## national Climatic Data Center



## Documentation Manual


U.S. DEPARTMENT OF COMMERCE
NOAA Technical Report EDS 12BOMEX Permanent Archive:Description of DataTD- 9670 9671
Center for Experiment Design ..... 9672 and Data Analysis ..... 9673 ..... 9674
Washington, D.C. ..... 9675
May 1975 ..... 9676
9677

Blank page retained for pagination

## CONTENTS

## Page

ABSTRACT ..... 1

1. INTRODUCTION ..... 1
2. SHIP OPERATIONS AND NAVIGATION DATA SET ..... 5
2.1 Ship Operations and Navigation ..... 11
2.1.1 Oceanographer ..... 11
2.1.2 Mt. Mitchell ..... 12
2.1.3 Rainier ..... 12
2.1.4 Discoverer ..... 13
2.1.5 Rockaway ..... 14
2.1.6 Ship Operations Form ..... 16
2.1.7 BOMEX Event Log ..... 17
2.2 Renavigation (Ship Motion and Position) ..... 17
2.3 Archive Format and Data Inventory ..... 18
2.4 Supplementary Material Available From the Archive ..... 23
2.5 Material in Temporary Storage ..... 23
3. BOOM SURFACE METEOROLO'GICAL DATA SET ..... 24
3.1 Data Processing ..... 24
3.1.1 Wind Direction and Windspeed ..... 30
3.1.2 Sea-Surface Temperature ..... 30
3.1.3 Humidity ..... 30
3.1.4 Atmospheric Pressure ..... 34
3.1.5 Radiation ..... 35
3.2 Archive Format and Data Inventory ..... 35
3.3 Supplementary Material Available From the Archive ..... 41
3.4 Material in Temporary Storage ..... 41
4. MARINE METEOROLOGICAL OBSERVATIONS AND SURFACE-PRESSURE-- MARINE MICROBAROGRAM DATA SET ..... 50
4.1 Observation Procedures and Parameters Measured ..... 50
4.2 Archive Format and Data Inventory ..... 70
5. RAWINSONDE AND RADIOMETERSONDE DATA SET ..... 76
5.1 Instrumentation and Observation Procedures ..... 76
5.2 Preliminary Data Processing ..... 79
5.2.1 Temperature- and Humidity-Sonde Data ..... 80
5.2.2 Slant Range, Azimuth 360, and Azimuth 20 ..... 81

## Page

5.3 Final Data Processing ..... 81
5.3.1 Signal Processing ..... 84
5.3.1.1 General ..... 84
5.3.1.2 Temperature ..... 85
5.3.1.3 Humidity ..... 86
5.3.1.4 Wind ..... 88
5.3.1.5 Sea-Level and Station Pressure ..... 90
5.3.1.6 Baroswitch Pressure ..... 91
5.3.2 Conversion to Meteorological Units ..... 92
5.3.2.1 Temperature ..... 92
5.3.2.2 Humidity ..... 95
5.3.2.3 Wind ..... 100
5.3.3 Derived Quantities ..... 104
5.4 Special Problems ..... 106
5.4.1 Slant Range ..... 106
5.4.2 Azimuth ..... 111
5.4.3 Pressure ..... 111
5.5 Archive Format and Data Inventory ..... 113
5.5.1 Rawinsonde Data ..... 113
5.5.2 Radiometersonde Data ..... 116
5.6 Supplementary Material Available From the Archive ..... 116
5.7 Material in Temporary Storage ..... 117
6. BOUNDARY LAYER INSTRUMENT PACKAGE (BLIP) DATA SET ..... 118
6.1 Sensors ..... 118
6.2 Data Processing ..... 119
6.2.1 Manual Editing ..... 119
6.2.2 Automated Editing ..... 120
6.3 Archive Format and Data Inventory ..... 120)
6.3.1 Magnetic Tape Data ..... 121
6.3.2 Microfilm Data ..... 123
6.4 Sources of Error ..... 124
6.5 Recommendations for Data Users ..... 125
6.6 Supplementary Material Available From the Archive ..... 125
CONTENTS (Continued)
Page
7. SALINITY-TEMPERATURE-DEPTH (STD) DATA SET ..... 145
7.1 Instrumentation ..... 145
7.2 Observation Procedures ..... 146
7.3 Data Processing ..... 147
7.3.1 Digital Reduction and Editing ..... 147
7.3.2 Calibration Corrections ..... 149
7.3.3 Depth Profiling and Editing ..... 149
7.4 Archive Format and Data Inventory ..... 165
7.4.1 Time-Series Magnetic Tape Data ..... 165
7.4.2 Depth-Sorted Magnetic Tape and Microfilm Data ..... 171
7.5 Notes for Users ..... 174
7.6 Supplementary Material Available From the Archive ..... 177
7.7 Material in Temporary Storage ..... 179
8. SURFACE RADAR DATA SET ..... 180
8.1 Equipment and Observation Procedures ..... 180
8.1.1 Island Radar ..... 180
8.1.2 Discoverer Radar ..... 181
8.2 Digitizing of Radar Composites ..... 182
8.3 Archive Format and Data Inventory ..... 184
8.3.1 Island Radar Photographs ..... 184
8.3.2 Discoverer Radar Photographs ..... 184
8.3.3 Discoverer Weather Radar Log ..... 184
8.3.4 Digitized Radar Composites ..... 187
8.4 Material in Temporary Storage ..... 190
9. AIRCRAFT DATA SET ..... 244
9.1 RFF Aircraft ..... 261
9.1.1 Preliminary Processing of Meteorological Data ..... 261
9.1.2 Final Processing of Meteorological Data ..... 264
9.1.3 Archive Format and Inventory of Meteorological Data ..... 269
9.1.4 Archive Format and Inventory of Radar and Cloud Photographs ..... 274
9.2 Navy and Air Force Aircraft ..... 284
9.2.1 RECCO Data ..... 284
9.2.1.1 RECCO Data Processing ..... 295
9.2.1.2 Characteristics of the Navy and Air Force Data. To Be Considered Before Use in Analysis ..... 296
9.2.2 Navigation (NAV) Data ..... 296
9.2.3 Archive Format and Inventory of.RECCO and NAV Data ..... 297
9.2.4 Navy and Air Force Radar Photographs and Archive Format ..... 309
9.3 Supplementary Material Available From the Archive ..... 309
9.3.1 RFF Flight Folder ..... 309
9.3.2 RFF Photographic Quality Review Log ..... 311
9.4 Material in Temporary Storage ..... 311
10. DROPSONDE DATA SET ..... 312
10.1 Instrumentation ..... 312
10.2 Data Processing ..... 312
10.2.1 Conversion to Meteorological Units ..... 312
10.2.2 Correction for Thermal Lag and Radiation Effects ..... 315
10.3 Archive Format and Data Inventory ..... 320
10.4 Material in Temporary Storage ..... 320

# BOMEX PERMANENT ARCHIVE: DESCRIPTION OF DATA 

Center for Experiment Design and Data Analysis National Oceanic and Atmospheric Administration Washington, D.C. 20235


#### Abstract

This report describes the data available from the BOMEX Permanent Archive, a depository for data collected during the Barbados Oceanographic and Meteorological Experiment (BOMEX) in 1969. Procedures used in data processing are described, and an inventory of the archived data is given.


## 1. INTRODUCTION

With the cooperation of the Government of Barbados and with the National Oceanic and Atmospheric Administration as lead agency, the Barbados Oceanographic and Meteorological Experiment (BOMEX) was conducted over the tropical Atlantic east of Barbados in the summer of 1969. The field operations for this multiagency national study of the ocean-atmosphere system were divided into four observation periods: May 3 to 15, May 24 to June 10, June 19 to July 2, and July 11 to July 28. The first three were devoted to the Sea Air Interaction Program--the BOMEX "Core Experiment"--within a $500-\mathrm{km}$ by $500-\mathrm{km}$ square ship array (fig. 1 ). During the fourth period, the array was extended southward to incorporate the Intertropical Convergence Zone (fig. 2).

Following the field operations, the Barbados Oceanographic and Meteorological Analysis Project (BOMAP) Office was established to reduce and process the data that had been collected by the ship, aircraft, and land-based acquisition systems under the operational control of the BOMEX Field Headquarters. After preliminary processing, these data were placed in a BOMEX Temporary Archive at the National Climatic Center (NCC) in Asheville, N.C., in 1971, and were documented in NOAA Technical Report EDS 10, "BOMEX Temporary Archive: Description of Available Data," Issued in January 1972.

On July 1, 1971, the BOMAP Office became the Center for Experiment Design and Data Analysis (CEDDA) and was subsequently transferred from NOAA's Environmental Research Laboratories to its Environmental Data Service. One of the tasks assigned to CEDDA--in addition to its participation in other field experiments, such as the 1972-73 International Field Year for the Great Lakes (IFYGL) and the 1974 GARP Atlantic Tropical Experiment (GATE)--was to reprocess the BOMEX data. Final validation of the data was undertaken through detailed analysis and application of necessary corrections, a task that was completed in the fall of 1974, when the BOMEX Permanent Archive was established at NCC.


Figure 1-1.--Fixed-ship array during BOMEX Periods I, II, and III.


Figure 1-2.--Fixed-ship array during BOMEX Period IV.

This report, which supersedes NOAA Technical Report EDS 10, contains a description of the methods used in the final processing and an inventory of the permanent data sets.

Requests for data should be addressed to:
National Climatic Center
NOAA Environmental Data Service
Federal Building
Asheville, N.C. 28801
Attention: BOMEX Permanent Archive

Note that with the publication of this report, NOAA Technical Report EDS 10 is no longer to be used as a guide in ordering BOMEX data.

## 2. SHIP OPERATIONS AND NAVIGATION DATA SET

The five ships occupying fixed positions during the first three observation periods were the NOAA ships Rainier, Oceanographer, Mt. Mitchell, and Discoverer and the U.S. Coast Guard cutter Rockaway. Their geographic positions are shown in table 2-1, and a chronological listing of ship operations is given in table 2-2.

During all four periods, the fixed ships made sea-surface and oceanographic measurements and surface and upper air observations. Special instrumentation included the Signal Conditioning and Recording Device (SCARD); rawinsondes and radiometersondes (see sec. 5); a special boom extending from the bow of each ship and carrying meteorological instruments (see sec. 3); salinity-temperature-depth (STD) sensors (see sec. 7); the Boundary Layer Instrument Package (BLIP), released from all ships except the Rockaway and carrying sensors for measuring temperature, humidity, and horizontal and vertical windspeed (see sec. 6); and a Selenia radar aboard the Discoverer (see sec. 8).

Each ship was equipped with a free-fall, deep-sea mooring system to maintain its position. However, the Rainier's mooring system failed on May 1 , the Mt. Mitchell's on May 3, the Rockaway's on May 25, and the Discoverer's and Oceanographer's on June 21. All windspeed and wind direction data acquired after mooring failure, during periods of steaming and drifting, must be corrected for ship motion. Motion and position data have been calculated for all ships, for Periods II and III only, after mooring failure. These data are described in section 2.3.

Table 2-1.--Geographic positions of BOMEX fixed ships

| Ship | Station | Latitude | Longitude |
| :---: | :---: | :---: | :---: |
| BOMEX Observation Period I, II, and III (square array) |  |  |  |
| Rainier | Alfa (A) | $16^{\circ} 50^{\prime} \mathrm{N}$ | $59^{\circ} 12^{\prime} \mathrm{W}$ |
| Oceanographer | Bravo (B) | $17^{\circ} 36^{\prime} \mathrm{N}$ | $54^{\circ} 34^{\prime} \mathrm{W}$ |
| Rockaway | - Charlie (C) | $15^{\circ} 00^{\prime} \mathrm{N}$ | $56^{\circ} 30^{\prime}$ W |
| Mt. Mitchell | Delta (D) | $12^{\circ} 23^{\prime} \mathrm{N}$ | $58^{\circ} 23^{\prime} \mathrm{W}$ |
| Discoverer | Echo (E) | $13^{\circ} 08^{\prime} \mathrm{N}$ | 53*51' W |
| BOMEX Observation Period IV (staggered array) |  |  |  |
| Rainier | Bravo (B) | $17^{\circ} 30^{\prime} \mathrm{N}$ | $54^{\circ} 00^{\prime} \mathrm{W}$ |
| Rockaway | Charlie (C) | $15^{\circ} 00^{\prime} \mathrm{N}$ | $56^{\circ} 30^{\prime} \mathrm{W}$ |
| Discoverer | Echo (E) | $13^{\circ} 00^{\prime} \mathrm{N}$ | $54^{\circ} 00^{\prime} \mathrm{W}$ |
| Mt. Mitchell | .Lima (L) | $10^{\circ} 30^{\prime} \mathrm{N}$ | $56^{\circ} 30^{\prime} \mathrm{W}$ |
| Oceanographer | Golf (G) | $7^{\circ} 30^{\prime} \mathrm{N}$ | $52^{\circ} 42^{\prime} \mathrm{W}$ |

Table 2-2.--Chronology of ship operations during BOMEX

|  | Ship activity* |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Date |  |  |  |  |  |  |
|  | Oceano- | Disco- | Mt. |  |  |  |
|  | grapher | verer |  | Mitchell | Rainier | Rockaway |

April

30 | In port at | In port at | In port at | Arrived at | En route to |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Bridgetown | Bridgetown | Bridgetown | Station "A" | Station "C" |

May

| 1 | En route to Station "B" | " | Arrived at Station "D" | Deep-sea moor. failed | Arrived at <br> Station "C" |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | Arrived at Station "B" | " | Moored on Station "D" | On Station "A" | Moored on Station "C" |
| 3 | Moored on Station "B" | " | Deep-sea moor. failed | " | " |
| 4 | 11 | " | Medical evacuation to Bridgetown | " | " |
| 5 | " | " | On Station "D" | " | " |
| 6 | " | Arrived at Station "E" and moored | " | " | " |
| 7 | " | Moored on Station "E" | " | 11 | 1 |
| 8 | Moored on Station "B"; M\&C Day | Moored on <br> Station "E"; <br> M\&C Day | On Station "D";M\&C Day | On Station "A"; M\&C Day | Moored on Station "C"; M\&C Day |
| 9-14 | Moc eed on Station "B" | Moored on <br> Station "E" | On Station "D" | On Station "A" | Moored on <br> Station "C" |
| 15 | Departed for Bridgetown |

Table 2-2.--Chronology of ship operations during BOMEX (continued)

| $\begin{aligned} & \text { Date } \\ & 1969 \end{aligned}$ | Ship activity* |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Oceano- } \\ & \text { grapher } \end{aligned}$ | $\begin{aligned} & \text { Disco- } \\ & \text { verer } \end{aligned}$ | $\begin{gathered} \text { Mt. } \\ \text { Mitchell } \end{gathered}$ | Rainier | Rockaway |
| $\frac{\text { May }}{16}$ | Arrived in Bridgetown |
| 17-21 | In port at Bridgetown |
| 22 | In port at Bridgetown | Departed <br> Bridgetown <br> for Sta- <br> tion "E" | In port at Bridgetown | Departed <br> Bridgetown for Station "A" | Departed Bridgetown |
| 23 | Departed Bridgetown | Arrived and moored on Station "E" | Departed Bridgetown | Arrived at Station "A" | Arrived and moored on Station "C" |
| 24 | Arrived and moored on Station "B" | Medical evacuation to Bridgetown | Arrived on Station "D" | On Station "A" | Moored on Station "C" |
| 25 | Moored on Station "B" | Arrived at Bridgetown; departed | On Station "D" | " | Deep-sea moor. failer |
| 26 | " | En route to Station "E" | 11 | " | On Station "C" |
| 27 | " | Arrived and moored on Station "E" | 11 | " | " |
| 28 | " | Moored on Station "E" | Departed for Bridgetown; returned to Station "D" | " | " |
| May |  |  |  |  |  |
| 29 | Moored on | Moored on | On Station | On Station | On Station |
| to | Station "B"; | Station "E"; | "D"; 5/29 | "A"; 5/29 | "C"' 5/29 |
| June | 5/29 M\&C | 5/29 M \& C | M\&C Day | M\&C Day | M\&C Day |
| 9 | Day | Day |  |  |  |

Table 2-2.--Chronology of ship operations during BOMEX (continued)

| $\begin{aligned} & \text { Date } \\ & 1969 \end{aligned}$ | Ship activity* |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Oceano- } \\ & \text { grapher } \end{aligned}$ | $\begin{aligned} & \hline \text { Disco- } \\ & \text { verer } \end{aligned}$ | $\begin{gathered} \text { Mt. } \\ \text { Mit }{ }^{\text {ch }} \text { ell } \end{gathered}$ | Rainier | Rockaway |

