	Newark 45F997	15-pin D socket JTAG
J9	AC Plug for 120 VAC, 60 Hz	5266-X		Pass & Seymour	Summit Electric	to instrument power source on aircraft
DP1	4-pin DSP receptacle	770602-4		AMP	Digikey	
DP2	4-pin DSP receptacle	770602-4		AMP	Digikey	
DP3	4-pin DSP receptacle	770602-4		AMP	Digikey	
DP4	4-pin DSP receptacle	770602-4		AMP	Digikey	
DP5	2-pin DSP receptacle	770602-2		AMP	Digikey	
DP6	2-pin DSP receptacle	770602-2		AMP	Digikey	
MP1	10-pin DSP receptacle	770602-0		AMP	Digikey	
MP2	20-pin DSP receptacle	102387-4		AMP	Digikey	
MP6	4-pin DSP receptacle	770602-4		AMP	Digikey	
MP7	2-pin DSP receptacle	770602-2		AMP	Digikey	
	pins for DSP receptacles	770666-1		AMP	Digikey	
	pins for 20-pin connector (MDP2)	87523-6		AMP	Digikey	
J10	6-pin MTA receptacle	770602-6		AMP	Digikey A19494-ND	
P10	6-pin MTA header, friction lock	640456-6		AMP	Digikey A1923-ND	
J11	3-pin laser socket	S8060		Thorlabs	Diginey A 1923-ND	teflon
		00000		nonaus	Digikey H3887-ND	
	10-pin ribbon receptacle, 0.1"	220552	MS25026 149		• •	
	ring terminal #4 for 18-22 AWG	320553	MS25036-148	AMP	Digikey A27227-ND	
	ring terminal #6 for 18-22 AWG	51863	MS25036-102	AMP	Digikey A27233-ND	
	ring terminal #8 for 18-22 AWG	320551	MS25036-149	AMP	Digikey A27237-ND	
	crimper	59824-1		AMP	Genuine Aircraft Hardware	
	Pitot thermistor	COTS		Vishay Dale or Therm	iometrics	10 kohm or 50 kohm
	Baratron	722A13TCD3FA		MKS Instruments		14.7 psia, 0.25% of reading
	DSP circuit board - mother	S04-06-01		Compudraft		6V, 150 mA
	DSP circuit board - daughter	S04-06-02		Compudraft		
	Connector circuit board	S04-06-03a				
	Microprocessor	FLASHCORE-B		Tern		low power, A/D options
	Power supply	6EB-1000		Accopian		6V, 1A linear supply
P12	Aperture plate connector, 6 pin	PT07SE10-6P		Amphenol	PEI-Genesis	local substitute for PT02A10-6P on aperture plate
J12	Aperture connector, 6 socket	PT06A10-6S(SR)		Amphenol	Newark	
R1	resistor	x- /		42		100 kΩ, ¼ W
	Silicone heater	35765K165			McMaster-Carr	120 VAC, 15W, 1"x3" w/adhesive
				Page 1 of 9		

HIAPER HYGROMETER PARTS INFO

Southwest Sciences, Inc.

Designation	Part	Part Number	MIL SPEC #	Manufacturer	Supplier	Specs
MECHANICAL			-			
	enclosure	ZT88-154A-42-AL60-GG		Zero Cases		6061-0 AI
	enclosure cover	AT88-154A-COG-1-5-AL6	0-GG	Zero Cases		6061-0 AI
	enclosure gasket (optional)	ZFP5-511-1	1	Zero Cases		neoprene
	Aperture plate & fins	Custom (NCAR)		Jack Fox (NCAR)		Aluminum
	fiber washer	96100A125		. ,	McMaster-Carr	#8"ID x 3/8"OD x 1/32" , black
	fiber washer				Digikey 3116K-ND	#4 for DSP mounting, .25" x 1/32"
	O-rings	fluorosilicone, 2-016		Parker	McMaster-Carr	fluorosilicone
	spacer 3/16" x 1/4", #4	92320A691			McMaster-Carr	18-8 SS
	standoff, M-F, #4-40 x 1/4"	91075A101			McMaster-Carr	18-8 SS
	spacer 1/2" x 3/8" od, #8-32	92320A525			McMaster-Carr	18-8 SS
	clamp	MS21919-WDG24	MS21919		Genuine Aircraft Hardware	Aluminum with chloroprene cushion
	Pan head screw, #8-32 x 7/8"	91400A198	MS51957-48		McMaster-Carr	box mounting
	Pan head screw, #4-40 x 1/4"		MS51957-13		Genuine Aircraft Hardware	
	Pan head screw, #4-40 x 3/8"		MS51957-15		Genuine Aircraft Hardware	
	Pan head screw, #4-40 x 5/8"		MS51957-18		Genuine Aircraft Hardware	
	Pan head screw, #8-32 x 3/8"		MS51957-43		Genuine Aircraft Hardware	
	Set screw, nylon tipped, 18-8 SS				McMaster-Carr	misc.
	Allen head cap screw, #2-56 x 3/4"	, 18-8 SS			McMaster-Carr	
	grommet silicone	1061T17	MS35489-13		McMaster-Carr	.438" hole x 1/16" panel
	grommet silicone	1061T13	MS35489-6		McMaster-Carr	.250" hole x 1/16" panel
	tygon tubing, P sensor line	5466K11			McMaster-Carr	1/16 ID, 3/16 OD, smooth bore, high purity
	pinch clamp	52545K13			McMaster-Carr	7/32" dia.
	cable tie plate, #4	7566K12			McMaster-Carr	
	locknuts #4		MS21044(C)-04		Genuine Aircraft Hardware	
	locknuts #8		MS21044(C)-08		Genuine Aircraft Hardware	
	#2-56 lock washer internal		MS35333-35		Genuine Aircraft Hardware	
	#4-40 lock washer internal		MS35333-36		Genuine Aircraft Hardware	
	#1/4-20 lock washer internal		MS35333-40		Genuine Aircraft Hardware	
	#8-32 lock washer internal		MS35333-38		Genuine Aircraft Hardware	
	blind VCR gland, 1/4"	SS-4-VCR-3-BL			Albuquerque Valve	
		SS-4-VCR-454NC			Albuquerque Valve	
	Ag-plated Cu gasket, 1/4"	CU-4-VCR-2			Albuquerque Valve	
OPTICAL						
		custom (Spawr)				Copper, gold
		MFM-100		Newport		steel
		MM-050		Newport		Al
	Fiberized Diode laser [‡]	VL-1854-1-SP-P5		Vertilas		VCSEL fiberized w/TEC S/N: 105834-4
	Visible tracer laser	V3-780-TO-DA		ThorLabs		780 nm VCSEL, 5.4 mm can
	Visible tracer laser	HL6312G		ThorLabs		Hitachi 635 nm, 5 mW, 9mm can
	Fiber collimator	COTS		Oz Optics		LPC-06-1850-9/125-S-0.5-2.13GR-60-3A-0.25-0.3
	Fiber connector [‡]	SNA-122450		Metrotek		SS
	Photodide	J23-18I-R01M-1.9		Judson Technology		extended (1.9 um), 1 mm, TO-18
	Interference filter	BP=1870-105		Spectrogon		1 mm high x 3 mm dia.
	GRIN lens for detector			NSG/QTF coating		, · ·
·	•	•	•	y	•	•

NOTES

[‡] All individual wires, fiber optics, and cables fire tested (Form 81100-3) by Skandia and/or use already-approved materials as listed by NCAR.