June

| 10 | Departed for Bridgetown |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | Arrived in Bridgetown |
| 12-18 | In port at Bridgetown |
| 19 | Departed Bridgetown | Departed <br> Bridgetown | Departed <br> Bridgetown | Departed <br> Bridgetown | Departed <br> Bridgetown ${ }^{\prime}$ |
| 20 | Moored on Station "B" | Moored on <br> Station "E" | $\begin{aligned} & \text { On Station } \\ & \text { "D" } \end{aligned}$ | $\begin{aligned} & \text { On Station } \\ & \text { "A" } \end{aligned}$ | $\begin{aligned} & \text { On Station } \\ & \text { "C" } \end{aligned}$ |
| 21 | Deep-sea moor. failed | Deep-sea. moor. failed | " | " | " |
| 22-25 | $\begin{aligned} & \text { On Station } \\ & \text { "B" } \end{aligned}$ | $\begin{aligned} & \text { On Station } \\ & \text { "E" } \end{aligned}$ | " | " | " |
| 26 | " | " | Departed "D" to recover buoy, then returned | " | " |
| 27 | $\begin{aligned} & \text { On Station } \\ & \text { "B"; M\&C } \\ & \text { Day } \end{aligned}$ | On Station "E"; M\&C Day | On Station "D"; M\&C Day | ```On Station "A"; M&C Day``` | ```On Station "C"; M&C Day``` |
| 28 | $\begin{aligned} & \text { On Station } \\ & \text { "B" } \end{aligned}$ | $\begin{aligned} & \text { On Station } \\ & \text { "E" } \end{aligned}$ | $\begin{aligned} & \text { On Station } \\ & \text { "D" } \end{aligned}$ | $\begin{aligned} & \text { On Station } \\ & \text { "A" } \end{aligned}$ | $\begin{aligned} & \text { On Station } \\ & \text { "C" } \end{aligned}$ |
| 29 | " | " | Departed "D" to recover BLIP, then returned | " | " |
| 30 | Departed "B" for Bridgetown | " | $\begin{aligned} & \text { On Station } \\ & \text { "D" } \end{aligned}$ | " | Departed "C" for "B," arrived at "B" |

Table 2-2.--Chronology of ship operations during BOMEX (continued)

| $\begin{aligned} & \text { Date } \\ & 1969 \end{aligned}$ | Ship activity* |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Oceanographer | $\begin{aligned} & \text { Disco- } \\ & \text { verer } \end{aligned}$ | Mit Mt. | Rainier | Rockaway |
| July |  |  |  |  |  |
| 1 | Arrived in Bridgetown | On Station "E" | On Station "D" | On Station "A" | On Station "B" |
| 2 | In port at Bridgetown | Departed for Bridgetown | Departed for Bridgetown | Departed for Bridgetown | Departed for Bridgetown |
| 3 | " | Arrived in Bridgetown | Arrived in Bridgetown | Arrived in Bridgetown | Arrived in Bridgetown |
| 4-8 | " | In port at Bridgetown |
| 9 | Departed <br> Bridgetown <br> for "G" | Departed <br> Bridgetown <br> for "E" | Departed <br> Bridgetown <br> for "L" | Departed <br> Bridgetown for "B" | Departed Bridgetown for "C" |
| 10 | En route to Station "G" | Arrived at <br> Station "E" | Arrived at Station "L" | En route to Station "B" | Arrived at <br> Station "C" |
| 11 | " | On Station "E" | Departed for Bridgetown, then returned | Arrived at Station "B" | On Station "C" |
| 12 | Arrived at Station "G" | " | On Station "L" | On Station "B" | 1 |
| 13-15 | On Station "G" | " | " | " | " |
| 16 | On Station 'G"; M\&C Day | On Station "E"; M\&C Day | On Station "L"; M\&C Day | On Station "B"; M\&C Day | On Station "C"; M\&C Day |
| 17-23 | On Station "G" | On Station "E" | On Station "L" | On Station "B" | On Station "C" |

Table 2-2.--Chronology of ship operations during BOMEX (continued)

|  | Ship activity* |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | Date |  |  |  |  |
| 1969 | $\frac{\text { Oceano- }}{\text { grapher }}$ | $\frac{\text { Disco- }}{\text { verer }}$ | Mitchell | Rainier | Rockaway |

July

| 24 | On Station |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
|  | "G"; M\&C | "E"; M\&C | "L"; M\&C | "B"; M\&C | "C"; M\&C |
| Day | Day | Day | Day | Day |  |

* M\&C Day - Maintenance and calibration day.

Table 2-3.-- Fixed-ship basic observation system

| Ship | SCARD | Rawinsonde* | Boom** | STD | BLIP | SITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oceanographer | $\mathbf{x}$ | Scanwell <br> WFSS | $\mathbf{x}$ | $\mathbf{x}$ | $\mathbf{x}$ | - |
| Rainier | $\mathbf{x}$ | Scanwell <br> WFSS | $(\mathrm{x})$ | $\mathbf{x}$ | $\mathbf{x}$ | - |
| Mt. Mitchel1 | $\mathbf{x}$ | Scanwell <br> WFSS | $\mathbf{x}$ | $\mathbf{x}$ | $\mathbf{x}$ | - |
| Discoverer | $\mathbf{x}$ | Selenia <br> radar | $\mathbf{x}$ | $\mathbf{x}$ | $\mathbf{x}$ | - |

[^0]
### 2.1 Ship Operations and Navigation

### 2.1.1 Oceanographer

The Oceanographer occupied two BOMEX array positions, station BRAVO during Observation Periods I through III and station GOLF during Period IV. The ship arrived on station and deployed its mooring system on May 3. On June 21, the anchor cable failed and the ship, still made fast to the buoy, started to drift. Divers sent out to disconnect the mooring cable reported that the cable had broken about 7 ft below the Miller swivel. Wind at the time of failure was from the east and tension was. $6,000 \mathrm{lb}$. It is believed that the failure was gradual from strain of previous moorings.

During the first three Observation Periods, when the ship occupied station BRAVO, Omega navigational control was the only control available except celestial. At station GOLF, Omega was completely worthless, and the ship relied on satellite fixes, which were accurate within $1 / 2 \mathrm{mi}$ or less at all times. The main limitations on satellite fixes are having the pass angle of orbit within the prescribed limits and a minimum number of Doppler returns. At least 80 percent of the fixes are usable, and the others close enough for general location.

During Periods I and II, the Oceanographer was tied to the anchored mooring system, which minimized on-station movement, although there was movement of as much as 4 mi during a day as the wind and current changed. The effect of this movement on recording instruments was considered minimal. After loss of the mooring on station BRAVO, and on station GOLF, the ship had to go into a "steam and drift" mode of operation in order to remain within the prescribed distance from the station. The best procedure was found to be drifting for 1 hr and steaming for $1 / 2 \mathrm{hr}$. A fix was taken at the beginning and end of the run period.

On station GOLF it was somewhat difficult to take fixes at the preferred times, particularly when the schedule required rawinsonde observations to last 110 mi every 3 hr . The satellite navigation system was available at varying times, and during some of these times the fixes were not accurate due to low or high pass angles. The best solution was to try to hold within 4 mi of the station by taking satellite fixes whenever possible and steaming back to position between rawinsonde observations. Fortunately, winds on station GOLF were of less force, which required far less steaming than found necessary on BRAVO. Even though the fixes could not be taken at the beginning and end of the steaming times, it is believed that the increased accuracy of the satellite fixes during drift periods minimized errors introduced by using deadreckoning positions.

Navigation presented no problem except for the lack of Omega control on GOLF, which was compensated for by the satellite equipment.

### 2.1.2 Mt. Mitchel1

The Mt. Mitchell occupied two BOMEX array positions during the four Observation Periods, station DELTA during Periods I, II, and III, and station LIMA during Period IV. The ship arrived on station DELTA on May 1. The freefall mooring system was deployed that day, but failed on May 3. The ship then began to operate in a mode consisting of steaming at steerageway speeds and of drifting with engines secured. This mode of operation was maintained not only at DELTA but was also used at station LIMA.

On May 1, a current station was established within a few yards of position DELTA, consisting of a "plank-on edge" mooring buoy that was lighted and fitted with a radar reflector. A series of several dozen celestial observations fixed the position of the buoy at $12^{\circ} 21^{\prime} \mathrm{N}$ and $58^{\circ} 23^{\prime} \mathrm{W}$ with a high level of confidence. During Periods I, II, and III, with the buoy as a reference, the Mt. Mitchell obtained visual bearings and/or radar bearings and radar ranges to position the ship relative to the buoy. The position of the buoy was checked daily by Omega fixes and, when possible, by celestial observations.

During BOMEX Period IV, at station LIMA, no buoy was planted, and the ship had to rely on Omega for hourly positions, with celestial verification mornings and evenings. A general plan of drifting 3 to 4 hr and then returning to station was contemplated, but because of the slow drift and the inaccuracy of Omega this drifting period was extended in some cases and a celestial fix was taken before steaming toward the station.

At both stations the ship would bracket the station position either by steaming very slowly "up current" or by securing the engines and drifting "down current," the current being the result of both ocean current and wind effects on the ship. The distance in this "steam and drift" mode of operation was held within 3 nmi when possible.

Omega rates $A-D_{2} A-C$, and $B-D$ picked on the basis of available Omega tables for the BOMEX area were used and were found to have mediocre intersections. This had the effect of increasing Omega error. The rate B-D (Trinidad - New York) was inaccurate due to ground-wave mixing from Trinidad. This problem was solved by generating on-the-spot sky-wave corrections. These corrections, which are the heart of Omega navigation because they determine position accuracy, were generated by the Rainier during each in-port period between BOMEX Observation Periods for rates A-D and A-C. The Mt. Mitchell generated its own corrections for B-D at station DELTA, but due to the distance between station LIMA and Bridgetown these corrections were found to be below standard. The combination of unreliable sky-wave corrections and weak intersection of the Omega rates increased unadjusted position error in some cases from approximately 2 mi (minimum) to 6 mi (maximum).

### 2.1.3 Rainier

The Rainier operated in a "drift and steam" mode throughout the four BOMEX Observation Periods. The ship occupied position ALFA during Periods I through III and position BRAVO during Period IV.

The initial plan for the fixed ships was to use deep-sea anchoring systems to eliminate slow-speed running to hold station. After failure of its mooring, the Rainier adopted a slow-speed steaming mode, running generally NE and SE, quartering the expected wind and currents. The intent to use just enough power to remain stationary in one position did not always prove effective because of unexpected current velocities. This procedure was used for Periods I and II; during Period III, however, the ship would shut down both main engines and lie in the trough of the sea; a procedure that was largely effective. Power was applied to the ship when necessary to change the ship's heading for rawinsonde tracking or STD lowerings, or to return to station ALFA. Before Period IV, a change in the Operations Plan established a "steam and drift" mode for all ships, a procedure that was tried throughout Period IV, when the Rainier was positioned at station BRAVO. Due to the requirement to change ship's heading for rawinsonde tracking, the port main engine was kept. on the line throughout most of this period.

Omega receiving systems, Tracor Series 599, were furnished for all fixed ships. The equipment functioned quite well during the entire BOMEX project. Due to insufficient data on sky-wave corrections within the array, serious jumps in position were experienced at sunrise and sunset. During each in-port period, Omega stations $A, B, C$, and $D$ were monitored, and average hourly corrections were provided to the other four ships. However, the corrections did not prove usable over the entire $90,000 \mathrm{mi}^{2}$ covered by the BOMEX array. Because of fairly heavy cloud cover, celestial control was impossible to obtain.

### 2.1.4 Discoverer

The Discoverer occupied position ECHO during all four BOMEX Observation Periods. The ship was moored from May 6 to June 20 . On June 21 , the mooring failed, and the ship began a "steam and drift" mode of operation.

The mooring was established in approximately 2,800 fathoms of water. It held the ship in winds to 25 kn during the first two Observation Periods, when the wind and current were in different directions. Tension in the anchor cable normally ran $2,500 \mathrm{lb}, 3,500$ to $4,000 \mathrm{lb}$, and 5,000 to $7,500 \mathrm{lb}$ with a wind speed of $15 \mathrm{kn}, 20 \mathrm{kn}$, and 25 kn , respectively. When the tension reached $7,000 \mathrm{lb}$, the ship would stean ahead dead slow on one engine to ease the strain down to $4,500 \mathrm{lb}$. During this time the ship lay at an angle of from $30^{\circ}$ to $90^{\circ}$ to the anchor cable. For one period of approximately 20 hr it lay directly north of the buoy with less than 500 lb of tension, despite an easterly wind of 15 kn , indicating a good current setting to the east.

During Period III, the wind and current were in the same direction, indicated by the fact that the ship headed directly toward the anchor cable, and tension built up to $7,500 \mathrm{lb}$ with wind less than 20 kn . Despite the ship's steaming mode, the cable parted after approximately 18 hr . It parted about 1,500 to 1,800 fathoms down from the buoy, judging by the depth of the buoy at first launch and before and after failure. The cause of failure is unknown,
but is believed to be that the current drag on the cable and the ship's tension on the buoy were in the same direction, as opposed to Periods $I$ and II, when the current and direction of ship's tension were in two different directions.

When the mooring failed, an attempt was made at first to keep the ship directly on station by steaming slowly ( 20 to 55 turns on one shaft) into the wind. If accurate control had been available, this would probably have been the most desirable procedure, since the wind, current, and ship's steaming would nullify one another, and the ship would be stationary. However, the only control available other than celestial was Omega, which did not furnish control with the accuracy necessary. Jumps of as much as 8 to 10 mi occurred from hour to hour. The Omega readings would plot in two or three different positions within a $20-\mathrm{mi}$ area without definite lane identification, which the Discoverer's Omega did not have. Readings on different frequencies did not resolve the ambiguity of position.

The direction and velocity of current on the station site were not constant, adding to the difficulty of attempting to maintain station or making good courses steered.

After 6 days, the ship abandoned the attempt to remain on station by continuous steaming. A procedure was adopted of drifting for approximately 6 or 7 hr , and then steaming for 1 or 2 hr back to and past the station. This procedure allowed enough time during drifting to obtain an approximate drift rate and direction even with erratic fixes. The ship would then proceed back at the maximum speed that would not disrupt the instrumented boom extending from the ship's bow. Steaming times were selected that would interfere least with the observations being made. By this procedure the ship might have drifted as much as 15 mi off station, but relative movements could be approximated by using the Omega readings only. Celestial fixes and lines of position kept track of absolute position, but could not be combined with Omega for drift rates.

### 2.1.5 Rockaway

The Rockaway occupied BOMEX array position CHARLIE throughout all four BOMEX Observation Periods and operated in two modes: moored, and steaming and drifting to maintain position on station.

The Rockaway's deep-sea mooring system was deployed on May 2, 1969. The launch position of the system was determined by Florida State University's Triton buoy previously moored at position CHARLIE by the U.S. Coast Guard cutter Laurel. Because of a practical requirement for the Rockaway to be outside the radius of the Triton's mooring, the ship's anchor was dropped 300 yd downwind from the Triton. The ship was made fast to the buoy paying out a 350-ft catenary through the bullnose. The ship was 400 ft from the mooring buoy, since the $350-\mathrm{ft}$ nylon mooring line was attached to a $50-\mathrm{ft}$ pendant at the mooring buoy.

While the ship was moored, its position was always known with a very high degree of confidence. Triton's position was confirmed each day by celestial fix, and once every 30 min the Rockaway confirmed its position with reference to the Triton by a radar range and bearing. By means of a Universal Plotting Sheet (UP-OS), with a scale change so that 1 in equalled 1 nmi , the ship's position was reported once every hour on the BOMEX Ship Operations Form. The ship rode comfortably -- even though stopped it did not lie in the trough -- during high seas and wind conditions with $8-\mathrm{ft}$ swells and $25-\mathrm{kn}$ winds, which were the worst encountered during Period I. The mooring was used from May 2 to May 14. On May 25, after returning to station CHARLIE from the inport period between Periods I and II, the mooring system was remade, and mooring was tried after the ship had been on station for 35 hr , rough seas having discouraged the small-boat operations necessary for mooring to the buoy. During the first 4 hr after mooring, the ship's drift rate remained constant (tension remaining steady at approximately $1,350 \mathrm{lb}$ ), and the range between the Rockaway and the Triton buoy opened up from $5,400 \mathrm{yd}$ to $10,600 \mathrm{yd}$. At first the ship's navigator thought that the excessive range between the Triton and the ship was attributable to the fact that the Triton's drift about the scope of its mooring was the result only of ocean currents, while the Rockaway's drift was a result of both ocean currents and wind effects. However, the range continued to open up, and eventually the Triton was lost on radar. A celestial fix 14 hr after the attempt to moor indicates the ship was 13 mi off station (relative to the Triton). In the next 24 hr , the ship had drifted 30 mi off station. The mooring buoy was then sunk, and the ship proceeded back to station.

After the mooring failure during Period II, and during the subsequent BOMEX Observation Periods, a continuous plot of the ship's position and movement, whether underway or adrift, was kept. Except as modified by small-boat operations, the daily routine during Periods II, III, and IV was to drift downwind each day from 0830 to 1930 GMT and from 2100 to 0700 GMT. (During Period I small boats operated every day except one. During Periods II, III, and IV, they operated once every 4 days.) During the remaining two periods of $1 / 2$ hr , the ship would be underway, proceeding upwind.

A revised plotting grid provided an accurate chart with a scale of 1 in to 1 nmi . The Triton was always placed at the center, and coordinates of the chart and the ship's position were plotted relative to the Triton. A geographic plot was maintained on this chart, and accurate ship's positions were always available. The true velocity and direction of the ship's movements, whether underway or adrift, were determined by the navigator from these plots on a locally prepared form. The position data were taken from this form and entered on the Ship Operations Form.

The Omega navigation system did not serve a useful purpose. Celestial fixes were usually available, and, when on station, the ship was either moored or keeping station on the anchored Triton buoy.

During Period III, the ship relieved the Oceanographer on station BRAVO for a few days (see table 2). The ship was not moored at BRAVO, and the Triton was left at station CHARLIE. Thus, Omega was the only source of position data available for station keeping. The Omega lines for rates $A-D, B-C$,
$A-C$, and $B-D$ were laid down on a locally prepared chart with a scale of 1 in equaling 1 nmi . Positions were plotted every 30 min . While these positions, based on an updated lane count, were satisfactory for offshore trackline navigation, they proved useless for station keeping because of excessive variability in fix quality as compared with the suspected dead-reckoning position.

### 2.1.6 Ship Operations Form

Ship operations and navigation data were recorded manually on a Ship Operations Form as follows:

Card Code - Column 1. Code 4 was used on each form to identify it as pertaining to ship operations and navigation data.

Ship Code - Column 2. The following codes were used to designate the ship from which observations were made: 0, Oceanographer; 1, Rainier; 2, Mt. Mitchell; 3, Discoverer; 4, Rockaway.

Date and Time - Columns 3 through 9. Julian day and time of observation in GMT was entered to the nearest minute.

Latitude - Colums 10 through 14. The actual latitude in degrees and minutes for the ship's position at the time of observation was entered in columns 10 through 13. Code 1 was used for north and code 2 for south in column 14.

Longitude - Columns 15 through 20. Actual longitude in degrees and minutes for the ship's position at the time of observation was entered in colums 15 through 19. Code 3 was used for east and code 4 for west in column 20.

Means of Navigation - Columm 21. The method used for determining the ship's latitude and longitude at the time of observation was indicated by choosing the appropriate code from the following: 1, Dead reckoning (DR); 2, Astro; 3, Omega; 4, Loran A; 5, Loran C; 6, Satellite; 7, Radar; 8, Visual.

True Speed - Columns 22,23 , and 24. As determined from the navigational plot, the ship's true speed was recorded in knots and tenths. If the speed had changed during the preceding hour, the speed at the time of observation was used.

True Course - Columns 25 through 28. The ship's heading was recorded to the nearest degree and tenth of a degree at the time of observation.

Indicated Speed - Colums 29, 30, and 31. The ship's speed as indicated by the pit log or other device at the time of the observation was entered in knots and tenths.

System Status - Columns 32 through 43. These entries indicate the status of the following ship observation systems: rawinsonde; Scanwell WFSS; radar wind; meteorological boom instrumentation; surface observation system; BLIP; STD; AEC air, rain, and water sampler; Niskin water sampler; Braincon current meter; ship navigation system; and SCARD. For each of these, code 0 was entered if the system was operational, code 1 if it was partly operational, code 2 if it was nonoperational but reparable, and code 3 if it was nonoperational and nonreparable.

Columns 44 and 45 . Not used.
Ship's Gyro Correction - Columns 46 through 49. The ship's gyro correction was indicated in column 46 by a plus or a minus sign and recorded in columns 47, 48, and 49 in degrees and tenths.

Final two columns of the form. Observer's initials.

### 2.1.7 BOMEX Event Log

The BOMEX Event Log was designed as an aid in verifying the completeness of the data obtained, and all events, whether routine or special, were recorded on it. A new Event Log sheet was begun with each SCARD tape change, several sheets being required for one SCARD analog tape recording period. The Eyent Log consists of the following:

Heading - Ship's name; day, month, year; and the SCARD magnetic tape number.

Time - Julian Day, and hours and minutes in GMT.
Sequential No. - A sequential number assigned to each observation type, starting with 1 and successive numbers thereafter until the end of the BOMEX Observation Period.

Event - Hand-written description of event.
Summary - Checked ( $\checkmark$ ) by person verifying that the event has been properly entered. An $X$ in this column means that a discrepancy has been found and corrected; an 0 indicates that the discrepancy cannot be corrected, and the problem is then described in the Event column.

> Initials - Initials of the observer.

### 2.2 Renavigation (Ship Motion and Position)

Failure of the deep-sea mooring systems for the fixed ships in the BOMEX array on the dates shown in table 2 resulted in contamination of all wind measurements conducted on or from these ships due to ship motion as the ships tried to maintain their assigned geographical positions. Also, as the ships altered their orfentation into the prevailing trade-wind flow, the wind measurements taken with instruments mounted on a boom extending from the bow of each ship (see sec. 3, BOOM SURFACE METEOROLOGICAL DATA SET) were affected by the deviation of airflow around the hull and superstructure, resulting in a bias in these measurements.

After mooring failure, the ships initially attempted to remain on station by steaming at a rate and heading so that they would remain stationary with reference to their assigned stations. It became evident, however, that the navigational systems available failed to provide the required accuracy. The accuracy is estimated to have been on the order of 4 to 5 mi . In addition, there were engine problems as a result of the continuous slow steam mode.

A procedure of steaming and drifting was then adopted, i.e., the ships would steam to a position up-drift of their positions and then drift some distance past their stations. This made it possible to obtain approximate drift rates and direction of drift even with erratic fixes. The procedure also eased engine problems.

For these alternate periods of drifting and steaming, a characteristic trace type or "signature" typical of a particular mode could be determined in most instances from time-series plots of gyro heading and relative winds obtained with the ship boom instruments. These data were supplemented by rawinsonde and salinity-temperature-depth (STD) observations (see secs. 5 and 7), indicated course changes, values of ship speeds from ship operations data, notes from log books pertaining to ship operations and recorded values of screw rpm's, which were converted to knots. Speed values as determined from navigational plots proved to be somewhat ambiguous because they were recorded only every hour and reflected either the speed during the preceding hour or, if a speed change had occurred within the hour, the value of the latest speed change. Times of speed or mode change were not recorded, except for the Rockaway, which did maintain a log of times of mode change. No data on ship speed were available for the Discoverer for BOMEX Period III.

Drift values were obtained for BOMEX Observation Periods II and III. An interval of 6 hr was selected in order that changes in drift with time could be detected. The erratic nature of the navigational fix data made it necessary to use a smoothing procedure while preserving the trend. Drift motion of the ship was then obtained by determining the difference between the summation of the respective steam distances, to which a smoothing process had first been applied, over each 6 -hr period. It was then possible to make adjustments to the smooth fix positions every 6 hr . After application of the drift factors to the steam mode for each 6 -hr increment, the ship positions for each operational mode were determined through dead reckoning, and were recalculated in terms of latitude and longitude. These data were then interpolated to give hourly positions.

### 2.3 Archive Format and Data Inventory

The BOMEX Event Logs are contained in the archive on $35-m$ microfilm, arranged by BOMEX Period, i.e., Period I first, followed by Periods II, III, and IV, Within each Observation Period, the Events Logs for the Oceanographer comes first, followed by those for the Rainier, Mt. Mitchell, Discoverer, and Rockaway.

The Ship Operations Form was converted to punched cards, listed, and edited for punch.ig errors only. The data are stored on both microfilm and magnetic tape. The tape format consists of five separate files, of which the third constitutes the ship operations data. The five files of information are separated by end-of-file mark and followed by a double end-of-file. All information is in binary coded decimal (BCD) format, even parity, 800 bits per inch. The first file consists of 80 -columm card images, one card image per
record, describing the formats of the data files. The other four files contain data in $B C D$ card images, 50 cards ( 4,000 characters) per record. . The second file contains marine meteorological observations (see sec. 4); the fourth file contains hand-tabulated STD support data (see sec. 7) ; and. the fifth file contains radiometersonde data (see sec. 5).

The format of the third file, containing the ship operations data, is as follows:

## Character

1
2

3-5
6-7
8-9
10-11
12-13
14
15-17
18-19
20
21

## Element

Card code, should always be 4
Ship code
0 - Oceanographer
1 - Rainier
2 - Mt. Mitchell
3 - Discoverer
4 - Rockaway
Modified Julian day (day of year)
Hour, GMT
Minute
Latitude, degrees
Latitude, minutes
Should always be 1 for north
Longitude, degrees
Longitude, minutes
Should always be 4 for west
Means of navigation
1 DR
2 Astro
3 Omega
4 Loran A
5 Loran C
6 Satellite
7 Radar
8 Visual


Ship Motion Data

| Column | Type of data | Variable |
| :---: | :--- | :--- |
| 1 | Ship number | Integer |
| $6-7$ | Julian day | Integer |
| $15-16$ | Start time (GMT) | Integer |


| 21-24 | Stop time (GMT) | Integer |
| :---: | :---: | :---: |
| 28-32 | Duration (min) | Integer |
| 40 | $\begin{aligned} & \text { Operational mode }(0=\text { drift- } \\ & \text { ing; } 1=\text { steaming }) \end{aligned}$ | Integer |
| 43-48 | u component ( $\mathrm{m} / \mathrm{s}$ ) | Real F6.2 |
| 51-58 | $v$ component (m/s) | Real F6.2 |
| 67-72 | u component (kn) | Real F6.2 |
| 75-80 | v component (kn) | Real F6.2 |
|  | Ship Position Data |  |
| Column | Type of data $V$ | Variable |
| 1 | Ship ID number | Integer |
| 5-7 | Julian day | Integer |
| 13-14 | Calendar day | Integer |
| 20-23 | Time (GMT) | Integer |
| 29-30 | Latitude (deg) | Navigational fix data |
| 35-36 | Latitude (min) | Navigational fix data |
| 42-44 | Longitude (deg) | Navigational fix data |
| 49-50 | Longitude (min) | Navigational fix data |
| 59-60 | Latitude (deg) | Adjusted positions |
| 65-66 | Latitude (min) | Adjusted positions |
| 72-74 | Longitude (deg) | Adjusted positions |
| 79-80 | Longitude (min) | Adjusted positions |

Tables 2-3 and 2-4 contain inventories of the ship operations and navigation data.

Table 2-3.--Inventory of ship operations data

| Magnetic <br> tape No. | Microfilm <br> reel No. | Description |
| :--- | :---: | :---: |
| B9622* |  | All ship operations data <br> from all fixed ships. |
|  | DOC. -1 | Tabulation of all fixed <br> ship operations data. |
|  | " | BOMEX Event Log. |
|  | DOC. $-7^{* *}$ | Ship Operations Form for <br> all fixed ships. |

*One of six files on the tape.
**Card 4 on this reel. Also on this microfilm are Card 2 - BLIP Calibration Form, and Card 3 - STD Observation Form.

Table 2-4. - Inventory of renavigation (ship motion and position) data
Magnetic tape No. 8960

|  | Data | File No. | Ship | Date, 1969 |
| :---: | :---: | :---: | :---: | :---: |
| Ship | arotion | 1 | Rainier | May 24 to May 28 |
|  | " | 2 |  | May 30 to June 4 |
|  |  | 3 | " | June 5 to June 10 |
|  | " | 4 | Mt. Mitchell | May 24 to May 28 |
|  | " | 5 |  | May 30 to June 4 |
|  | " | 6 | " | June 6 to June 10 |
|  | " | 7 | Discoverer | May 25 to June 3 |
|  | " | 8 |  | June 4 |
|  | " | 9 | " | June 6 to June 10 |
| Ship | position | 10 | Rainier | May 24 to May 28 |
|  | " | 11 |  | May 30 to June 4 |
|  | " | 12 | " | June 5 to June 10 |
|  | " | 13 | Mt. Mitchell | May 24 to May 28 |
|  | " | 14 |  | May 30 to June 4 |
|  | " | 15 | " | June 6 to June 10 |
|  | " | 16 | Discoverer | May 25 to June 3 |
|  | " | 17 | " | June 4 |
|  | " | 18 | " | June 6 to June 10 |
| Ship | motion | 19 | Oceanographer | June 21 to June 26 |
|  |  | 20 | " | June 28 to June 30 |

Table 2-4.--Inventory of renavigation (ship motion and position) data (continued)

|  | Magnetic tape No. 8960 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Data | File No. | Ship | Date, 1969 |
| Ship | motion | 21 | Rainier | June 21 to June 26 |
|  | : | 22 | " | Jupe 28 to July 1 |
|  | 1 | 23 | Mt. Mitchell | June 21 tó June 26 |
|  | " | 24 | 11 | June 28 to July 2 |
|  | " | 25 | Discoverer | June 21 to June 26 |
|  | " | 26 | 1 | June 28 to July 2 |
|  | " | 27 | Rockaway | June 21 to June 26 |
|  | " | 28 | II | June 28 to June 29 |
|  | " | 29 | 11 | June 30 to July 2 |
| Ship | position | 30 | Oceanographer | June 21 to June 26 |
|  | " | 31 | -17 | June 28 to June 30 |
|  | " | 32 | Rainier | June 21 to June 26 |
|  | " | 33 | " | June 28 to July 1 |
|  | " | 34 | Mt. Mitchell | June 21 to June 26 |
|  | " | 35 | " | June 28 to July 2 |
|  | " | 36 | Discoverer | June 21 to June 26 |
|  | " | 37 | " | June 28 to July 2 |
|  | " | 38 | Rockaway | June 21 to June 26 |
|  | " | 39 | 1 | June 28 to June 29 |
|  | " | 40 | " | June 30 to July 2 |

Microfilm reel No. NAV-1
Computer tabulation of the ship motion and position data

### 2.4 Supplementary Material Available From the Archive

Microfilm reel No. DOC-5, containing the SCARD Event Log for all ships, all periods.

Microfilm reel No. DOC-8, consisting of Card 5 - Observation Summary Form for all ships, all periods; Card 6 - System parameter failure, all pericds; ods; Card 7 - Slant range and azimuth, the Rockaway, all periods; and Card 9 Boom Calibration Form, all ships, all periods.

### 2.5 Material in Temporary Storage

Hard-copy materials, consisting of original manual logs, strip charts, and the like, have been put into temporary storage for a 3-yr period. Inquiries concerning these materials should be addressed to the Center for Experiment Design and Data Analysis, EDS, NOAA, Page Bldg. 2, Washington, D.C. 20235.

## 3. BOOM SURFACE METEOROLOGICAL DATA SET

Meteorological data were obtained from instruments mounted on a boom extending from the bow of each ship approximately 10 m above the sea surface. These were recorded automatically on the Signal Conditioning and Recording Device (SCARD) at $30-s$ intervals. Parameters measured aboard all five ships were dry- and wet-bulb temperatures, relative humidity, sea-surface temperature, wind direction, and windspeed. In addition, boom instrumentation on the Discoverer, Rainier, and Rockaway included radiometers and pyranometers that yielded data on incident, reflected, and net radiation. Table 3-1 lists the sensors used for the various measurements.

Barometric pressure was also rećorded automatically on SCARD. During BOMEX Period I, the Oceanographer, Rainier, Mt. Mitchell, and Rockaway carried the Rosemount Engineering Company's capacitive pressure sensing unit, Model 1101-A33BADB ( 999.0 to $1,010 \mathrm{mb}=0$ to 5 V d.c.). The Discoverer also carried a DPD barometer developed by the National Center for Atmospheric Research (NCAR). However, the Rockaway's Rosemount sensor did not work, and the Rosemount unit aboard the Discoverer was transferred to the Rockaway for measurements during Periods IT, III, and IV.

Ship's true heading was recorded in SCARD from the output of a precision potentiometer mounted to a repeater that was slaved to the master gyro (0 to $360^{\circ}=0$ to 5 V d.c.) on each of the ships.

Routine maintenance and calibration were performed daily for the boom sensors and during the two of the four in-port periods for the gyro and Rosemount barometers. The DPD barometer was calibrated at NCAR before and after the field operations.

### 3.1 Data Processing

The original boom data were digitized at NASA's Mississippi Test Facility (MTF), where two-samples-per-minute ( 2 spm ) time series were produced for each parameter. These digitized tapes were used as the base in the final processing to generate three data sets: (1) "cleaned-up" 2 -spm values on magnetic tape, (2) edited 10 - and $30-\mathrm{min}$ averages, and (3) time-series plots of $10-\mathrm{min}$. averages on $35-\mathrm{mm}$ microfilm. The transfer coefficients used in converting the digitized data to engineering units are given in table 3-2.

In generating the 2 -spm data, the original MTF time series were checked ${ }^{-}$ against manual observations and logs, and periods of known noise or obviously erroneous data were deleted. No further editing was done. Ho.ever, for the 10- and $30-\mathrm{min}$ averages, a least-squares routine was applied to the original 2-spm data to eliminate noise spikes before calculations were made. Of the 20 values used in forming the average, not more than 4 falling outside a prescribed limit were rejected. Some spikes may therefore remain in the data. If the number of values was less than 10 , an average was not derived.