<u>Limited lifetime parts</u> Herriot cell mirrors - Spawr Industries

Recommended spare parts list Fiberized 1854 VCSEL - VL-1854-1-SP-P5, Vertilas AG

2.2 micron photodiode - J23-18I-R01M-2.2, Judson Technology

1870 bandpass filter - BP-1870-105 NM, Spectrogon

grin lens - SLW-3.0-0.25-NC-1.56, 1854 nm AR-V coating, NSG America

Fiberized grin lens with feedthrough -VAC-01-T-SMJ-1A3A-1850-9/125-1-0.5,0.3+LPC-06-1850-9/125-S-0.5-2.13GR-60-3A-1-0.9-SP, Oz Optics

O-rings

2-006 (0.11 ID x 0.07) for top plate on fin
2-008 (0.18 ID x 0.07) for probes
052 for top plate on fin
3/32" O-ring stock, splice kit, and O-ring grease for large rings

Screws

6-32, 3/4" L, 100 deg flat head phillips, 300 series SS, for top plate on fin (MS24693-S30)
10-32, 5/8" L, socket head, for feedthrough plate (NAS1351-3-10P, MS16998-28)
AN3-5A for pan to fin
8-32, 7/8" L, socket head for electrical box to pan

Temperature probe - Jack Fox

Pressure probe - Jack Fox

ATTENTION OBSERVE PRECAUTIONS ELECTROSTATIC SENSITIVE DEVICES

FINAL TEST	DATA
Serial No.	105834-4
Туре	VL-1854-1-SP-P5

Diode No. NZTQ-XLOA-XHSU-S

Electrical / Optical Characteristics Serial No. 105834-4

Product State: Engineering Sample

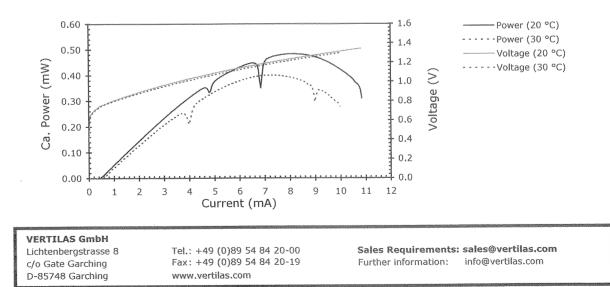
Page 114 Date 2007-10-12

Description

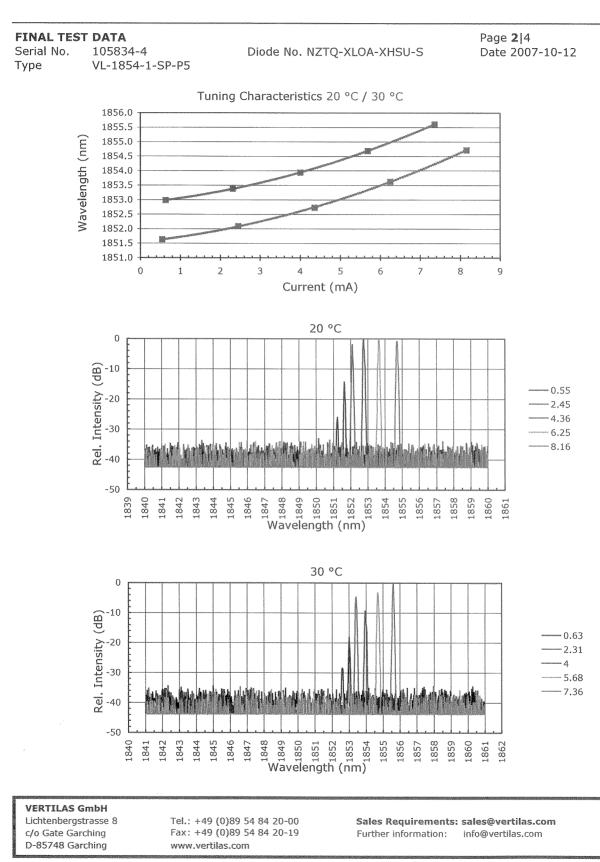
The VL single-mode series diodes are VCSELs for customer specified emission wavelengths. The vertical cavity structure is employed to obtain excellent threshold and operating current and tuning performance.

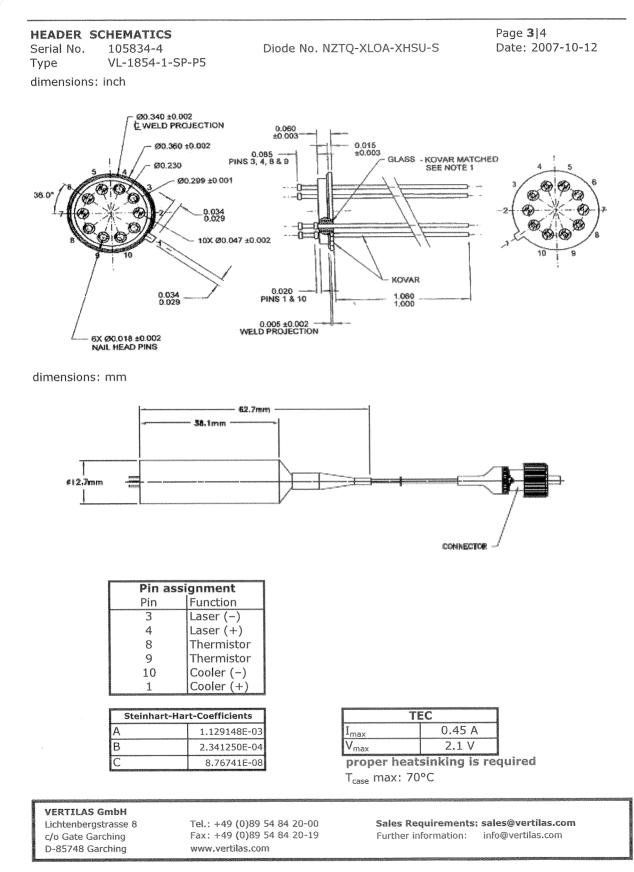
The range of operation is from -20°C to +70°C (T_{case}) and +15°C to +35°C (T_{laser}) .