Table 3-1.--Boom sensors

| Measurement | Sensor | Remarks |
| :---: | :---: | :---: |
| Air dry-bulb temperature | Thermivolt thermometer, Mode1 \#752-10, Yellow Springs Instruments, Inc. | 20 to $35^{\circ} \mathrm{C}$ |
| Air wet-bulb temperature | Thermivolt thermometer, Model \#752-10, Yellow Springs Instruments, Inc. | 20 to $35^{\circ} \mathrm{C}$ |
| Sea-surface temperature | Thermivolt thermometer, Model \#752-10, Yellow Springs Instruments, Inc. | 20 to $35^{\circ} \mathrm{C}$ |
| Relative humidity | ```Relative humidity transducer, Model No. 15-7012, Hydrodynamics, Inc.``` | 0.0 to $100 \%$ |
| Windspeed relative to ship | Windspeed transmitter, F420 series, U.S. Weather Bureau | 0 to $30 \mathrm{~m} / \mathrm{s}$ |
| Incident solar radiation | Pyranometer, Model 15, Eppley Laboratory | Spectral range up to $2.5 \mu$ |
| Incident terrestrial radiation | Pyranometer, Model 15, Eppley Laboratory | ```Spectral range up to 2.5 \mu``` |
| Net total radiation | Suomi-Fransilla-Izlitser ventilated net radiometer | ```Spectral range 0.5 to 40 \mu``` |
| Precipitation | Rain gage | Manually recorded |

Table 3-2,--Final transfer equations and coefficients used for conversion of measured voltage counts to scientific units

|  | Dry-bulb temperature $\left(T_{D B}\right)$ |
| :--- | :--- |
| Ship | $T_{D B}$ |
|  | $T_{W B}=k_{1} V+k_{2}$, where $V=$ counts $/ 2000$ |
|  | $T_{S S}$ |


| Oceanographer | 0.00140 (counts) $+14.9{ }^{\circ} \mathrm{C}$ |
| :---: | :---: |
| Rainier | 0.00140 (counts) $+15.0^{\circ} \mathrm{C}$ |
| Mt. Mitchell | 0.00141 (counts) $+15.0^{\circ} \mathrm{C}$ |
| Discoverer | 0.00140 (counts) $+15.0^{\circ} \mathrm{C}$ |
| Rockaway | (did not work) |


| Period I |  |
| :---: | :---: |
| $\mathrm{T}=0.00140$ (counts) $+14.9{ }^{\circ} \mathrm{C}$ | $\mathrm{T}=0.00140$ (counts) $+14.9{ }^{\circ} \mathrm{C}$ |
| 0.00140 (counts) $+15.0^{\circ} \mathrm{C}$ | 0.00140 (counts) $+15.0^{\circ} \mathrm{C}$ |
| 0.00142 (counts) $+14.99^{\circ} \mathrm{C}$ | 0.00140 (counts) $+15.0^{\circ} \mathrm{C}$ |
| $\begin{aligned} & 0.00140(\text { counts })=15.0^{\circ} \mathrm{C} \\ & \quad(\text { did not work }) \end{aligned}$ | $\begin{aligned} & 0.00140 \text { (counts) }+15.0^{\circ} \mathrm{C} \\ & \text { (did not work) } \end{aligned}$ |
| Period II |  |
| $\mathrm{T}=0.00140$ (counts) $+20.0^{\circ} \mathrm{C}$ | $\mathrm{T}=\dot{0} .00140$ (counts) $+20.0^{\circ} \mathrm{C}$ |
| 0.00140 (counts) $+20.0^{\circ} \mathrm{C}$ | 0.00140 (counts) $+20.0^{\circ} \mathrm{C}$ |
| 0.00140 (counts) $+20.0{ }^{\circ} \mathrm{C}$ | 0.00140 (counts) $+20.0^{\circ} \mathrm{C}$ |
| 0.00140 (counts) $+20.0^{\circ} \mathrm{C}$ | 0.00140 (counts) $+20.0^{\circ} \mathrm{C}$ |
| 0.00140 (counts) $+20.0^{\circ} \mathrm{C}$ | 0.00140 (counts) $+20.0^{\circ} \mathrm{C}$ |

Period III
All ships same as in Period II
Period IV
All ships same as in Period II

Table 3-2.--Final transfer equations and coefficients used for conversion of measured voltage counts to scientific units (continued)

|  | Windspeed (WS) | Wind direction (WD) |
| :--- | :--- | :--- |
| Ship | WD | Ship's gyro (G) |
|  | $\mathrm{WS}=\mathrm{k}_{1} \mathrm{~V}+\mathrm{k}_{2}$, where $\mathrm{V}=$ counts $/ 2000$ |  |


| Period I |  |  |  |
| :---: | :---: | :---: | :---: |
| Oceanographer | WS $=0.002522$ (counts) $+1.03 \mathrm{~m} / \mathrm{s}$ | WD $=0.036$ (counts) $+167^{\circ}$ | $\mathrm{G}=0.036$ (counts) $+0^{\circ}$ |
| Rainfer | 0.002510 (counts) $+1.03 \mathrm{~m} / \mathrm{s}$ | 0.036 (counts) $+162^{\circ}$ | 0.036 (counts) $+0^{\circ}$ |
| Mt. Mit thell | 0.002466 (counts) $+1.03 \mathrm{~m} / \mathrm{s}$ | 0.036 (counts) $+162^{\circ}$ | 0.036 (counts) $+280^{\circ}$ |
| Discoverer | 0.002476 (counts) $+1.03 \mathrm{~m} / \mathrm{s}$ | 0.036 (counts) $+179^{\circ}$ | $0.036($ counts $)+0^{\circ}$ |
| Rockaway | (did not work) | (did not work) | (did not work) |

## Period II

| Oceanographer |
| :--- |
| Rainier |
| Mt. Mitchell |
| Discoverer |
| Rockaway |

$$
\begin{aligned}
\text { WS }= & 0.002522 \text { (counts) }+1.03 \mathrm{~m} / \mathrm{s} \\
& 0.002510 \text { (counts) }+1.03 \mathrm{~m} / \mathrm{s} \\
& 0.002466 \text { (counts) }+1.03 \mathrm{~m} / \mathrm{s} \\
& 0.002476(\text { counts })+1.03 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
W D=0.036 \text { (counts) }+167^{\circ}
$$

$$
.036 \text { (counts) }+167^{\circ}
$$

$$
0.036 \text { (counts) }+162^{\circ}
$$

$$
0.036(\text { counts })+179^{\circ}
$$

(did not work)
$\begin{aligned} \mathrm{G}= & 0.036(\text { counts })+ \\ & 05^{\circ} \\ & 0.036(\text { counts })+0^{\circ} \\ & 0.036(\text { counts })+290^{\circ} \\ & 0.036(\text { counts })+ \\ & 0.036(\text { counts })+ \\ & 0^{\circ}\end{aligned}$

$$
\begin{aligned}
\mathrm{G}= & 0.036(\text { counts })+5^{\circ} \\
& 0.036(\text { counts })+0^{\circ} \\
& 0.036(\text { counts })+290^{\circ} \\
& 0.036(\text { counts })+0^{\circ} \\
& 0.036(\text { counts })+0^{\circ}
\end{aligned}
$$

Period IV
All ships same as in Period III

Table 3-2.--Final transfer equations and coefficients used for conversion of measured voltage counts to scientific units (continued)

*NCAR barometer used. Rosemount barometers were installed on all other ships.

Table 3-2.--Final transfer equations and coefficients used for conversion of measured voltage counts to scientific units (continued)

|  | $\begin{array}{ll} \text { Incident (RI) } & R I \\ & R R=k_{1} V \\ & R N \end{array}$ | $\begin{aligned} & \text { Reflected }(R R) \\ & k_{2}, \text { where } V=\text { counts } / 2000 \end{aligned}$ | Net (RN) |
| :---: | :---: | :---: | :---: |
| Period I |  |  |  |
|  | RI $=$ | $\mathrm{RR}=$ | $\mathrm{RN}=$ |
| Rainier | 0.00013330 (counts) $+0.0 \mathrm{ly} / \mathrm{min}$ | 0.00006935 (counts) $+0.01 \mathrm{ly} / \mathrm{min}$ | 0.00044756 (counts) $+0.01 \mathrm{y} / \mathrm{min}$ |
| Discoverer | 0.00013830 (counts) $+0.01 \mathrm{y} / \mathrm{min}$ | 0.00006545 (counts) $+0.01 \mathrm{y} / \mathrm{min}$ | 0.00038375 (counts) $+0.0 \mathrm{ly} / \mathrm{min}$ |
| Rockaway | 0.00022990 (counts) $+0.0 \mathrm{ly} / \mathrm{min}$ | 0.00012310 (counts) $+0.0 \mathrm{ly} / \mathrm{min}$ | 0.00037486 (counts) $+0.01 \mathrm{l} / \mathrm{min}$ |
| Period II |  |  |  |
|  | RI $=$ | $\mathbf{R R}=$ | $\mathrm{RN}=$ |
| Rainier | 0.00020000 (counts) $+0.01 \mathrm{l} / \mathrm{min}$ | 0.00006935 (counts) $+0.0 \mathrm{ly} / \mathrm{min}$ | 0.00044756 (counts) $+0.0 \mathrm{ly} / \mathrm{min}$ |
| Discoverer | 0.00020745 (counts) $+0.01 \mathrm{y} / \mathrm{min}$ | 0.00006545 (counts) $+0.01 \mathrm{y} / \mathrm{min}$ | 0.00019187 (counts) $+0.0 \mathrm{ly} / \mathrm{min}$ |
| Rockaway | 0.00022990 (counts) $+0.01 \mathrm{y} / \mathrm{min}$ | 0.00012310 (counts) $+0.01 \mathrm{l} / \mathrm{min}$ | 0.00018719 (counts) $+0.0 \mathrm{ly} / \mathrm{min}$ |
| Period III |  |  |  |
|  | RI $=$ | $\mathrm{RR}=$ | $\mathrm{RN}=$ |
| Rainier | 0.00020000 (counts) $+0.01 \mathrm{y} / \mathrm{min}$ | (did not work) |  |
| Discoverer | $0.00020745 \text { (counts) }+0.01 \mathrm{y} / \mathrm{min}$ | $0.00006545(\text { counts })+0.01 \mathrm{y} / \mathrm{min}$ | $0.00019187 \text { (counts) }+0.0 \mathrm{ly} / \mathrm{min}$ |
| Rockaway | 0.00022990 (counts) $+0.01 \mathrm{l} / \mathrm{min}$ | (did not work) | (did not work) |
| Period IV |  |  |  |
|  | $\mathrm{RI}=$ | $\mathrm{RR}=$ | $\mathrm{RN}=$ |
| Rainier | 0.00020000 (counts) $+0.01 \mathrm{y} / \mathrm{min}$ | 0.00006935 (counts) $+0.0 \mathrm{ly} / \mathrm{min}$ | 0.00044756 (counts) $+0.01 \mathrm{y} / \mathrm{min}$ |
| Discoverer | 0.00020745 (counts) $+0.01 \mathrm{l} / \mathrm{min}$ | 0.00006545 (counts) $+0.01 \mathrm{ly} / \mathrm{min}$ | 0.00022837 (counts) $+0.01 \mathrm{l} / \mathrm{min}$ |
| July 22 | 0.00019635 (counts) $+0.0 \mathrm{ly} / \mathrm{min}$ | (did not work) | 0.00035873 (counts) $+0.01 \mathrm{l} / \mathrm{min}$ |
| Rockaway | 0.00022990 (counts) $+0.01 \mathrm{l} / \mathrm{min}$ | 0.00012331 (counts) $+0.01 \mathrm{y} / \mathrm{min}$ | 0.0002228 (counts) $+0.01 \mathrm{l} / \mathrm{min}$ |

### 3.1.1 Wind Direction and Windspeed

Final wind direction was converted from measured relative wind direction to true wind direction by inclusion of ship's headings. Ship's speed, however, which was usually less than $1 \mathrm{~m} / \mathrm{s}$, was not included. Therefore, the boom wind velocities are relative to the ship's velocity. To obtain true heading, a correction had to be made because of voltage reduction at the sensing potentiometer. For this correction, which was applied to the gyro voltage before conversion to engineering units, the following equation (an approximation) was used:

$$
v=v_{i}\left(1.00000+5.10204 \times 10^{-10} / v_{i}\left(10,000-v_{i}\right)\right.
$$

where $v=$ corrected voltage in counts, and $v_{i}=$ recorded voltage in counts.
The renavigated ship motion and position data for Periods I, II, and III, when, after mooring failure, the ships operated in alternating steaming and drifting modes, were not taken into account in processing the boom data. The corrected motion and position data are discussed in section 2 of this report.

### 3.1.2 Sea-Surface Temperature

Temperature readings from the thermistor suspended from the boom did not always compare favorable with Nansen bottle measurements. On the Oceanographer and Discoverer the differences amounted to only $\pm 0.3^{\circ} \mathrm{C}$, but in some cases they were as high as $\pm 1.0^{\circ} \mathrm{C}$. The average values by which the Nansen readings exceeded those of the thermistor are given in table 3-3. However, since the two sensors were mounted on different platforms and possibly at slightly different depths, no attempt was made to apply these corrections to the final boom data.

### 3.1.3 Humidity

Both the wet-bulb temperature ( $T_{W B}$ ) sensor and the relative humidity (RH) transducer values contained biases, and there were problems with drift. The $T_{\text {WB }}$ readings were often contaminated for several hours because the wick had dried out. Such segments of erroneous readings were eliminated during the final processing. The RH values, however, showed trends that could not be defined, and much of these data may be questionable.

The 10 - and $30-\mathrm{min}$ averages include computed values of relative humidity, RH; wet-bulb temperature, $\mathrm{T}_{\mathrm{WB}}$; specific humidity, Q ; u and v wind components; and wind direction relative to the ship's boom.

In deriving an expression for the $T_{W B}$ computation, $T_{W B}$ was first expressed by

$$
\begin{equation*}
E_{s}\left(\mathrm{~T}_{W B}\right)-(R H / 100) * E_{s}\left(T_{D B}\right)=0.00066 * P *\left(1+0.00115 * T_{W B}\right) *\left(T_{D B}-T_{W B}\right) \tag{1}
\end{equation*}
$$

Table 3-3.-Average differences between the Nansen readings and the boom sea-surface temperatures--Nansen minus boom

| Observation <br> Period | Beginning |  | Ending | Difference* <br> $\left({ }^{\circ} \mathrm{C}\right)$ |
| :--- | :---: | :---: | :---: | :---: |

Oceanographer

| I | May 3 | through | May 15 |  | +0.3 |
| :---: | :---: | :---: | :---: | :---: | ---: |
| II | May 24 | $00: 00: 00$ | May 26 | $10: 15: 00$ | +0.3 |
| II | May 26 | $10: 15: 00$ | June 10 | $23: 59: 59$ | +0.2 |
| III | June 21 | $00: 00: 00$ | June 26 | $23: 59: 59$ | +0.1 |
| III | June 27 | $00: 00: 00$ | June 30 | $10: 15: 00$ | 0.0 |
| IV | July 12 | $05: 00: 00$ | July 15 | $01: 59: 59$ | 0.0 |
| IV | July 15 | $02: 00: 00$ | July 23 | $23: 59: 59$ | +0.3 |
| IV | July 24 | $00: 00: 00$ | July 29 | $05: 00: 00$ | +0.2 |

## Rainier

No Nansen cast temperatures available

| May 24 | $00: 00: 00$ | May 25 | $11: 30: 00$ | +0.2 |
| :--- | :--- | :--- | :--- | ---: |
| May 25 | $11: 30: 01$ | May 27 | $23: 59: 59$ | 0.0 |

Thermistor measurements missing from May 28 through May 29

| II | May 30 | $00: 00: 00$ | June 4 | $15: 30: 00$ | +0.2 |
| :--- | ---: | :--- | :--- | :--- | ---: |
| II | June 4 | $15: 30: 01$ | June 4 | $23: 59: 59$ | 0.0 |
| II | June 6 | $00: 00: 00$ | June 10 | $08: 30: 00$ | +0.1 |
| III | June 21 | $00: 00: 00$ | June 28 | $23: 59: 59$ | +0.2 |
| III | June 29 | $00: 00: 00$ | July 1 | $22: 30: 00$ | 0.0 |
| IV | July 11 | $00: 00: 00$ | July 14 | $16: 00: 00$ | +0.7 |
| IV | July 14 | $16: 00: 01$ | July 17 | $15: 00: 00$ | +0.8 |
| IV | July 17 | $15: 00: 01$ | Iuly 18 | $03: 00: 00$ | +0.7 |
| IV | July 18 | $03: 00: 00$ | July 18 | $16: 00: 00$ | +0.6 |
| IV | July 18 | $16: 00: 01$ | July 19 | $23: 59: 59$ | +0.5 |
| IV | July 20 | $00: 00: 00$ | July 21 | $09: 00: 00$ | +0.4 |
| IV | July 21 | $09: 00: 01$ | July 28 | $23: 59: 59$ | +0.3 |

Table 3-3.-Average differences between the Nansen readings and the boom sea-surface temperatures-Nansen minus boom (continued)

| Observation <br> Period | Beginning |  | Ending |  |
| :--- | :--- | :--- | :--- | :--- |

Mt. Mitchell

I

II
III
III
III
III
III
IV
July 11
00:00:00
July 28
23:59:59
$+0.6$

## Discoverer

| I | May 7 | $00: 00: 00$ | May 9 | $16: 15: 00$ | +0.2 |
| ---: | ---: | :--- | :--- | :--- | ---: |
| I | May 9. | $16: 15: 01$ | May 10 | $14: 30: 00$ | 0.0 |
| I | May 10 | $14: 30: 01$ | May 11 | $16: 05: 00$ | -0.4 |
| I | May 11 | $16: 05: 01$ | May 12 | $16: 25: 00$ | -0.3 |
| I | May 12 | $16: 25: 01$ | May 14 | $23: 59: 59$ | -0.1 |
| II | May 24 | through | June 10 |  | 0.0 |
| III | June 21 | $09: 00: 00$ | June 21 | $20: 00: 00$ | +0.1 |
| III | June 21 | $20: 00: 01$ | June 23 | $14: 30: 00$ | +0.2 |
| III | June 23 | $14: 30: 01$ | June 24 | $14: 30: 00$ | +0.1 |
| III | June 24 | $14: 30: 01$ | July 1 | $23: 59: 59$ | 0.0 |
| IV | July 11 | $14: 30: 00$ | July 11 | $23: 59: 59$ | -0.2 |
| IV | July 12 | $00: 03.00$ | July 28 | $00: 00: 00$ | 0.0 |

Rockaway.
No Nansen cast temperatures available
*Correction not applied to final boom data.
where

```
TWB}= wet-bulb temperature, degrees' Celsius
T
    P = ambient temperature, millibars;
    Es}=\mathrm{ saturation vapor pressure over water, millibars; and
    RH = ambient relative humidity, percent;
```

and by Tetens' equation (Handbook of Meteorology, McGraw-Hill Book Co., N.Y., 1945, p. 343)

$$
\begin{equation*}
E_{s}\left(T_{W B}\right)=6.11 * 10^{\left(\frac{7.5 * T_{W B}}{237.3+T_{W B}}\right)} \tag{2}
\end{equation*}
$$

When eq. (2) is substituted into eq. (1), the resulting equation cannot be solved by the usual procedure of finding the root of a polynomial. Thus, to find $T_{W B}$, the following equation, which approximates the wet-bulb depression, was introduced:

$$
\left[T_{D B}-T_{W B}^{(0)}\right]_{p=1000}=6.6+2 *\left(\frac{\mathrm{~T}_{\mathrm{DB}}-20}{10}\right)-3 *\left(\frac{\mathrm{RH}-50}{20}\right)-1 *\left(\frac{\mathrm{~T}_{\mathrm{DB}}-20}{10}\right) *\left(\frac{\mathrm{RH}-50}{20}\right)
$$

where $T_{W B}(0)$ is a reasonably close first approximation of $T_{W B}$. Tetens' formula can now be accurately written in the form

$$
E_{s}\left(T_{W B}\right) \triangleq E_{s}\left[T_{W B}^{(0)}\right] *\left[1+a_{1}(\Delta T)+a_{2}(\Delta T)^{2}\right]
$$

where $\Delta T \equiv T_{W B}-T_{W B}{ }^{(0)}$. Now $\Delta T$ is the solution to a quadratic equation and is added to the first estimated depression to. give the true depression. This method gives an accuracy of about $\pm 0.01^{\circ} \mathrm{C}$ for the data set in question.

Relative humidity is computed from

$$
R H=100\left[E\left(T_{D B}\right) / E_{S}\left(T_{D B}\right)\right],
$$

where $E\left(T_{D B}\right)$, the ambient vapor pressure in millibars, is computed from the psychrometric equation

$$
E\left(T_{D B}\right)=E_{S}\left(T_{W B}\right)-0.00066 * P *\left(1+0.00115+T_{W B}\right) *\left(T_{D B}-T_{W B}\right)
$$

Here, $E_{s}\left(T_{W B}\right)$ is the saturation vapor pressure in millibars at the wet-hulb temperature, $T_{W B}$, and is computed from Tetens' equation

$$
\mathrm{E}_{\mathrm{s}}\left(\mathrm{~T}_{\mathrm{WB}}\right)=6.11 * 10^{\left(\frac{7.5 * \mathrm{~T}_{\mathrm{WB}}}{237.3+\mathrm{T}_{\mathrm{WB}}}\right)}
$$

By substituting $T_{D B}$ for $T_{W B}$, the saturation vapor pressure at dry-bulb temperature, $\mathrm{E}_{\mathrm{s}}\left(\mathrm{T}_{\mathrm{DB}}\right)$, is also derived from Tetens' equation.

Specific humidity, $Q$, in grams per kilogram, is computed from

$$
\mathrm{Q}=6.22 * \mathrm{E}\left(\mathrm{~T}_{\mathrm{DB}}\right)^{\prime} /\left[\mathrm{P}_{(\mathrm{mb})}-0.378 * \mathrm{E}\left(\mathrm{~T}_{\mathrm{DB}}\right)^{\prime}\right],
$$

where $E\left(T_{D B}\right)$ ' is a function of relative humidity as measured by the boom instrument (RH'). By solving the RH equation for $E\left(T_{D B}\right)$, we can form the expression

$$
E\left(T_{D B}\right)^{\prime}=\left(R H^{\prime} / 100\right) * E_{s} *\left(T_{D B}\right),
$$

and calculate $E_{s}\left(T_{D B}\right)$ from Tetens' equation as described previously.

### 3.1.4 Atmospheric Pressure

All five ships were equipped with Weather Service precision aneroid barometers, scaled in millibars. Operating procedures called for comparison of these barometers with a portable standard during in-port periods to determine the proper instrument and barometric corrections. With these corrections, the observers were to measure sea-level pressure to the nearest 0.10 mb . As noted earlier, at the beginning of the experiment, all ships carried Rosemount transducers, and the Discoverer, in addition, was equipped with an NCAR DPD barometer during Observation Period I.

Examination of the initial Rosemount and DPD pressure values revealed many inconsistencies, stemming from insufficient in-port calibration documentation, and uncertainties as to whether (1) station or sea-level pressures had been recorded and (2) corrections had been applied by adjustments of the instruments during in-port periods. Pressure values for the Rockaway for Period I are missing, because the Rosemount transducer was malfunctioning. The Discoverer's Rosemount instrument was transferred to the Rockaway at the end of Period I, producing few data during Period II, but continuous records for Periods III and IV. Several methods were used in an attempt to solve these problems.

First, $10-$ min average Rosemount station pressure values generated with the manufacturer's transfer equations were plotted as time series for all periods and ships; except for the Discoverer, all periods, and the Rockaway, Periods I and II. The manually recorded $11 / 2$-hourly sea-level aneroid pressure values were added to these plots, which were then inspected for errors.

Since the Rosemount values were station pressures, they should have differed from the sea-level aneroid values by an amount equal to the barometric correction for the Rosemount instrument's height above sea-level. This was not the case, however, and the average differences between the two (sealevel aneroid values minus corresponding transducer station pressures) were determined for each observation period. The results are shown in table 3-4.

To further define the differences between the two types of barometer readings, mean sea-level pressure charts were constructed for the BOMEX area for each observation period (figs. 3-1 to 3-4). This was done by plotting smoothed values extracted from daily charts prepared routinely by the National Hurricane Center for 0000 to 1200 GMT , at the BOMEX ship positions. Comparison of these results with similarly averaged values for the same times based on the shipboard aneroid sea-level readings showed that the aneroid values tended to fit a smoothed isobaric pattern, except for the Rainier, Period I, and the Mt. Mitchell, Periods II, III, and IV. The average Rainier aneroid value was slightly more than 1 mb lower than the value plotted on the chart, and a correction of +1 mb was therefore applied to the Rainier data for Period I, as shown in table 3-4. In the case of the Mt. Mitchell, the reported aneroid pressures were substantially higher than the smoothed sea-level chart values. However, if the former had been adjusted to conform entirely with the charts, a forced perturbation in the isobars would have resulted, which would not have been realistic in view of the continuous, smooth flow suggested by the surface winds measured on this ship, as well as on the Discoverer and on the island of Barbados. Based on these considerations, and on a momentum balance analysis done at CEDDA, a correction of -0.4 mb was applied to the Mt. Mitchell data for Periods II, III, and IV (table 3-4).

The sum of the aneroid minus transducer ("A-T") and the adjusted aneroid ("Adj. A") values in table 3-4 was added algebraically to the $\mathrm{k}_{2}$ term in the initial transfer equations to obtain the final sea-level pressures for the Rosemount and NCAR DPD transducers, shown as "Adj. $T$ " in table 3-4. In the case of the Discoverer, however, a completely modified transfer equation had to be applied to the data for Periods II, III, and IV. The initial transfer equation for conversion to engineering units was

$$
\text { Pressure }=k_{1} v(\text { counts })+k_{2},
$$

where $k_{1}=-0.003478$ and $k_{2}=+1033.0 \mathrm{mb}$. It was later discovered that these $k$ values were erroneous, and another attempt was made at NCAR to derive a correct set of $k$ terms. The results were $k_{1}=+0.003360$ and $k_{2}=1000.5 \mathrm{mb}$. However, a comparison of the pressures obtained with this second set of $k$ terms with the pressures for the other ships and with the values extracted from the sea-level charts indicated that the $k_{2}$ term was too low. Based on additional studies at CEDDA, a correction factor of +2.6 mb (table 3-4) was applied to the Discoverer data for the Periods II, III, and IV, and $k_{2}=$ 1003.1 mb (table $3-2$, sec. 3.1) was used in the final processing of these data.

### 3.1.5 Radiation

Correction factors for the initial net radiation data were furnished by P. Kuhn, Atmospheric Physics and Chemistry Laboratory, Environmental Research Laboratories, NOAA, Boulder, Colo. 80302. The resulting transfer coefficients are given in table 3-2, section 3.1.

### 3.2 Archive Format and Data Inventory

The final 2 -spm boom data are archived on seven-track, 556 BPI, BCD magnetic tape, as well as on microfilm. The first file consists of ANSI


Figure 3-1.--Mean sea-1evel chart, Period I.


Figure 3-2.--Mean sea-level chart, Period II.


Figure 3-3.--Mean sea-level chart, Period III.


Figure 3-4.--Mean sea-level chart, Period IV.

Table 3-4.-Pressure differences and adjustments (mb)

|  | Period I |  | Period II | Period III | Period IV | Barometer height correction (1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oceanographer | May 3-9 | May 11-14 |  |  |  |  |
| A-T (2) | +0.21 | -0.09 | +1.14 | +1.37 | +1.65 | +0.9 |
| Adj. A (3) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| Adj. T (4) | 0.0 | 0.0 | +1.1 | +1.4 | +1.6 |  |
| Rainier |  |  |  |  |  |  |
| A-T |  |  | +1. 30 | +0.85 | +1.33 | +1.0 |
| Adj. A |  |  | 0.0 | 0.0 | 0.0 |  |
| Adj. T |  |  | +1. 3 | +0.8 | +1. 3 |  |
| Rockaway |  |  |  |  |  |  |
| A-T |  |  | +1.06 | +1. 15 | +1.31 | +0.8 |
| Adj. A |  |  | 0.0 | 0.0 | 0.0 . |  |
| Adj. T |  |  | +1.1 | +1.2 | +1.3 |  |
| Discoverer | May 3-7 | May 9-15 |  |  |  |  |
| A-T | --- | - | --- | --- | --- | +0.8 |
| Adj. A | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |  |
| Adj. T | +4.4 | +5.8 | +2.6* | +2.6* | +2.6* | +0.5* |
| Mt. Mitchel1 ${ }^{\text {a }}$ |  |  |  |  |  |  |
| A-T | +0.54 |  | +1.39 | +1.41 | +1. 52 | +1.0 |
| Adj. A | 0.0 |  | -0.4 | -0.4 | -0.4 |  |
| Adj. T | +0.5 |  | +1.0 | +1.0 | +1.0 |  |

(1) Correction for height of barometer above sea level.
(2) Aneroid (sea level) minus transducer (station) pressure values.
(3) Adjustment of aneroid sea-level values to fit mean sea-level charts.
(4) Adjustment of pressure transducer values to agree with mean sea-level charts.

* DPD NCAR pressure transducer used.
standard label, followed by end-of-file. The second file consists of an 80 -character descriptive tape header, followed by end-of-file. The third file is repeated for each day. It consists of one or more data records each 1,540 characters long, and is preceded by a header record and followed by an end-offile. The 350 -character header record identifies the data by type, ship name, and Julian day. A double end-of-file follows the last data file on the tape.

An inventory of the 2-spm boom data is given in table 3-5.
The 10 - and $30-m i n$ average boom data are also archived. on both magnetic tape and microfilm. The format is shown in figure 3-5, and an inventory of these data is given in table 3-6.
3.3 Supplementary Material Available From the Archive

Microfilm reel No.
Description

DOC-5
DOC-6
DOC-7

DOC-8

SCARD Event Log.
Card 1 - Surface Observation Form; also on this reel is Card 0 - Rawinsonde Form.
Card 4 - Ship Operations Form; also on this reel are Card 2 - BLIP Calibration Form and Card 3 - STD Observation Form.
Card 9 - Boom Calibration Form; also on this reel are Card 5 - Observation Summary Form, Card 6 - System parameter failure, and Card 7 - Slant range and azimuth, Rockaway.

Note that the information on reels DOC-6 and DOC-7 is also contained on magnetic tape No. B08667.

Documents
(BO-1-4-1000) R-066-17
(B0-1-4A-1000)
(BO-1-5-1000) R-066-19

## Title

BOMEX Software System, Program Documentation for Boom/Surface-Standard Engineering Units Conversion Program, General Electric, May 1971.
BOMEX Software System, Program Documentation for Boom/Surface Average, General Electric, June 1971.
BOMEX/Software System, Program Documentation for Boom/Surface Plot 30-Second, General Electric June 1971.

### 3.4 Material in Temporary Storage

Hard-copy material, consisting of original manual logs, strip charts, and the like, has been placed in temporary storage for a period of 3 years. Inquiries concerning this material should be addressed to the Center for Experiment Design and Data Analysis, EDS, NOAA, Washington, D.C. 20235.

Table 3-5.--Inventory of $2-3 \mathrm{pm}$ boom data

| Magnetic <br> tape No. | Microfilm reel No. | Ship | BOMEX <br> Observation Period | Beginning |  |  | Ending |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | ```Julian day``` | $\begin{aligned} & \text { Date } \\ & (1969) \end{aligned}$ | $\begin{aligned} & \text { Time } \\ & \text { (GMT) } \end{aligned}$ | $\begin{gathered} \text { Julian } \\ \text { day } \end{gathered}$ | $\begin{gathered} \text { Date } \\ (1969) \end{gathered}$ | Time (GMT) |
| B08120 | B0-1 | Oce'anographer | I | 123 | May 3 | 0000 | 135 | May 15 | 0415 |
| 1 | " | " | II | 144 | May 24 | 1235 | 161 | June 10 | 0800 |
| " | " | " | III | 172 | June 21 | 0000 | 181 | June 30 | 0930 |
| 11 | " | " | IV | 193 | July 12 | 0945 | 210 | July 29 | 0400 |
| B08121 | " | Rainier | I | 121 | May 1 | 1000 | 134 | May 14 | 1930 |
| " | " | " | II | 144 | May 24 | 0000 | 161 | June 10 | 0800 |
| " | " | " | III | 172 | June 21 | 0000 | 182 | July 1 | 2200 |
| " | " | 11 | IV | 192 | July 11 | 0730 | 209 | July 28 | 2230 |
| B08122 | " | Mt. Mitchell | I | 123 | May 3 | 0100 | 134 | May 14 | 2300 |
| " | " | " | II | $\cdot 144$ | May 24 | 0000 | 161 | June 10 | 0615 |
| " | " | " | III | 172 | June 21 | 2145 | 183 | July 2 | 1300 |
| " | " | " | IV | 192 | July 11 | 0000 | 209 | July 28 | 1125 |
| B08123 | B0-2 | Discoverer | I | 127 | May 7 | 0105 | 135 | May 15 | 0315 |
| " | " | " | II | 144 | May 24 | 1700 | 161 | June 10 | 0700 |
| " | " | " | III | 172 | June 21 | 0915 | 183 | July 2 | 1315 |
| " | " | " | IV | 192 | July 11 | 1515 | 209 | July 28 | 2145 |
| B08124 | " | Rockaway | I | 127 | May 7 | 0115 | 134 | May 14 | 1700 |
| " | " | -1" | II | 145 | May 25 | 2030 | 161 | June 10 | 0730 |
| " | " | " | III | 172 | June 21 | 2105 | 181 | June 30 | 2359 |
| 1 | " | " | III* | 182 | July 1 | 2315 | 183 | July 2 | 1225 |
| " | " | " | IV | 192 | July 11 | 0515 | 209 | July 28 | 1645 |

*The Rockaway occupied the Oceanographer's station BRAVO (B) during this short period.

```
THF FIVE PARTICINATING SHIPS WERE
            ORFANOGRALHFR = O
            RAINIFR =1
            MT. MITCHELL = 2
            DTSCOVEMER = 3
            ROCKAWAY = 4
NHASF 1 .ULIAN DAYS 121 - 135
OHASF ? JULIAN DAYS 144-161
PHASF 3 .NLIAN DAYS 170-183
PHASF 4 INLIAN DAYS 192-209
THIS TAPE CONTAINS THF FOLLOWING ITEMS BEYOND THF STANDARD SYSTEM
LAREL, ALI WKTTTEN IN EVEN PARITY (ERCDIC) IN THF FOLLOWING FORMAT
    (1) A DESCRIOTIVE TAPE HEALEK IN 8O-CHAKACTFR PHYSICAL RECORDS
            (WHICH IS WHAT YOU ARF READING NOW)
    (2) A SINGLE PHYSICAL EOF
    (3) ONE OATA RECORDS 730 CHARACTERS. LONG
    (4) A SINGLE PHYSICAL EOF
    (5) ITFMS (3) AND (4) MAY BE REPFATEN, IN THAT ORDEN. SEVERAL
                TIMES
    (f) A DOIIRLE PHYSICAL EOF.
EACH OCCIIOANCE OF ITEH (3) CONTAINS ONF UATA SCAN
        EACH DATA SCAN CONTAINS THF FOLLOWING INFODMATION IN FLOATING
        PT FORMAT FlO.3.
        FOLLOWING MEAN VALUES ARE EITHEP 10 ON 30 MTNUTF. AVFRAGE
    WORN 1 TIME EXTENT IN MINUTES OVER WHTCH SAMPLFS WERE
                                    TAKEN TO FORM STATISTICS OF THIS RECOFD IEITHER
                                    10 OR 30 MINUTESS
    WORD ? JULIAN DAY OF OHSERVATIONS
```