Applications


- Tunable Diode Laser Absorption Spectroscopy
- · Fiberoptical Light Source

Features


- · Wide and fast tuning performance for insitu measurements in high pressure environments
- Customer specific packaging options
- (TO39, TO46 and others)
- · Individual laser data sheets available


CW Current	Recommen	ded Range	Maximun	n Ratings		CAUTION
	0,5 mA -	7.0 mA	8.5	mA		INVISIBLE LASER RADIATION
,						AVOID EXPOSURE TO BEAM
	Threshold	d Current	Max. Out	out Power		(CLASS 3B LASER PRODUCT)
20 °C	0.37	mA	ca. 0.4	18 mW		MAX 0.5 mW
30 °C	0.42	0.42 mA		40 mW		1853 nm
I	1					Complete with IEC 00825 119553 A1 15571 A2 2001 EN 09825
Ild (20°C)	0.55 mA	2.45 mA	4.36 mA	6.25 mA	8.16 mA	
Wavelength	1851.63 nm	1852.09 nm	1852.73 nm	1853.63 nm	1854.71 nm	
Ild (30°C)	0.63 mA	2.31 mA	4.00 mA	5.68 mA	7.36 mA	
Wavelength	1852.99 nm	1853.39 nm	1853.95 nm	1854.69 nm	1855.61 nm	

Page **4**|4 Date: 2007-10-12

General notes and recommendations

>This product is a class 3B laser product and emits invisible laser radiation. Do not expose eyes to this laser beam, as it may be harmful to the eye.

>Do not operate or store this product beyond the specified operating or storage conditions. Doing so may damage the product and VERTILAS does not assume any responsibility or warranty in this case.

>Any product that is supplied in a non-hermetically sealed package is subject to limited warranty. A non-hermetically sealed VCSEL is potentially exposed to hazardous conditions, such as moisture, gases, physical damage, in the customer application, that may damage the product or alter its performance. VERTILAS does not assume responsibility in this case.

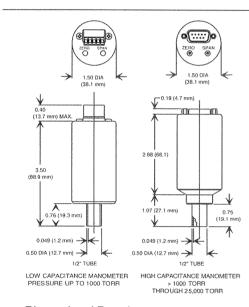
➢Handle and operate this product with care. VCSEL products are sensitive, and can be easily damaged, e.g. by electro-static discharge, supply power peaks, signal peaks, overload and other operating or storage conditions. Failing to prevent these conditions may damage the product and VERTILAS does not assume any responsibility or warranty in this case.

>This specification is subject to change without prior notification. The information is believed to be correct and accurate at the time of printing. However, VERTILAS does not take responsibility for ommissions or inaccuracies.

>VERTILAS general terms and conditions apply. They can be viewed on the VERTILAS website at www.vertilas.com or we can send them on request.

VERTILAS GmbH Lichtenbergstrasse 8 c/o Gate Garching D-85748 Garching

Tel.: +49 (0)89 54 84 20-00 Fax: +49 (0)89 54 84 20-19 www.vertilas.com


Sales Requirements: sales@vertilas.com Further information: info@vertilas.com

Specifications and Ordering Information

Configuration Full Scale Ranges Accuracy (including non-linearity, hysteresis, and non-repeatability) Response Time Temperature Coefficients Zero Span Ambient Operating Temperature Overpressure Limit Burst Pressure Materials Exposed to Gases Power Input

Output

Electromagnetic Compatibility Electrical Connectors Fittings Standard Optional

Dimensional Drawing -

Note: Unless otherwise specified, dimensions are nominal values in inches (mm referenced).

722A - 6/05 © 2005 MKS Instruments, Inc. All rights reserved.

Absolute, single-ended

1 Torr through 25,000 Torr (mmHg) (0.02 psia through 500 psia) 0.5% of Reading

< 20 msec

0.008% of F.S./°C (10 Torr through 25,000 Torr); 0.020% of F.S. (1 and 2 Torr) 0.04% of Rdg./°C 0° to 50°C (32° to 122°F), 15° to 40°C (59° to 104°F) (1 and 2 Torr only) 45 psia or 2x F.S., whichever is greater 10x F.S. or 100 psi, whichever is greater Inconel® (Optional Fittings: 316SS)

0 to 10 Volt output, +13 VDC to +32 VDC @ 10 mA max. (For drop-in replacements of 122A and B which have a ±15 VDC input, use Input/Output Ordering Code 2. See below.) 0 to 5 Volt output, +13 VDC to +32 VDC @ 10 mA max. 0 to 10 VDC into > 10K ohms load 0 to 5 VDC into > 10K ohms load Fully CE Compliant to EMC Directive 89/336/EEC¹ 9-pin Type "D", 15-pin Type "D" on 4.70" (118mm) ±0.5" (12.7mm) cable, 5-pin terminal strip

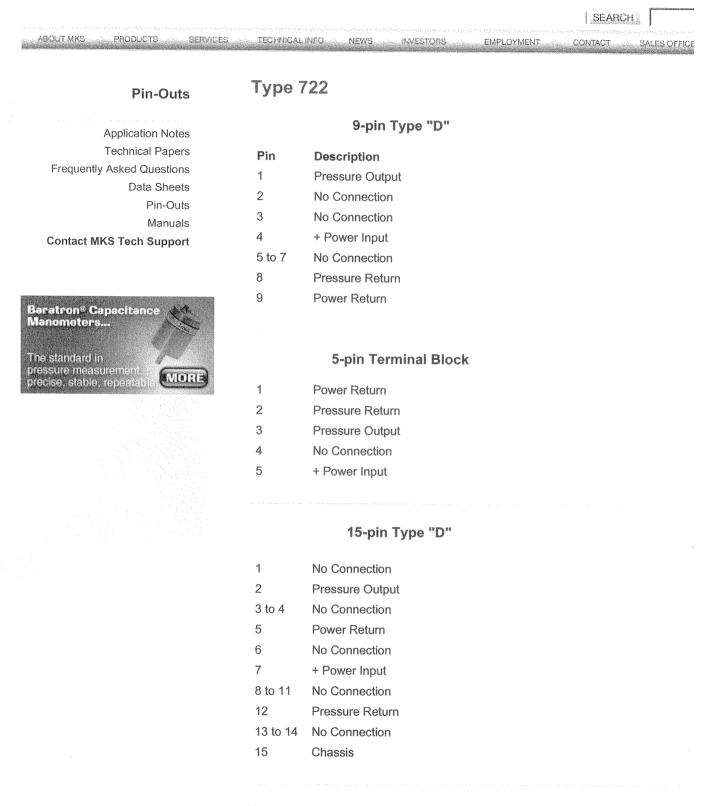
1/2" tube

1/4" VCR® female, 8 VCR female, NW 16 KF², mini-CF

For CE Compliance, an overall metal braided shielded cable, properly grounded at both ends, is required.
 NW 16 KF fittings cannot be used on units with a pressure range of 10,000 mmHg and higher. For units with a pressure range of 5,000 mmHg, an HPS Overpressure ring must be used.

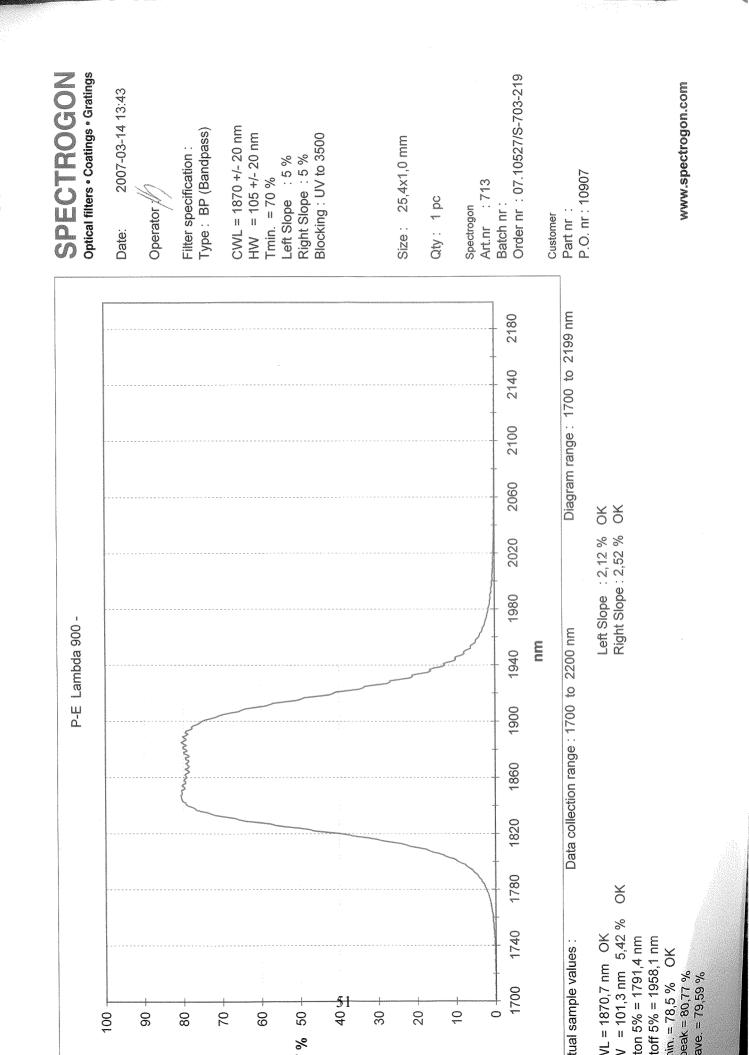
Ordering Code Example: 722A12TCE2FJ

Type 722A	Code	Configuration
Туре 722А	722A	722A
Pressure Range Full Scale (mmHg)		
1	01T	
2	02T	
10	11T	
20	21T	
100	12T	12T
500	52T	
1,000	13T	
5,000	53T	
10,000 (must be ordered with a fitting)	14T	
25,000 (must be ordered with a fitting)	RCT	: : : : : : : : : : : : : : : : : : :
Fittings		
1/4" VCR VC Female	CD	
1/2" Tube	BA	
8 VCR female	CE	CE
Mini-CF, rotable	HA	
NW 16 KF	GA	
Input/Output		
+13 to +32 VDC/0-10 VDC	2	2
+13 to +32 VDC/0-5 VDC	3	
Accuracy		
0.5% of Reading	F	standina Estator
Connectors		
9-pin Type "D"	A	· 法保证书 经未经济 · · · · · · · · · · · · · · · · · · ·
5-pin terminal strip	J	
15-pin Type "D" on 6-inch cable	K	


MKS Global Headquarters

90 Industrial Way Wilmington, MA 01887-4610 Tel: 978.284.4000 Tel: 800.227.8766 (in U.S.A.) Web: www.mksinst.com

Specifications are subject to change without notice. Baratron® is a registered trademark of MKS Instruments, Inc., Wilmington, MA. VCR® is a registered trademark of Swagelok® Co., Solon OH. Inconel® is a registered trademark of Inco Alloys International, Inc., Huntington, WV.


49

MKS Instruments Type 722 Pin-out Information

Note:

This information is subject to change without notice.

Client: SOUTHWEST SCIENCES INC 1570 PACHECO STREET SUITE E-11 SANTA FE NM 87505

Aircraft:

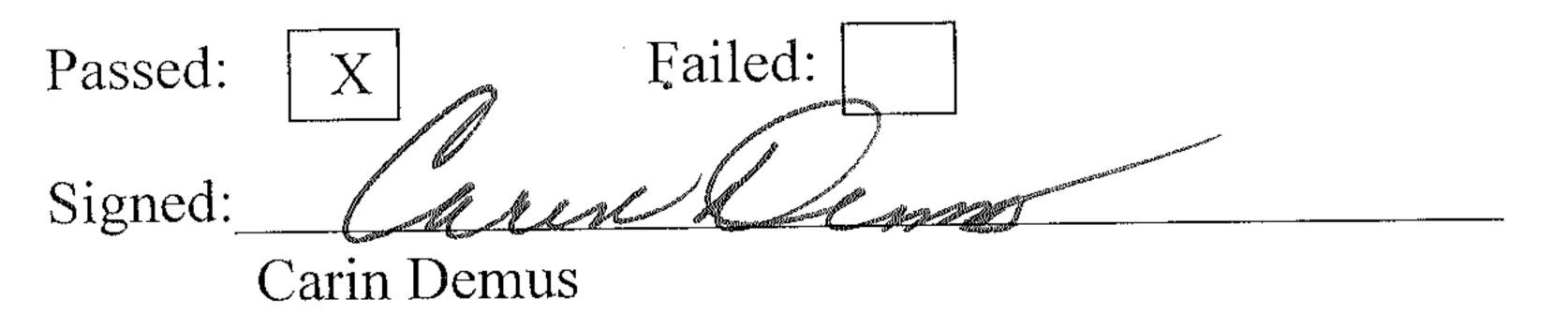
5000 N. Highway 251 ■ Davis Junction, IL 61020 815.393.4600 🖩 800.945.7135 www.SkandiaInc.com

> WO #: 128461-05 08/04/05 Date: Test Plan #: PO #: 10251

S/N:

677

60 Degree Bunsen Burner Test For Wire


FAR 25.869(a)(4) Appendix F Part I (a)(3) Amendment 25-72

9:00am 08/04/05 Time Out: 9:00AM Conditioning Room: Time In: 08/03/05 Specimen: ALCATEL/ALLCABLE: WIRE, TELFON COATED, M22759/11/22-5, GREEN, 22AWG, LOT #12944, REF #KL662

Flame Application (seconds)	Flame Time (seconds)	Burn Length (inches)	Drip Flame Time (Seconds)
30	0.0	1.3	0 No Drips
30	0.0	1.2	0 No Drips
30	0.0	0.9	0 No Drips
Average:	0.0	1.1	0 No Drips

Comments:

60 Degree Bunsen Burner Test (30 sec.): Average Flame Time may not exceed 30 sec. Average Burn Length may not exceed 3". Average Drip Flame Time may not exceed 3 sec. after falling.

52

•

.

.

•

.

.