        Figure 3-5.--Format of 10 - and \(30-\mathrm{min}\) average boom data.
    ```
HOUR (Z-TIME) OF ORSFRVATIONS OF TIME FXTENT
WORN 5
WORD i
WORD 7
WORD 8
VIORN 9
WORD 10
WORD 11
WORD 12
WORD 1.3
WORD 14
NORD 15
NORD 16
WOPO 17
WORD 18
WORD 19
WORD >0 WHT COMPUTED FROM THF OQT AN! THE MEAN DELATIVE
WORD >1
W\capPD >2
W\capQR 33
WORD 24
NORD 25
WOFD DG MEAN RELATIVE HUMINITY
WGRN 27
WORD 28
WORD =9
WORD 20
WORD Fl
WORD 2?
MINUTES OF ORSERVATION, CENTER OF TIME FXTENT
    GIVEN IN WORO I
MEAN SEA SURFACE TEMPERATURF (SST). C
STANDAKD DFVIATION: SST
MAXIMUM. SST
MINIMUM, SST
NUMFER OF SAMPLES, SST
MEAN DKY RULR TEMPERATUNE (OHT), C
STANDARD DEVIATIONQ @HT
MAXTMUM, DYT
MINIMUM, ORT
NUMREP OF SAMPLES, IWHT
MEAIN WET HUL.H TEMPEQATURE (RT). C
STATIDARD [OFVIATION. WHT
MTNIMUM, WBT
MAXIMUN, WRT
NUMHER OF SAMPLES, WHT
WORD PO WHT COMPUTED FROM THF OQT ANIJ THE MEAN DELATIVE
    HIJIA]OITY
NEAN SEA LEVEI. PRFSSURF (SLP), MILI.IRARS
STANOARD OFVIATION!, SLP
MAXIMUM, SLP
MINIMUM, SLP
NUMAER OF SAMPLES, SLP
MEAN HELATIVE HUMINITY (RH). PEHCENT (FPOM
    HODM SFNSOR)
STANOARO DFVIATION, RH
MAXIMUMA RH
MINIMUM. RH
NUMBER OF SAMPLES, PH
RH COMPUTED FROM THF DRT ANN WRT
SPECIFIC HUMIOITY: GRAMS PEN KTLOGRAM (CALCULATED)
```

WORD 33
WORD }7
WORD }7
WOPD }7
WORD }7
WORD 38
NORD }7
WORO 4n
WORN 41
NORN 4.2
NORO 4.3
WORD 44 MAXIMUM,U
WORD 45 MINTMUM,U
WORD 46 MEAN V WIND COMPONENT (DOSITIVF SUIITH TO NORTH)
WORD 47
WORD 4H
WORD }4
MORD =0
WORD Cl
WORD E.?
WORN =3
WORN a4
wNRD ES
WOPD 56
WORO 57
WORD GR
WORD =9
WORD FO
WORD G1
WOPD <?
WORD < }
WORD K4 MAXIMUM VALUE, RR
MEAN WIND SPEEU (WS). MFTERS PFR SECOND (MEAN
RESULTANT MAGNIT(JNE)
MEAN SCALAR WINO SPEFO (SWS)
STANOARI DEVIATION, SWS
MAXIMUM. SWS
MINIMUM. SWS
mean wind direction (wo), DEGrfes true (resultant
DIRECTION):
StAMDARD DEVIATION. WD, DEGREEC*
maxImum. WD. DEGREEC TRIIE*
MINIMUM, WD, DEGREES TRIIE"
MFAN U WIND COMPONENT (POSITIVF WEST TO EASTI,
METERS PER SECOND
MGFIERS PER SECOND I
meterS PER SECOND
STANOARI) DEVIATION, V
STANOARID DE
MINIMUM, V
NUMRER OF SAMPLES OF WIND
SHIPS HFADING (HDG). DEfREES TPUE
STANOARD DEVIATION, HIGG
MAXIMUM, HDG
MINIMUM, HDGG
NUMHEP OF SAMPLES, HDG
mfan relative wini) oteection (to shipS heading),
TEGREES
mean InCIDf.Nt radiation (IR) LaNgleys pFR minute
standari) deviatione ir
MAXIMIJM. IR
MINIMUM, IR
NumRER OF SAMPLES. If
MEAN PEFLECTED RADIATION (RR), LANGLEYS PER MINUITF
STANDARD DEVIATION. RK

```

Figure 3-5.--Format of \(10-\) and \(30-\mathrm{min}\) average boom data (continued).
```

    WORD K5 MINIMUN VALUE, RR
    WORD FG NUMHER OF SAMPLESG RR
    WORD &7 MEAN NET HAOIATION (NK). LAN(GLFYS PFR MINUTE
    WORD GK STANOARII DEVIATION, NH
    WORD GO MAXIMUH. NP
    WORD >0 MINIMUM, NR
    WOPD 71. NUMHER OF SAMPLES. NHR
    WORO TP RATIO, NFT TO JNCIOFNT RA!IATION
    W(IRO >3 FATIO, REFLECTEO TO INCIOENT RAGIATION
    * IF EITHEK A MAXIMUM OR MINIMUM WTHD DIRFCTION SAMNLE IIIFFERS FROM
    THF Wr. AY QO DEGQEES ON MORF, THF STAP!DALO IOFVIATIONG WD, MAXIMUIA, wD
    ANO MTNIMIJM, WI) ARE RECOPDED AS O (ZEPO).
    A LIST OF THE FILES FOR OCEANOGRAPHEN AHF:
FILE I DFSCRIPTIVE TAPE HFADEH
FILFS 3-54 ARE 10 mINUTE AVERAGFS
FILFS 55-107 APE 30 MINUTE AVERAGES
---NOTF-= ADO 53 TO THE 10 MIN AVE FILF NUMRER FOR GIVEN DAY TO OHTATN
THE FILE NUMHFR OF THF CORRESPONDING 30 MIN AVERAGES

| FILE | DAY | FILE | DAY | FILE | DAY | FILF | DAY | FILF | OAY | FILE | OAY | FILE | DAY |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 122 | 10 | 132 | 18 | 148 | 26 | 154 | 34 | 176 | 41 | 195 | 48 | 203 |
| 3 | 124 | 11 | 133 | 19 | 150 | 27 | 159 | 35 | 177 | 42 | 196 | 49 | 204 |
| 4 | 125 | 12 | 134 | 20 | 151 | 28 | 160 | 26 | 179 | 43 | 196 | 50 | 206 |
| 5 | 126 | 13 | 135 | 21 | 152 | 29 | 161 | 37 | 180 | 44 | 199 | 51 | 207 |
| 6 | 127 | 14 | 144 | 22 | 153 | 30 | 172 | 34 | 181 | 45 | 200 | 52 | 208 |
| 7 | 120 | 15 | 145 | 23 | 154 | 31 | 173 | 39 | 193 | 46 | 201 | 53 | 209 |
| 4 | 130 | 16 | 146 | 24 | 155 | 32 | 174 | 40 | 194 | 47 | 202 | 54 | 210 |
| 4 | 131 | 17 | 147 | 25 | 157 | 33 | 175 |  |  |  |  |  |  |

```

Figure 3-5.--Format of 10 - and \(30-\mathrm{min}\) average boom data (continued).
```

A LIST OF THE FILES FOR KAINIER ARE:
FILE I DESCRIPTIVE TAPE HEADER
FILES 2-56 ARE 10 MINUTE AVFRAGES
FILES 57-111 ARE 30 MINUTE AVERAGES
-- NOTF-- $\quad$ OOD 55 TO THE 10 MIN $A V E$ FILE NUMRER FOK GIVEA DAY TU ORTAIN THE FILE NIJMHEK OF THF COQRESPONDING 30 MIN AVERAGES

| FILE | nav | FILF | DAY | FILE | UAY | FILF. | DAY | FILF | 1)AY | FILE. | DAY | FILF. | nay |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 123 | 10 | 132 | 18. | 150 | 25 | 159 | 34 | 177 | 42 | 194 | 50 | 203 |
| 3 | 124 | 11 | 133 | 19 | 151 | 27 | 160 | 35 | 174 | 43 | 195 | 51 | P04 |
| 4 | 126 | 12 | 134 | 20 | 15\% | 2k | 161 | 36 | 180 | 44 | 196 | 52 | 205 |
| 5 | 12 h | 1.3 | 144 | 21 | 153 | 29 | 172 | 37 | 181 | 45 | 198 | 53 | ? 06 |
| 6 | 127 | 14 | 145 | $2 ?$ | 154 | $31)$ | 173 | 38 | 197 | 46 | 199 | 54 | 207 |
| 7 | 120 | 15 | 146 | 23 | 155 | 31 | 174 | 39 | 183 | 47 | 200 | 55 | 308 |
| 8 | $13 n$ | 16 | 147 | 24 | 157 | 32 | 175 | 40 | 192 | 48 | 201 | 56 | 209 |
| 9 | 131 | 17 | 148 | 25 | 158 | 33 | 176 | 41 | 193 | 49 | 202 |  |  |

A LIST OF THF FILFS FOR MT. MITCHELL $\triangle K F: ~$
FILE I DESCRIPTIVE TAPF HEADER
FILES $2-57$ ARF 10 MINUTE AVERAGES
FILES $5 R-113$ ARE 30 MINUTE AVERAGFS
---NOTE-- $\quad$ OHO 56 TO THE 10 MIN AVE FILE NUMRER FOR GIVEN DAY TU OHIAIN THE FILE NUMBER OF THE COPRESPONDING 30 MIN AVERAGES

| F ILE | DAY | FILE | DAY | FILF. | DAY | FILF. | DAY | F ILF | DAY | FILE | DAY | F ILF | 1) $A Y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 121 | 10. | 130 | 18 | 147 | 2 F | 157 | 34 | 175 | 42 | 193 | 50 | 202 |
| 3 | 127 | 11 | 131 | 19 | 148 | 27 | 158 | 35 | 176 | 43 | 194 | 51 | 203 |
| 4 | 127 | 12 | 132 | 20 | 150 | 2.8 | 159 | 36 | 177 | 44 | 195 | 52 | $? 04$ |
| 5 | 124 | 13 | 133 | 21 | 151 | 29 | 160 | 37 | 179 | 45 | 196 | 53 | 205 |
| 6 | 125 | 14 | 134 | 22 | 152 | 30 | 161 | 38 | 180 | 46 | 198 | 54 | 206 |
| 7 | 126 | 15 | 144 | 23 | 153 | 31 | 172 | 39 | 181 | 47 | 199 | 55 | 207 |
| 8 | 127 | 16 | 145 | 24 | 154 | 32 | 173 | 40 | 18? | 48 | 200 | 56 | ? OR |
| 9 | 120 | 17 | 146 | 25 | 155 | 3.3 | 174 | 41 | 192 | 49 | 201 | 57 | 209 |

Figure 3-5.--Format of 10 - and 30 -mirt average boom data (continued).

```
file 1 descriptive tapf heaver
FILES \(>-50\) are 10 minute averages
FILES e.l-99 ARF 30 MINUTE AVERAGES
---NOTF--- ADD 49 TO THE 10 MIN AVE FILE NUMHEP FOK GIVEN DAY TO ORTAIN The file number df the correspoiniting 30 min averages
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline FILE & nay & FILE & DAY & FILE & DAY & FIL.F & DAY & FILF & DAY & FILE & DAY & FILE & nay \\
\hline 2 & 127 & 9 & 135 & 16 & 154 & 23 & 172 & 30 & 180 & 37 & 195 & 44 & 20.3 \\
\hline 3 & 120 & 10 & 144 & 17 & 155 & 24 & 173 & 31 & 181 & 38 & 196 & 45 & 204 \\
\hline 4 & 130 & 11 & 147 & 18 & 157 & 25 & 174 & 32 & 1月? & 39 & 198 & 46 & 205 \\
\hline 5 & 131 & \(1 ?\) & 148 & 14 & 158 & 26 & 175 & 3.3 & 185 & 40 & 199 & 47 & 206 \\
\hline 6 & 132 & 1.3 & 151 & 20 & 159 & 27 & 176 & 34 & 192 & 41 & 200 & 48 & 207 \\
\hline 7 & \(13 ?\) & 14 & 152 & 21 & 160 & 2, & 177 & 35 & 19.3 & 42 & 201 & 49 & 208 \\
\hline 8 & 134 & 15 & 153 & 22 & 161 & 29 & 179 & 36 & 194 & 43 & \(20 ?\) & 50 & 209 \\
\hline
\end{tabular}

A LIST OF THF. FILFS FOR ROCKAWAY ARE:
file 1 nescriptive tanf hfader
FIIES \(2-50\) are 10 minute averages
FILES -I-99 ARF 30 MINUTE AVEPAGES
---NOTF--- AIOD 49 TO THE 10 MIN AVE FILE NUMHER FOK GIVFII DAY TO OHTAIN the file number of the corqferonding 30 min averages
\begin{tabular}{cccccccccccccc} 
FILE & DAY & FILE & DAY & FILE & DAY & FILF & DAY & FILF & DAY & FILE & DAY & FILF & OAY \\
\(?\) & 127 & 9 & 145 & 16 & 153 & 23 & 172 & 30 & 180 & 37 & 195 & 44 & 203 \\
3 & 120 & 10 & 146 & 17 & 155 & 24 & 173 & 31 & 181 & 38 & 196 & 45 & 204 \\
4 & \(13 n\) & 11 & 147 & 18 & 157 & 25 & 174 & 32 & 182 & 34 & 194 & 46 & 205 \\
5 & 131 & 12 & 144 & 19 & 158 & 26 & 175 & 33 & 183 & 40 & 194 & 47 & 206 \\
6 & 132 & 13 & 150 & 20 & 159 & 27 & 176 & 34 & 192 & 41 & 200 & 44 & 207 \\
7 & 134 & 14 & 151 & 21 & 160 & 28 & 177 & 35 & 193 & 42 & 201 & 49 & \(20 \alpha\) \\
8 & 144 & 15 & 152 & 22 & 151 & 24 & 174 & 36 & 194 & 43 & 202 & 50 & 209
\end{tabular}

Figure 3-5.--Format of 10 - and \(30-\mathrm{min}\) average boom data (continued).

Table 3-6.--Inventory of 10 - and \(30-\mathrm{min}\) average boom data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Magnetic tape No.} & \multirow[b]{2}{*}{Microfilm reel No.} & \multirow[b]{2}{*}{Ship} & \multirow[t]{2}{*}{\begin{tabular}{l}
BOMEX \\
Observation Period
\end{tabular}} & \multicolumn{4}{|c|}{Beginning} & \multicolumn{4}{|c|}{Ending} \\
\hline & & & & Julian day & & & \[
\begin{aligned}
& \text { Time } \\
& \text { (GMT) }
\end{aligned}
\] & Julian day & & & \[
\begin{aligned}
& \text { Time } \\
& \text { (GMT) }
\end{aligned}
\] \\
\hline B08944 & B0-3 & Oceanographer & I & 123 & May & 3 & 0000 & 135 & May & 15 & 0400 \\
\hline & " & & II & 144 & May & 24 & 1230 & 161 & June & 10 & 0730 \\
\hline 1 & " & " & III & 172 & June & 21 & 0000 & 181 & June & 30 & 0930 \\
\hline 11 & " & 11 & IV & 193 & July & 12 & 1000 & 208 & July & & 1500 \\
\hline B08945 & " & Rainier & I & 121 & May & 1 & 2100 & 134 & May & 14 & 1900 \\
\hline " & " & " & II & 144 & May & 24 & 0000 & 161 & June & 10 & 0800 \\
\hline " & " & " & III & 172 & June & & 0000 & 182 & July & 1 & 2200 \\
\hline " & " & " & IV & 192 & July & & 0730 & 209 & July & & 2230 \\
\hline B08946 & " & Mt. Mitchell & I & 123 & May & 3 & 0130 & 134 & May & 14 & 2330 \\
\hline " & " & " & II & 144 & May & 24 & 0000 & 161 & June & 10 & 0600 \\
\hline " & " & " & III & 172 & June & & 2200 & 183 & July & 2 & 1300 \\
\hline " & " & " & IV & 193 & July & & 1730 & 209 & July & 28 & 1130 \\
\hline B08947 & " & Discoverer & I & 127 & May & 7 & 0130 & 135 & - May & 15 & 0300 \\
\hline 11 & " & I' & II & 147 & May & 27 & 1600 & 161 & June & 10 & 0600 \\
\hline " & " & " & III & 172 & June & 21 & 0930 & 183 & July & 2 & 1300 \\
\hline 11 & " & " & IV & 192 & July & 11 & 1530 & 209 & July & 28 & 2130 \\
\hline B08948 & " & Rockaway & I & 127 & May & 7 & 0130 & 134 & May & 14 & 1700 \\
\hline " & " & " & II & 145 & May & 25 & 2100 & 161 & June & 10 & 0730 \\
\hline " & 1 & " & III & 172 & June & & 2100 & 180 & Jule & 29 & 2100 \\
\hline " & 11 & " & III* & 181 & June & & 1230 & 183 & July & 2 & 1200 \\
\hline " & " & " & IV & 192 & July & & 0530 & 209 & July & 28 & 1730 \\
\hline
\end{tabular}
*The Rockaway occupied the Oceanographer's station BRAVO•(B) during this short period.