Client: SOUTHWEST SCIENCES INC 1570 PACHECO STREET SUITE E-11 SANTA FE NM 87505

Aircraft:

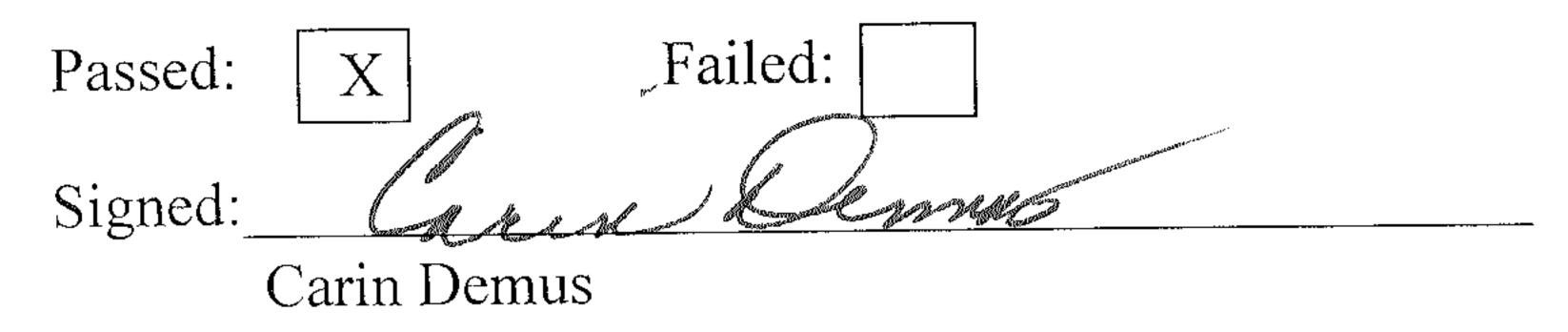
5000 N. Highway 251 M Davis Junction, IL 61020 815.393.4600 🗰 800.945.7135 www.SkandiaInc.com

> WO #: 128461-05 08/04/05 Date: Test Plan #: PO #: 10251

S/N:

677

60 Degree Bunsen Burner Test For Wire


FAR 25.869(a)(4) Appendix F Part I (a)(3) Amendment 25-72

9:02AM Time Out: 08/04/05 Conditioning Room: Time In: 08/03/05 9:00AM Specimen: THERMAX/ALLCABLE: WIRE, TWISTED PAIR SHIELDED TEFLON, TEF2202STJ, WHITE, 22AWG, LOT #1050006, REF #RL0427695

Flame Application (seconds)	Flame Time (seconds)	Burn Length (inches)	Drip Flame Time (Seconds)
30	0.0	1.3	0 No Drips
30	0.0	1.2	0 No Drips
30	0.0	1.2	0 No Drips
Average:	0.0	1.2	0 No Drips

Comments:

60 Degree Bunsen Burner Test (30 sec.): Average Flame Time may not exceed 30 sec. Average Burn Length may not exceed 3". Average Drip Flame Time may not exceed 3 sec. after falling.

.

Client: SOUTHWEST SCIENCES INC **1570 PACHECO STREET** SUITE E-11 SANTA FE NM 87505 Aircraft:

GULFSTREAM GV

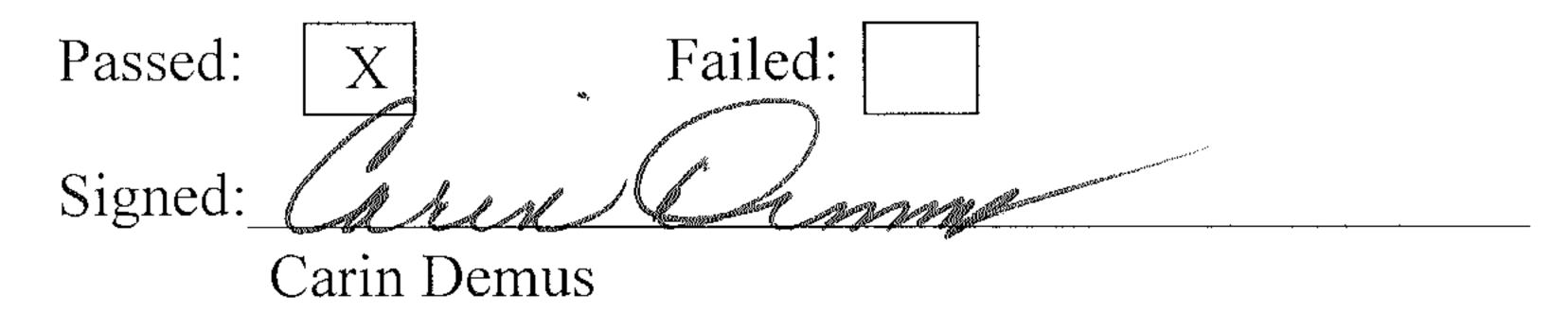
5000 N. Highway 251 M Davis Junction, IL 61020 815.393.4600 🖩 800.945.7135 www.SkandiaInc.com

> WO #: 128461-05 Date: 08/04/05 Test Plan #: PO #: 10251

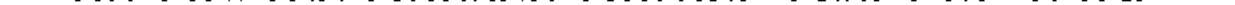
S/N:

677

60 Degree Bunsen Burner Test For Wire


FAR 25.869(a)(4) Appendix F Part I (a)(3) Amendment 25-72

Conditioning Room: Time In: 08/03/05 9:00AM Time Out: 08/04/05 9:10AM Specimen: SPECIALTY/ALLCABLE: WIRE, TEFLON COATED, M22759/11/22-0, BLACK 22AWG, LOT #677-9345-08, REF #LQ955


Flame Application (seconds)	Flame Time (seconds)	Burn Length (inches)	Drip Flame Time (Seconds)
30	0.0	1.0	0 No Drips
30	0.0	1.5	0 No Drips
30	0.0	1.3	0 No Drips
Average:	0.0	1.3	0 No Drips

Comments:

60 Degree Bunsen Burner Test (30 sec.): Average Flame Time may not exceed 30 sec. Average Burn Length may not exceed 3". Average Drip Flame Time may not exceed 3 sec. after falling.

Client: SOUTHWEST SCIENCES INC **1570 PACHECO STREET** SUITE E-11 SANTA FE NM 87505 Aircraft:

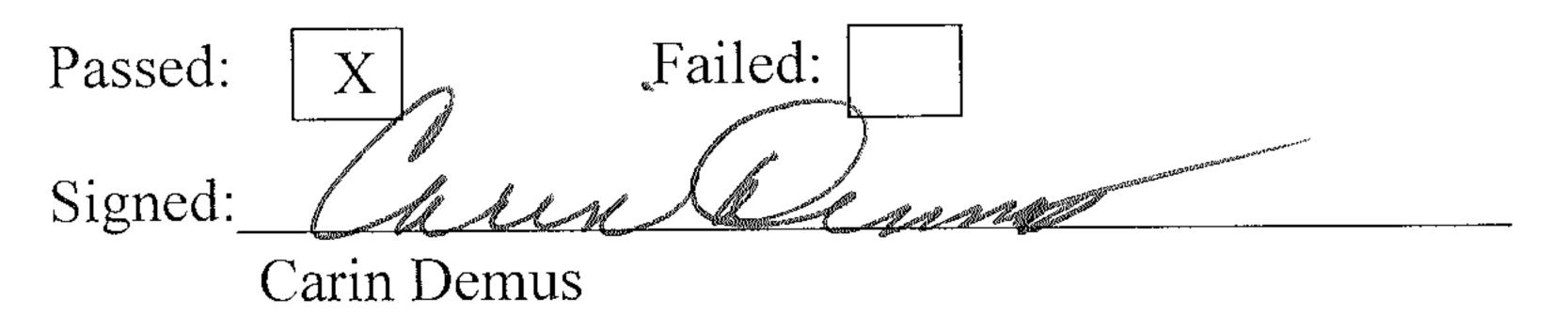
GULFSTREAM GV

5000 N. Highway 251 M Davis Junction, IL 61020 815.393.4600 🗰 800.945.7135 www.SkandiaInc.com

> WO #: 128461-05 08/04/05 Date: Test Plan #: PO #: 10251

S/N: 677

60 Degree Bunsen Burner Test For Wire

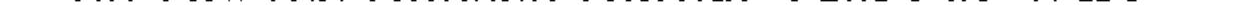

FAR 25.869(a)(4) Appendix F Part I (a)(3) Amendment 25-72

Time Out: 08/04/05 9:12AM 9:00AM Conditioning Room: Time In: 08/03/05 Specimen: TERMAX/ALLCABLE: WIRE, TEFLON COATED, M22759/11/22-4, YELLOW, 22AWG, D/L 778846, REF #KR913

Flame Application (seconds)	Flame Time (seconds)	Burn Length (inches)	Drip Flame Time (Seconds)
30	0.0	1.6	0 No Drips
30	0.0	1.2	0 No Drips
30	0.0	1.1	0 No Drips
Average:	0.0	1.3	0 No Drips

Comments:

60 Degree Bunsen Burner Test (30 sec.): Average Flame Time may not exceed 30 sec. Average Burn Length may not exceed 3". Average Drip Flame Time may not exceed 3 sec. after falling.


.

.

55

.

.

Client: SOUTHWEST SCIENCES INC 1570 PACHECO STREET SUITE E-11 SANTA FE NM 87505

Aircraft:

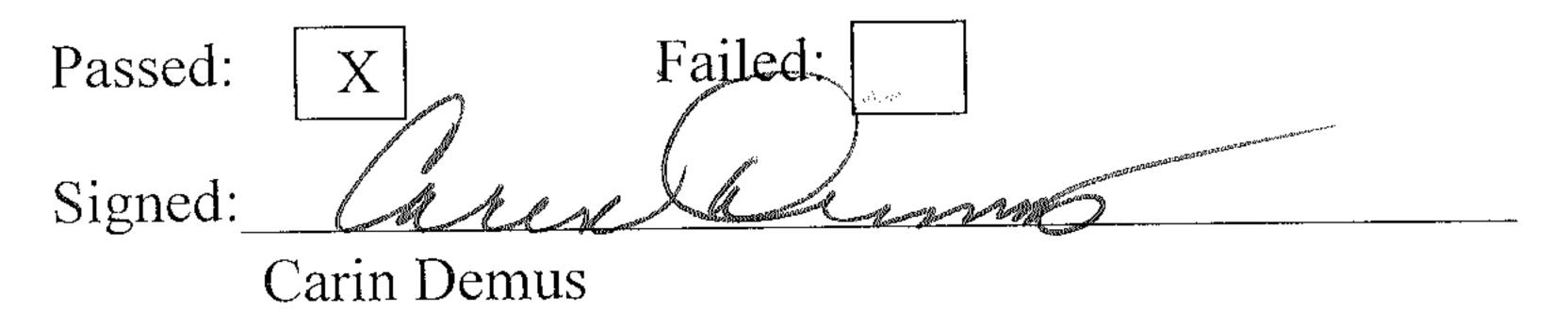
5000 N. Highway 251 ■ Davis Junction, IL 61020 815.393.4600 ■ 800.945.7135 www.SkandiaInc.com

WO #: 128461-05
Date: 08/04/05
Test Plan #: 10251

S/N:

677

60 Degree Bunsen Burner Test For Wire


FAR 25.869(a)(4) Appendix F Part I (a)(3) Amendment 25-72

Conditioning Room: Time In: 08/03/05 9:00AM Time Out: 08/04/05 9:15AM Specimen: SPECIALTY/ALLCABLE: WIRE, TEFLON COATED, M22759/11/22-2, RED, 22AWG, LOT #677-9345-09, REF #LR458

Flame Application (seconds)	Flame Time (seconds)	Burn Length (inches)	Drip Flame Time (Seconds)
30	0.0	1.3	0 No Drips
30	0.0	1.4	0 No Drips
30	0.0	1.2	0 No Drips
Average:	0.0	1.3	0 No Drips

Comments:

60 Degree Bunsen Burner Test (30 sec.): Average Flame Time may not exceed 30 sec. Average Burn Length may not exceed 3". Average Drip Flame Time may not exceed 3 sec. after falling.

60DEG-458

56

Client:

SOUTHWEST SCIENCES INC **1570 PACHECO STREET** SUITE E-11 SANTA FE NM 87505

Aircraft: **GULFSTREAM GV** 5000 N. Highway 251 M Davis Junction, IL 61020 815.393.4600 🖩 800.945.7135 www.SkandiaInc.com

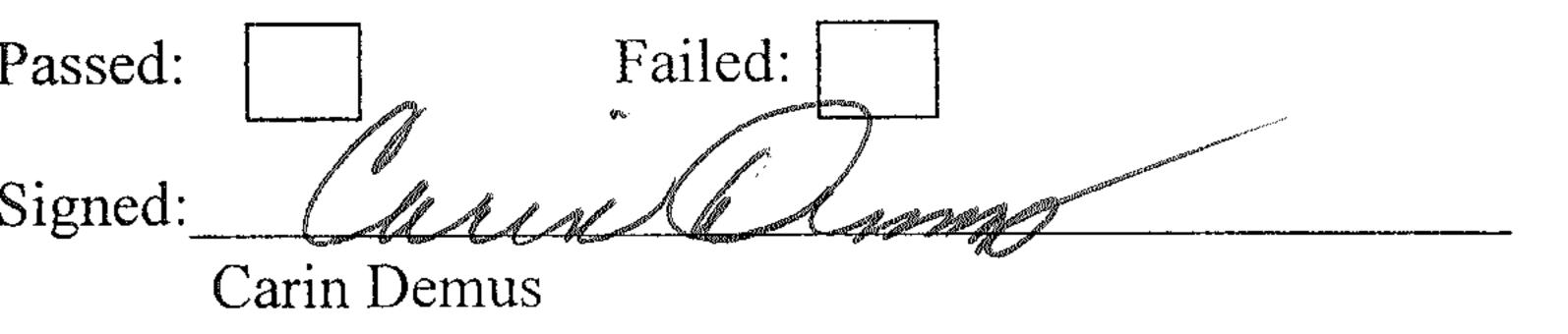
> WO #: 128461-05 Date: 08/04/05 Test Plan #: PO #: 10251

S/N: 677

60 Degree Bunsen Burner Test For Wire

FAR 25.869(a)(4) Appendix F Part I (a)(3) Amendment 25-72

Conditioning Room: Time In: 08/03/05 9:00AM Time Out: 08/04/05 9:06AM Specimen: CORNING VERTILAS: WIRE, SINGLE MODE FIBER OPTIC, SMF-28, TEFLON CLADDING, YELLOW


Flame Application (seconds)	Flame Time (seconds)	Burn Length (inches)	Drip Flame Time (Seconds)
30			
30			
30			
Average:			

Comments:

TESTING INCOMPLETE DUE TO WIRE BREAKING

.