\section*{4. MARINE METEOROLOGICAL OBSERVATIONS AND SURFACE-PRESSURE--MARINE MICROBAROGRAM DATA SET}

In addition to the surface observations recorded automatically by instrumentation mounted on a boom extending from the bow of each of the five fixed ships, conventional manual observations were made from the ships' decks and/or by permanently installed shipboard. instruments. These data should be used with the same caution one would apply to routine marine observations, because they were obtained by crewmen or technicians with varying degrees of skill and dedication, the exposure of the sensors was usually not optimum, and the observations were influenced by the usual perturbations caused by the mass of the ship. In the course of final processing of other BOMEX data, a number of these discrepancies have been identified. Corrections have not been applied to this data set, but are incorporated in the boom surface meteorolical data set (sec. 3), the rawinsonde and radiometersonde data set (sec. 5), and the Boundary Layer Instrument Package (BLIP) data set (sec. 6).

\subsection*{4.1 Observation Procedures and Parameters Measured}

The surface meteorological observations were entered on a Surface Observations Form, and each parameter is discussed here in the order in which it was entered on that form, an 80 -column punched-card format.

NOTE: On the form, the columns were misnumbered, i.e., colum 46 is not indicated, and two columns are numbered 58. In recording, this deficiency was taken into account, and the parameters were recorded in the order in which they are described below.

Card Code - Column 1. Code 1 was used on each form to identify it as being a surface meteorological observation.

Card Code - Column 2. The following codes identify the ship from which observations were made: 0 , Oceanographer; 1, Rainier; 2, Mt. Mitchell; 3; Discoverer; 4, Rockaway.

Date and Time - Columns 3 through 9. Julian day and time of observation in GMT to the nearest minute, not exceeding 5 min before or after the beginning or end of the surface observation sequence.

Sea-Level Atmospheric Pressure - Colums 10 through 17. Pressure was determined from a precision aneroid barometer and read to the nearest 0.1 mb , estimating for values between scale graduations and applying correction recorded on the face of the instrument, and then entered in columns 10 through 14 to the nearest 0.1 mb . Values less than \(1,000.0 \mathrm{mb}\) are preceded by a zero, i.e., 998.2 mb is recorded as 09982.

Pressure tendency was determined from a marine microbarograph by finding the net amount of pressure change over a \(3-\mathrm{hr}\) period through determination, to the nearest 0.1 mb , of the difference in pressure between the beginning and the end of the period. The appropriate code was entered in column 15 on the form in accordance with the codes shown in table 4-1. The amount of 3 -hr change in pressure was entered in millibars and tenths in columns 16 and 17.

Temperature - Columns 18 through 25. Dry-bulb temperature as measured by an ordinary thermometer exposed to the free air on the windward side of the ship, under conditions that eliminated as completely as possible the effects of extraneous sources of heat, was entered in colums 18, 19, and 20 in degrees and tenths. Wet-bulb temperature, representing the lowest temperature secured by evaporating water from a muslin-covered bulb of a thermometer at a specified rate of ventilation, was entered in column 21, 22, and 23 in degrees and tenths. When the dry-bulb and wet-bulb temperatures were known, the dewpoint was determined from table 4-2. By subtracting the wet-bulb temperature from the dry bulb, the wet-bulb depression was obtained. The nearest depression across the top of the table and the nearest wet-bulb temperature along the side were then located, and the value at the intersection of the two was entered in columns 24 and 25 in whole \({ }^{\circ} \mathrm{C}\).

Relative Humidity - Colums 26 and 27. Relative humidity to the nearest whole percent as determined from table 4-3, which was used in the same manner as table 4-2.

True Wind - Columns 28 through 32. Aboard the fixed ships, the true wind could not be read directly from the anemometer indicator. Since "north" on the indicator represents the shig's bow or heading, a reading of \(320^{\circ}\) would indicate an apparent wind of \(040^{\circ}\) off the port bow. The apparent wind relative to the bow of the ship was converted to a true compass bearing by adding the apparent wind direction to the ship's heading if the wind was off the starboard bow and by subtracting the apparent wind direction if the wind was off the port bow. Windspeed was read directly from the anemometer indicator and entered in knots.

Aboard the roving ships, the computation of true wind direction and windspeed was somewhat more complicated and was done by use of a shipboard wind plotter.

Table 4-1.--Barometer change characteristics in the last 3 hr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{|l|}
\hline DESCRIPTION OF \\
\hline PRIMARY \\
UNQUALFIED \\
REQUALEMENT \\
\hline
\end{tabular}} & \multirow[t]{3}{*}{\(\left\lvert\, \begin{aligned} & \text { Additional } \\ & \text { REQUREMENTS }\end{aligned}\right.\)} & \multicolumn{8}{|c|}{\multirow[t]{2}{*}{NOMINAL GRAPHIC REPRESENTATION (For Coding Purposes)}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Code } \\
& \text { Figure }
\end{aligned}
\]} \\
\hline & & & & & & & & & & \\
\hline & & A & B & c & D & E & F & G & H & \\
\hline \multirow{4}{*}{\begin{tabular}{l}
HIGHER \\
Atmospheric pres sure now higher than 3 hours ago
\end{tabular}} & Increasing, then decreasing. & \(\Lambda\) & \[
\Omega
\] & \[
\mathcal{N}
\] & \(\sim\) & \(\sim^{2}\) & \[
\Omega
\] & & \(\underline{\sim}\) & 0 \\
\hline & Increasing, then steady; or
\(\qquad\) increasing, then pncreasing more slowly. & \(\Gamma\) & \[
\pi
\] & \[
\mathscr{L}
\] &  & \[
\frac{N^{2}}{2}
\] &  & \multicolumn{2}{|l|}{\[
--\frac{\Omega}{2}
\]} & 1 \\
\hline &  & \[
/
\] & \[
\begin{aligned}
& -\infty \\
& \Delta
\end{aligned}
\] & \[
T
\] & \[
\bar{w}^{2}
\] & \[
\mu^{-v}
\] & & & & 2 \\
\hline & \begin{tabular}{l} 
Decreasing or \\
ateady, then in- \\
creasing_oor-- - \\
increasing, then \\
increasing more \\
rapidy. \\
\hline
\end{tabular} & \[
V
\] &  &  & \[
\frac{2}{2}
\] &  & \[
1
\] & & 4 & 3 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
THE SAME \\
Atmospheric pressure now same as 3 hours ago.
\end{tabular}} & Increasing, then decreasing. & \[
\Lambda
\] & \[
2
\] & \[
\infty
\] & \(\sim\) & & & & \(m\) & 0 \\
\hline & \[
\begin{aligned}
& \text { Steady or un- } \\
& \text { steady }
\end{aligned}
\] & - & & & & & & & & 4 \\
\hline & Decreasing, then increasing. & V & \(\checkmark\) & \[
\square
\] & \(\sim\) & & & & \(\checkmark\) & 5 \\
\hline \multirow{4}{*}{\begin{tabular}{l}
LOWER \\
Atmospheric pressure now lower than 3 hours ago
\end{tabular}} & Decreasing, then increasing. & V & & Q. & \[
\checkmark
\] & \(\checkmark\) & \[
\overline{w_{w^{v}}}
\] & & n & 5 \\
\hline & \begin{tabular}{l}
\begin{tabular}{l} 
Decre asing, then \\
ateady; or
\end{tabular} \\
\hline \begin{tabular}{l} 
de-reasing, then \\
decreasing more
\end{tabular} \\
socwly. \\
\hline
\end{tabular} & \(L\) & \[
-
\] &  &  &  & \[
4
\] & & Ln & 6 \\
\hline &  & \[
\rangle
\] &  & \[
4
\] & \[
h_{\mu_{\text {mh }}}
\] & \[
\ln
\] & & & - & 7 \\
\hline & Steady or increas ing, then decreasing: or \(\qquad\) decreasing, then decreasing more rapidly. & \[
\uparrow
\] &  & \[
\underset{\square}{\square}
\] &  &  & \(\bigcirc\) & & \(\sim \sim 1\) & 8 \\
\hline
\end{tabular}

Table 4-2.--Dewpoint temperature
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{20}{|c|}{Wet-bulb depression, \({ }^{\text {c }}\)} \\
\hline \[
\begin{aligned}
& \text { bulb } \\
& \text { temp. } \\
& \substack{\mathrm{c} \\
\mathrm{Cu}}
\end{aligned}
\] & 0 & \(\stackrel{0}{0}\) & \[
0
\] & \(\stackrel{\square}{\square}\) & \[
\dot{\sim}
\] & \[
\dot{\sim}
\] & \[
\dot{\infty}
\] & \[
\dot{m}
\] & \[
\begin{aligned}
& 0 \\
& \pi
\end{aligned}
\] & \[
1
\] & \[
\dot{\infty}
\] & \[
\dot{0}
\] & \[
\stackrel{\circ}{\dot{\circ}}
\] & \(\cdots\) & \[
\stackrel{i}{i}
\] & \[
\because
\] & \[
0
\] & \[
\left.\right|_{\infty} ^{\infty}
\] & 0 \\
\hline 10 & 10 & 10 & 09 & 09 & 08 & 08 & 07 & 07 & 06 & 06 & 05 & 05 & 04 & 04 & 03 & 02 & 02 & 01 & 00 \\
\hline 11 & 11 & 11 & 10 & 10 & 09 & 09 & 09 & 08 & 08 & 07 & 07 & 06 & 06 & 05 & 04 & 04 & 03 & 03 & 02 \\
\hline 12 & 12 & 12 & 11 & 11 & 11 & 10 & 10 & 09 & 09 & 08 & 08 & 07 & 07 & 06 & 06 & 05 & 05 & 04 & 04 \\
\hline 13 & 13 & 13 & 12 & 12 & 12 & 11 & 11 & 10 & 10 & 10 & 09 & 09 & 08 & 08 & 07 & 07 & 06 & 06 & 05 \\
\hline 14 & 14 & 14 & 13 & 13 & 13 & 12 & 12 & 12 & 11 & 11 & 10 & 10 & 10 & 09 & 09 & 08 & 08 & 07 & 07 \\
\hline 15 & 15 & 15 & 14 & 14 & 14 & 13 & 13 & 13 & 12 & 12 & 12 & 1.1 & 11 & 10 & 10 & 10 & 09 & 09 & 08 \\
\hline 16 & 16 & 16 & 15 & 15 & 15 & 15 & 14 & 14 & 14 & 13 & 13 & 13 & 12 & 12 & 11 & 11 & 11 & 10 & 0 \\
\hline 17 & 17 & 17 & 16 & 16 & 16 & 16 & 15 & 15 & 15 & 14 & 14 & 14 & 13 & 13 & 13 & 12 & 12 & 12 & 11 \\
\hline 18 & 18 & 18 & 18 & 17 & 17 & 17 & 16 & 16 & 16 & 16 & 15 & 15 & 15 & 14 & 14 & 14 & 13 & 13 & 13 \\
\hline 19 & 19 & 19 & 19 & 18 & 18 & 18 & 17 & 17 & 17 & 17 & 16 & 16 & 16 & 15 & 15 & 15 & 15 & 14 & 14 \\
\hline 20 & 20 & 20 & 20 & 19 & 19 & 19 & 19 & 18 & 18 & 18 & 18 & 17 & 17 & 17 & 16 & 16 & 16 & 16 & 15 \\
\hline 21 & 21 & 21 & 21 & 20 & 20 & 20 & 20 & 19 & 19 & 19 & 19 & 18 & 18 & 18 & 18 & 17 & 17 & 17 & 17 \\
\hline 22 & 22 & 22 & 22 & 21 & 21 & 21 & 21 & 21 & 20 & 20 & 20 & 20 & 19 & 19 & 19 & 19 & 18 & 18 & 18 \\
\hline 23 & 23 & 23 & 23 & 22 & 22 & 22 & 22 & 22 & 2 & 21 & 21 & 21 & 20 & 20 & 20 & 20 & 20 & 19 & 19 \\
\hline 24 & 24 & 24 & 24 & 23 & 23 & 23 & 23 & 23 & 22 & 22 & 22 & 22 & 22 & 21 & 21 & 21 & 21 & 20 & 20 \\
\hline 25 & 25 & 25 & 25 & 24 & 24 & 24 & 24 & 24 & 24 & 23 & 23 & 23 & 23 & 23 & 22 & 22 & 22 & 22 & 21 \\
\hline 26 & 26 & 26 & 26 & 26 & 25 & 25 & 25 & 25 & 25 & 24 & 24 & 24 & 24 & 24 & 23 & 23 & 23 & 23 & 23 \\
\hline 27 & 27 & 27 & 27 & 27 & 26 & 26 & 26 & 26 & 26 & 26 & 25 & 25 & 25 & 25 & 25 & 24 & 24 & 24 & 24 \\
\hline 28 & 28 & 28 & 28. & 28 & 27 & 27 & 27 & 27 & 27 & 27 & 26 & 26 & 26 & 26 & 26 & 26 & 25 & 25 & 25 \\
\hline 29 & 29 & 29 & 29 & 29 & 28 & 28 & 28 & 28 & 28 & 28 & 28 & 27 & 27 & 27 & 27 & 27 & 27 & 26 & 26 \\
\hline 30 & 30 & 30 & 3 & 30 & 29 & 29 & 29 & 29 & 29 & 29 & 29 & 29 & 28 & 28 & 28 & 28 & 28 & 27 & 27 \\
\hline 31 & 31 & 31 & 31 & 31 & 31 & 30 & 30 & 30 & 30 & 30 & 30 & 30 & 29 & 29 & 29 & 29 & 29 & 29 & 28 \\
\hline 32 & 32 & 32 & 32 & 32 & 32 & 31 & 31 & 31 & 31 & 31 & 31 & 31 & 30 & 30 & 30 & 30 & 30 & 30 & 30 \\
\hline 33 & 33 & 33 & 33 & 33 & 33 & 32 & . 32 & 32 & 32 & 32 & 32 & 32 & 32 & 31 & 31 & 31 & 31 & 31 & 31 \\
\hline 34 & !34 & 34 & 34 & 34 & 34 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 32 & 32 & 32 & 32 & 32 & 32 \\
\hline 35 & ; 35 & 35 & 35 & 35 & 35 & 34 & 34 & 34 & 34 & 34 & 34 & 34 & 34 & 34 & 33 & 33 & 33 & 33 & 33 \\
\hline
\end{tabular}