60 Degree Bunsen Burner Test (30 sec.): Average Flame Time may not exceed 30 sec. Average Burn Length may not exceed 3". Average Drip Flame Time may not exceed 3 sec. after falling.

DEG-455

 $\{x_i\} \in \{i,j\}$

.

57

.

Client: SOUTHWEST SCIENCES INC 1570 PACHECO STREET SUITE E-11 SANTA FE NM 87505

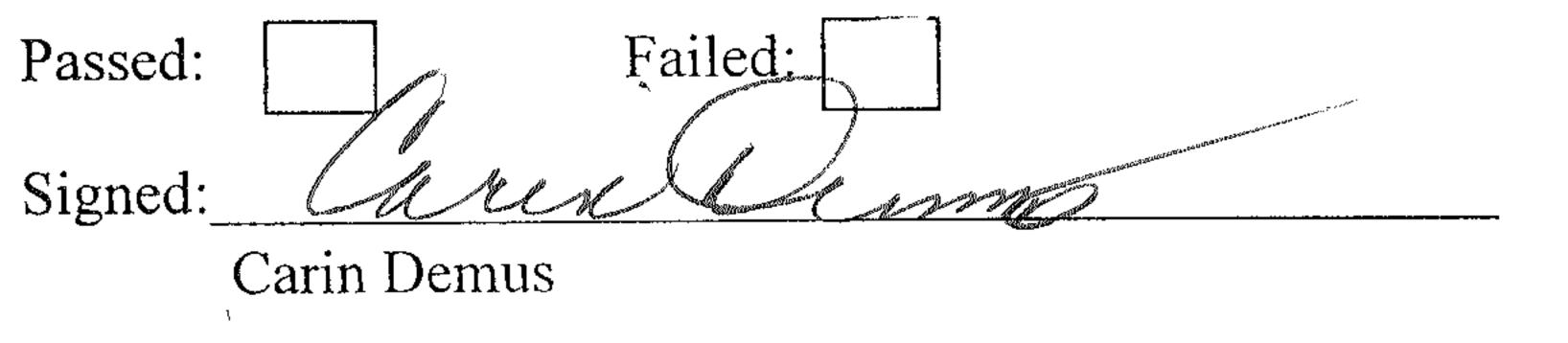
Aircraft: GULFSTREAM GV 5000 N. Highway 251 ■ Davis Junction, IL 61020 815.393.4600 ■ 800.945.7135 www.SkandiaInc.com

WO #: 128461-05
Date: 08/04/05
Test Plan #: 10251

S/N: 677

60 Degree Bunsen Burner Test For Wire

FAR 25.869(a)(4) Appendix F Part I (a)(3) Amendment 25-72


Conditioning Room: Time In: 08/03/05 9:00AM Time Out: 08/04/05 9:04AM Specimen: CORNING/VERTILAS: WIRE, SINGLE MODE FIEBER OPTIC, SMF-28, HYTREL CLADDING WHITE

Flame Application (seconds)	Flame Time (seconds)	Burn Length (inches)	Drip Flame Time (Seconds)
30			
30			
30			
Average:			

Comments:

TESTING INCOMPLETE DUE TO WIRE BREAKING

60 Degree Bunsen Burner Test (30 sec.): Average Flame Time may not exceed 30 sec. Average Burn Length may not exceed 3". Average Drip Flame Time may not exceed 3 sec. after falling.

Client: SOUTHWEST SCIENCES INC **1570 PACHECO STREET** SUITE E-11 SANTA FE NM 87505 Aircraft:

GULFSTREAM GV

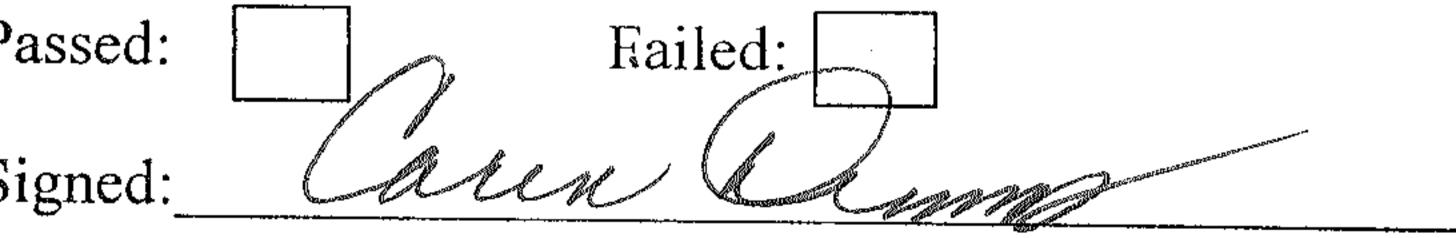
5000 N. Highway 251 M Davis Junction, IL 61020 815.393.4600 🖩 800.945.7135 www.SkandiaInc.com

> WO #: 128461-05 Date: 08/04/05 Test Plan #: PO #: 10251

S/N: 677

60 Degree Bunsen Burner Test For Wire

FAR 25.869(a)(4) Appendix F Part I (a)(3) Amendment 25-72


Conditioning Room: Time In: 08/03/05 9:00AM Time Out: 08/04/05 9:15AM Specimen: NEXANS/ALLCABLE: WIRE, TEFLON COATED, M22759/11/22-9, WHITE, 22AWG, LOT #30424, REF #LN631

Flame Application (seconds)	Flame Time (seconds)	Burn Length (inches)	Drip Flame Time (Seconds)
30	0.0	1.5	0 No Drips
30	0.0	1.2	0 No Drips
30			
Average:	0.0	1.4	0 No Drips

Comments:

TESTING INCOMPLETE DUE TO WIRE BREAKING

50 Degree Bunsen Burner Test (30 sec.): Average Flame Time may not exceed 30 sec. Average Burn Length nay not exceed 3". Average Drip Flame Time may not exceed 3 sec. after falling.

Carin Demus

EG-459

3 3 F

59

	DATE January 21, 2006					
STATEMENT OF COMPLIANCE WITH THE FEDERAL AVIATION REGULATIONS AIRCRAFT OR AIRCRAFT COMPONENT IDENTIFICATION						
^{MAKE} Gulfstream	MODEL NO. GV		, Radio, Helicopter, etc.)	NAME OF	APPLICANT I Science Foundation	
LIST OF DATA						
IDENTIFICATION	TITLE					
	VCSEL Hygrometer for Use in the Troposphere and Stratosphere Critical Design Review Report UCAR Subcontract No. S05-39694 V4.0, January 18, 2006					
	 Notes: 1) This approval is for engineering design data only and is not an installation approval. It indicates the data listed above demonstrates compliance only with the regulations specified by paragraph and subparagraph listed below as "APPLICABLE REQUIREMENTS." (Compliance with additional regulations not listed here may be required). This form does not constitute FAA approval of all the engineering design data necessary for substantiation of compliance to necessary requirements for the entire alteration/repair. [Ref. FAA Order 8110.37C paragraph 611g]. 2) This approval is valid only for Gulfstream GV S/N 677. 3) Approval under 14 CFR 25.1351 is valid only for an equipment level electrical load analysis. 4) DER authorization to approve data for alterations for the Gulfstream GV project was granted by the FAA on August 11, 2005. [Ref. FAA Order 8110.37C paragraph 203b]. 					
PURPOSE OF DATA In support of a major alteration for S/N 677. The approval is design data approval only and is not an installation approval. APPLICABLE REQUIREMENTS (List specific sections) 14 CFR 25.1301(a)(d), 25.1351.						
CERTIFICATION - Under authority vested by direction of the Administrator and in accordance with conditions and limitations of appointment under Part 183 of the Federal Aviation Regulations, data listed above and on attached sheets numbered <u>N/A</u> have been examined in accordance with established procedures and found to comply with applicable requirements of the Federal Aviation Regulations. Recommend approval of these data I (We) Therefore Approve these data SIGNATURE(S) OF DESIGNATED ENGINEERING REPRESENTATIVE(S) DESIGNATION NUMBERS(S) CLASSIFICATION(S) Jonathan Lynch DERT-710166-SW Systems and Equipment (Electrical)						

FAA Form 8110-3 (11-70) SUPERSEDES PREVIOUS EDITION

ELECTRONIC FORMAT (7-00)

U	DATE				
	08/04/05				
STATEMENT OF CO	MPLIANCE WITH T	HE FEDERAL AVIATION	REGULATIONS		
	AIRCRAFT O	R AIRCRAFT COMPONENT IDE	INTIFICATION		
MAKE	MODEL NO.	TYPE (Airplane, Radio, I	Helicopter, NAME OF APPLICANT		
		etc.)			
GULFSTREAM	GV		Skandia, Inc.		
S/N 677		Airplane	SOUTHWEST SCIENCES INC		
		LIST OF DATA			
IDENTIFICATION	TITLE				
Work Order #	ALCATEL/A	LLCABLE: WIRE, TELFON	I COATED, M22759/11/22-5, GREEN, 22AWG, LOT		
128461-05	#12944, REF #KL662, REF TEST ID # 60DEG-452				
Document ID 55815					
	THERMAX/A	THERMAX/ALLCABLE: WIRE, TWISTED PAIR SHIELDED TEFLON, TEF2202STJ,			
Durchasa Order #	WHITE 22AWG LOT #1050006_REF #RL0427695_REF TEST ID # 60DEG-453				

Purchase Order # 10251

.

.

WHITE, 22AWG, LOT #1050006, REF #RL0427695, REF TEST ID # 60DEG-453

SPECIALTY/ALLCABLE: WIRE, TEFLON COATED, M22759/11/22-0, BLACK 22AWG, LOT #677-9345-08, REF #LQ955, REF TEST ID # 60DEG-456

.

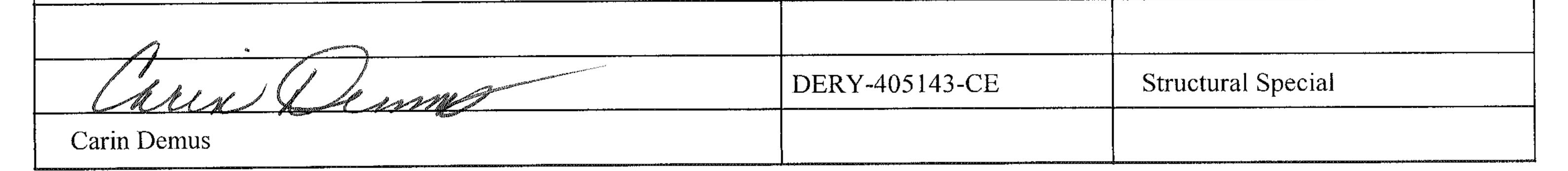
TERMAX/ALLCABLE: WIRE, TEFLON COATED, M22759/11/22-4, YELLOW, 22AWG, D/L 778846, REF #KR913, REF TEST ID # 60DEG-457

SPECIALTY/ALLCABLE: WIRE, TEFLON COATED, M22759/11/22-2, RED, 22AWG, LOT #677-9345-09, REF #LR458, REF TEST ID # 60DEG-458

PURPOSE OF DATA

DEMONSTRATION OF COMPLIANCE WITH MATERIAL FLAMMABILITY REQUIREMENTS

APPLICABLE REQUIREMENTS (List specific sections)


FAR 25.869(a)(4) Appendix F Part I (a)(3) Amendment 25-72

 CERTIFICATION -Under authority vested by direction of the Administrator and in accordance with conditions and limitations of appointment under Part 183 of the Federal Aviation Regulations, data listed above and on attached sheets numbered have been examined in accordance with established procedures and found to comply with applicable requirements of the Federal Aviation Regulations.

 I (We) Therefore
 Recommend approval of these data

 SIGNATURE(S) OF DESIGNATED ENGINEERING REPRESENTATIVE
 DESIGNATION NUMBER(S)

82

FAA Form 8110-3 (11-70) SUPERSEDES PREVIOUS EDITION

Electrical Load Analysis

The electrical loads for the Southwest Sciences VCSEL Hygrometer are based on the circuit diagram shown in the table below, manufacturers specifications and measured usage of the digital signal processor circuit board. Details of the expected usage is shown in Table A2-I. As can be seen, the total expected power usage for the sensor is about 5 W, occasionally going up to 20 W when the box heater is on. Since the current capacity of all the wiring use is 5 A, there is sufficient margin for safety in this design. The connector current limits are 5 A and the switch limits are 15 A.

Component	Volts	Amps	Watts	Method of Determination	Comment
Circuit boards	6.0	0.15	0.90	Measured	Includes pressure sensor and laser
Mirror Heater	6.0	0.18	1.08	Measured	Protected by 1 A circuit breaker
Neon Lamp Indicator	120	0.0007	0.08	Manufacturer specifications	Prior to AC-DC converter
LEDs	6.0	~ 0.03	0.18	Estimate	
Box Heater*	120	0-0.13	0-15	Measured	On as needed
			2.24- 17.24	Total used power	
AC-DC Converter			2.24	Manufacturer specifications (6W output capacity)	50 % Efficiency; Protected by 2 A circuit breaker
			4.48- 19.48	Total Sensor Power Drawn from Aircraft	

* Box Heater is on occasionally during ascent and at highest altitude.

Certificate of Compliance

July 31, 2008

VCSEL Hygrometer for NCAR Gulfstream V

The delivered instrument meets the contract requirements as specified in subcontract S05-39694.

Ren Alanton Signed:

Ålan C. Stanton President Southwest Sciences, Inc