Table 4-3.--Relative humidity
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry- } \\
& \text { bulb } \\
& \text { temp. } \\
& =C
\end{aligned}
\]} & \multicolumn{19}{|c|}{Wet-bulb depression, \({ }^{6} \mathrm{C}\)} \\
\hline & 0.2 & 0.4 & 0.6 & & 1.0 & 1.2 & 1.4 & 1.6 & 1.8 & 2.0 & 2.2 & 2.4 & 2.6 & 2.8 & 3.0 & 3.2 & 3.4 & 3.6 & \\
\hline 10 & 98 & 95 & 93 & 90 & 88 & 86 & 83 & 81 & 79 & 77 & 74 & 72 & 70 & 68 & 66 & 63 & 61 & 59 & \\
\hline 11 & 98 & 95 & 93 & 91 & 89 & 86 & 84 & 82 & 80 & 78 & 75 & 73 & 71 & 69 & 67 & 65 & 62 & 60 & \\
\hline 12 & 98 & 96 & 93 & 91 & 89 & 87 & 85 & 82 & 80 & 78 & 76 & 74 & 72 & 70 & 68 & 66 & 64 & 62 & \\
\hline 13 & 98 & 96 & 93 & 91 & 89 & 87 & 85 & 83 & 81 & 79 & 77 & 75 & 73 & 71 & 69 & 67 & 65 & 63 & \\
\hline 14 & 98 & 96 & 94 & 92 & 90 & 88 & 86 & 84 & 82 & 79 & 78 & 76 & 74 & 72 & 70 & 68 & 66 & 64 & \\
\hline 15 & 98 & 96 & 94 & 92 & 90 & 88 & 86 & 84 & 82 & 80 & 78 & 76 & 74 & 73 & 71 & 69 & 67 & 65 & \\
\hline & \multicolumn{6}{|l|}{0.51 .01 .52 .02 .53.} & 3.5 & 4.0 & 4.5 & 5.0 & 5.5 & 6.0 & 6.5 & 7.0 & 7.5 & 8.0 & 8.5 & 9.0 & 9.5 \\
\hline 16 & 95 & 90 & 85 & 81 & 76 & 71 & 67 & 63 & 58 & 54 & 50 & 46 & 42 & 38 & 34 & 30 & 26 & 23 & \(19^{\circ}\) \\
\hline 17 & 95 & 90 & 86 & 81 & 76 & 72 & 68 & 64 & 60 & 55 & 51 & 47 & 43 & 40 & 36 & 32 & 28 & 25 & 21 \\
\hline 18 & 95 & 91 & 86 & 82 & 77 & 73 & 69 & 65 & 61 & 57 & 53 & 49 & 45 & 41 & 38 & 34 & 30 & 27 & 23. \\
\hline 19 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 95 \\
& 96
\end{aligned}
\]} & 91 & 87 & 82 & 78 & 74 & 70 & 65 & 62 & 58 & 54 & 50 & 46 & 43 & 39 & 36 & 32 & 29 & 26 \\
\hline 20 & & 91 & 87 & 83 & 78 & 74 & 70 & 66 & 63 & 59 & 55 & 51 & 48 & 44 & 41 & 37 & 34 & 31 & 28 \\
\hline 21 & 96 & 91 & 87 & 83 & 79 & 75 & 71 & 67 & 64 & 60 & 56 & 53 & 49 & 46 & 42 & 39 & 36 & 32 & 29 \\
\hline 22 & & 92 & 87 & 83 & 80 & 76 & 72 & 68 & 64 & 61 & 57 & 54 & 50 & 47 & 44 & 40 & 37 & 34 & 31 \\
\hline 23 & 96 & 92 & 88 & 84 & 80 & 76 & 72 & 69 & 65 & 62 & 58 & 55 & 52 & 48 & 45 & 42 & 39 & 36 & 33 \\
\hline 24 & 96
96 & 92 & 88 & 84 & 80 & 77 & 73 & 69 & 66 & 62 & 59 & 56 & 53 & 49 & 46 & 43 & 40 & 37 & 34 \\
\hline 25 & 96 & 92 & 88 & 84 & 81 & 77 & 74 & 70 & 67 & 63 & 60 & 57 & 54 & 50 & 47 & 44 & 41 & 39 & 36 \\
\hline 26 & 96 & 92 & 88 & 85 & 81 & 78 & 74 & 71 & 67 & 64 & 61 & 58 & 54 & 51 & 49 & 46 & 43 & 40 & 37 \\
\hline 27 & 96 & 92 & 89 & 85 & 82 & 78 & 75 & 71 & 68 & 65 & 62 & 58 & 56 & 52 & 50 & 47 & 44 & 41 & 38 \\
\hline 28 & 96 & 93 & 89 & 85 & 82 & 78 & 75 & 72 & 69 & 65 & 62 & 59 & 56 & 53 & 51 & 48 & 45 & 42 & 40 \\
\hline 29 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 96 \\
& 96
\end{aligned}
\]} & 93 & 89 & 86 & 82 & 79 & 76 & 72 & 69 & 66 & 63 & 60 & 57 & 54 & 52 & 49 & 46 & 43 & 41 \\
\hline 30 & & 93 & 89 & 86 & 83 & 79 & 76 & 73 & 70 & 67 & 64 & 61 & 58 & 55 & 52 & 50 & 47 & 44 & 42 \\
\hline 31 & 96 & 93 & 90 & 86 & 83 & 80 & 77 & 73 & 70 & 67 & 64 & 61 & 59 & 56 & 53 & 51 & 48 & 45 & 43 \\
\hline 32 & 96 & 93. & 90 & 86 & 83 & 80 & 77 & 74 & 71 & 68 & 65 & 62 & 60 & 57 & 54 & 51 & 49 & 46 & 44 \\
\hline 33 & 97 & 93 & 90 & 87 & 83 & 80 & 77 & 74 & 71 & 68 & 66 & 63 & 60 & 57 & 55 & 52 & 50 & 47 & 45 \\
\hline 34 & 97 & 93 & 90 & 87 & 84 & 81 & 78 & 75 & 72 & 69 & 66 & 63 & 61 & 58 & 56 & 53 & 51 & 48 & 46 \\
\hline 35 & 97 & 94 & 90 & 87 & 84 & 81 & 78 & 75 & 72 & 69 & 67 & 64 & 61 & 59 & 56 & 54 & 51 & 49 & 47 \\
\hline 36 & 97 & 94 & 90 & 87 & 84 & 81 & 78 & 75 & 73 & 70 & 67 & 64 & 62 & 59 & 57 & 54 & 52 & 50 & 48 \\
\hline 37 & 97 & 94 & 91 & 87 & 84 & 82 & 79 & 76 & 73 & 70 & 68 & 65 & 63 & 60 & 58 & 55 & 53 & 51 & 48 \\
\hline 38 & 97 & 94 & 91 & 88 & 84 & 82 & 79 & 76 & 74 & 71 & 68 & 66 & 63 & 61 & 58 & 56 & 54 & 51 & 49 \\
\hline 39 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 97 \\
& 97
\end{aligned}
\]} & 94 & 91 & 88 & 85 & 82 & 79 & 77 & 74 & 71 & 69 & 66 & 64 & 61 & 59 & 57 & 54 & 52 & 50 \\
\hline 40 & & 94 & 91 & 88 & 85 & 82 & 80 & 77 & 74 & 72 & 69 & 67 & 64 & 62 & 59 & 57 & 54 & 53 & 51 \\
\hline
\end{tabular}

Waves - Columns 33 through 46. The wave data, as entered on the Surface Observations Form, consist of the direction, height, and period of wind waves and swells. Wind waves, or "sea," are those raised by the local wind blowing at the time of observation; waves due either to winds blowing at a distance or to winds that have ceased to blow are known as swells.

The direction from which the waves were coming was determined visually or, more accurately, by sighting from a compass along the wave crests and adding or subtracting \(90^{\circ}\). Ship's heading was also used as a guide. The averages of several observations were recorded to the nearest degree in columns 33, 34,35 for wind waves and in columns \(40,41,42\) for swells. When no wind waves were present, three zeros were entered. If the waves were from directly north, 360 was used, and if the sea was confused and direction could not be determined, \(9^{\prime}\) s were used.

Wave height as recorded on the form is an average of the estimated heights of the larger well-formed waves. Estimates were made by an observer from the best available point on the ship that permitted the height of the waves to be compared with the height of the ship. Heights in feet were converted to half-meter codes in accordance with table \(4-4\) and entered in columns 26,27 , and 43,44 , respectively.

Wave period, the interval in seconds between passage of two successive wave crests of well-formed waves past a fixed point, was determined through observation of at least 15 well-formed waves, by (a) selecting a distinctive patch of foam or a small floating object at some distance from the ship, (b) noting the elapsed time to the nearest second between the moments when the object was on the crest of the first and the last wave in the group and noting also the number of crests that passed under the object during the interval, and (c) adding the elapsed times of the various groups together and dividing the total by the number of waves to obtain the average period. The wave period thus obtained was entered in columns 38, 39, and 45, 46 to the nearest second. A calm sea or the absence of either wind or swell is indicated by 00 ; 99 was used for confused sea.

Clouds - Columns 47 through 52. Total cloud amount, or "sky cover," was estimated in terms of eighths of sky covered by clouds. A few clouds or fragments of clouds were entered as 1 in column 47; if the sky was completely overcast, the amount entered is \(8 ; 7\) indicates a few patches of blue sky visible; when blue sliy or stars were seen through fog or analogous phenomena, total cloud amount is reported as 0 ; and when clouds were observed through fog or similar phenomena, their amount is reported as though these phenomena had not been present; 9 indicates that the sky was obscured by fog, rain, or other phenomena, not clouds.

Low cloud amount, recorded in eighths of sky in column 48 was estimated in the same way as total cloud amount.

Low cloud type is indicated in column 49 by the appropriate code chosen from table 4-5. When several types were present in equal amounts, the code entered is that for the type whose base is at the greatest height above the sea, except (a) when types coded 1 and 2 only were present, code 2 was entered,

Table 4-4.--Wave or swell height in half-meters
\begin{tabular}{lrllllll}
\hline \begin{tabular}{l} 
Half- \\
meters \\
code \\
figure
\end{tabular} & Feet & \begin{tabular}{l} 
Half- \\
meters \\
code \\
figure
\end{tabular} & Feet & \begin{tabular}{l} 
Half- \\
meters \\
code \\
figure
\end{tabular} & Feet & \begin{tabular}{l} 
Half- \\
meters \\
code \\
figure
\end{tabular} & Feet
\end{tabular}
regardless of amount, and (b) when types coded 3 or 9 were present, 3 or 9 was chosen, as appropriate, regardless of the amount of low cloud.

Height of the bases of the low clouds was determined relatively closely by taking the elapsed time between release and disappearance of the rawinsonde balloon times the ascent rate. The height thus obtained is indicated in column 50 by the appropriate code taken from table 4-6.

Type of middle cloud is indicated in column 51 by the appropriate code from table 4-7, except (a) when altocumulus were present in a chaotic sky, regardless of amount, code 9 was used; (b) when the sky was not chaotic but tufted or turreted altocumulus were present, code 8 was used; (c) clouds observed when the sky was visible through fog or analogous phenomena were recorded as though these phenomena had not been present; and. (d) when condensation trails caused by high-flying airctaft persisted and/or cloud masses that had obviously developed from such trails (but not rapidly dissipating trails) were observed, they were reported as middle clouds when they resembled such clouds.

Type of high cloud is indicated in column 52 by the appropriate code taken from table 4-8 for the predominant type present. When several types were present in equal amounts, the code for the type whose base was at the

Table 4-5.--Code table for clouds of types Stratocumulus, Stratus, Cumulus, and Cumulonimbus
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Code \\
figures
\end{tabular} & Technical language specifications & Plain language specifications \\
\hline 0 & No \(\mathrm{C}_{\mathrm{L}}\) clouds. & No Stratocumulus, Stratus, Cumulus, or Cumulonimbus \\
\hline 1 & Cumulus humilis, or Cumulus fractus other than of bad weather, or both. & Cumulus with little vertical extent and seemingly flattened, or ragged Cumulus other than of bad weather, or both. \\
\hline 2 & Cumulus mediocris or congestus, with or without Cumulus of species fractus or humilis, or Stratocumulus; all having their bases at the same level. & Cumulus of moderate or strong vertical extent generally with protuberances in the form of domes or towers, either accompanied or not by other Cumulus or by Stratocumulus; all having their bases at the same level. \\
\hline 3 & Cumulonimbus calvus, with or without Cumulus, Stratocumulus or Stratus. & Cumulonimbus the summits of which, at least partially, lack sharp outlines, but are neither clearly fibrous (cirriform), nor in the form of an anvil; Cumulus, Stratocumulus, or Stratus may be present. \\
\hline 4 & Stratocumulus cumulogenitus. & Stratocumulus formed by the spreading out of Cumulus; Cumulus may also be present. \\
\hline 5 & Stratocumulus other than Stratocumulus cumulogenitus. & Stratocumulus not resulting from the spreading out of Cumulus. \\
\hline 6 & Stratus nebulosis or Stratus fractus other than of bad weather, or both. & Stratus in a more or less continuous sheet or layer, or in ragged shreds or both, but no Stratus fractus of bad weather. \\
\hline 7 & Stratus fractus or Cumulus fractus of bad weather or both (pannus) usually below Altostratus or Nimbostratus. & Stratus fractus of bad weather or Cumulus fractus of bad weather or both (pannus) usually below Altostratus or Nimbostratus. \\
\hline 8 & Cumulus and Stratocumulus, other than Stratocumulus cumulogenitus, with bases at different levels. & Cumulus and Stratocumulus, other than those formed from the spreading out of Cumulus; the base of Cumulus is at a different level than that of the Stratocumulus. \\
\hline
\end{tabular}

Table 4-5.-Code table for clouds of types Stratocumulus, Stratus, Cumulus, and Cumulonimbus (continued)
\begin{tabular}{|c|c|c|}
\hline Code figures & Technical language specifications & Plain language specifications \\
\hline 8 & Cumulus and Stratocumulus, other than Stratocumulus cumulogenitus, with bases at different levels. & Cumulus and Stratocumulus, other than those formed from the spreading out of Cumulus; the base of Cumulus is at a different level than that of the Stratocumulus. \\
\hline 9 & Cumulonimbus capillatus (often with an anvil), with or without Cumulonimbus calvus, Cumulus, Stratocumulus, Stratus or pannus. & Cumulonimbus, the upper part of which is clearly fibrous (cirriform) often in the form of an anvil; either accompanied or not by Cumulonimbus without anvil or fibrous upper part, by Cumulus, Stratocumulus, Stratus, or pannus. \\
\hline & Clouds \(\mathrm{C}_{\mathrm{L}}\) not visible owing to darkness, fog, blowing dust or sand, or other similar phenomena. & No Cumulus, Cumulonimbus, Stratocumulus, or Stratus visible owing to darkness, fog, blowing dust or sand, or other similar phenomena. \\
\hline
\end{tabular}

Note: "Bad Weather" denotes the conditions which generally exist during precipitation and a short time before and after.

Table 4-6.--Code table for low cloud height; height of base of lowest cloud ( \(C_{L}\) or \(C_{M}\) ) above sea


Table 4-7.--Code table for clouds of types Altocumulus, Altostratus, and Nimbostratus
\begin{tabular}{ccc}
\hline \begin{tabular}{l} 
Code \\
fig- \\
ures
\end{tabular} & \begin{tabular}{c} 
Technical language \\
specifications
\end{tabular} & \begin{tabular}{c} 
Plain language \\
specifications
\end{tabular} \\
\hline 0 & No \(C_{\text {M }}\) clouds. & \begin{tabular}{c} 
No Altocumulus, Altostratus, or \\
Nimbostratus.
\end{tabular} \\
1 & Altostratus translucidus. & \begin{tabular}{c} 
Altostratus, the greater part of \\
which is semitransparent; through \\
this part the Sun or Moon may be
\end{tabular} \\
weakly visible as through ground \\
glass.
\end{tabular}

Table 4-7.--Code table for clouds of types Altocumulus, Altostratus, and Nimbostratus (continued)
\begin{tabular}{lcl}
\hline \begin{tabular}{l} 
Code \\
fig-
\end{tabular} & Technical language & \begin{tabular}{l} 
Plain language \\
ures
\end{tabular} \\
specifications
\end{tabular}

6 Altocumulus cumulogenitus (or cumulonimbogenitus).

7 Altocumulus translucidus in two or more layers, or Altocumulus opacus in a single layer, not progressively invading the sky, or Altocumulus with Altostratus or Nimbostratus.

8 Altocumulus castellanus or floccus.

9 Altocumulus of a chaotic sky, generally at several levels. -

Clouds \(C_{M}\) not visible owing to darkness, fog, blowing dust or sand, or other phenomena, or because of a continuous layer of lower clouds.

Altocumulus resulting from the spreading out of Cumulus (or Cumulonimbus).

Altocumulus in two or more layers usually opaque in places and not progressively invading the sky; or opaque layer of Altocumulus not progressively invading the sky; or Altocumulus together with Altostratus or Nimbostratus.

Altocumulus with sproutings in the form of small towers or battlements, or Altocumulus having the appearance of cumuliform tufts.

Altocumulus of a chaotic sky, generally at several levels.

No Altocumulus, Altostratus, or or Nimbostratus visible owing to darkness, fog, blowing dust or sand, or other similar phenomena, or more often because of the presence of a continuous layer of lower clouds.

Table 4-8.--Code table for clouds of types Cirrus,
Cirrostratus, and Cirrocumulus
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Code \\
fig- \\
ures
\end{tabular} & Technical language specifications & Plain language specifications \\
\hline 0 & No \(\mathrm{C}_{\mathrm{H}}\) clouds. & No Cirrus, Cirrostratus, or Cirrocumulus. \\
\hline 1 & ```
Cirrus fibratus, sometimes
    uncinus, not progressively
    invading the sky.
``` & ```
Cirrus in the form of filiments,
    strands or hooks, not progressively
    invading the sky.
``` \\
\hline 2 & Cirrus spissatus, in patches or entangled sheaves, which usually do not increase and sometimes seem to be the renains of the upper part. of a Cumulonimbus; or Cirrus castellanus or floccus. & Dense Cirrus in patches or entangled sheaves which usually do not increase and sometimes seem to be the remains of the upper parts of Cumulonimbus; or Cirrus with sproutings in the form of small turrets or battlements or Cirrus having the appearance of cumuliform tufts. \\
\hline 3 & Cirrus spissatus cumulonimbogenitus. & Dense Cirrus often in the form of an anvil, being the remains of the upper parts of Cumulonimbus. \\
\hline 4 & Cirrus uncinus, or fibratus, or both, progressively invading the sky; they generally thicken as a whole. & Cirrus in the form of hooks or filaments or both, progressively invading the sky; they generally become denser as a whole. \\
\hline 5 & Cirrus, often in bands, and and Cirrostratus, or Cirrostratus alone, progressively invading the sky; they generally thicken as a whole, but the continuous veil does not reach \(45^{\circ}\) above the horizon. & Cirrus, often in bands converging towards one point or two opposite points of the horizon and Cirrostratus, or Cirrostratus alone; in either case they are progressively invading the sky, and generally growing denser as a whole, but the continuous veil does not reach \(45^{\circ}\) above the horizon. \\
\hline
\end{tabular}

Table 4-8.--Code table for clouds of types Cirrus, Cirrostratus, and Cirrocumulus (continued)
\begin{tabular}{lcc}
\hline \begin{tabular}{l} 
Code \\
fig-
\end{tabular} & Technical language & \\
ures & specifications & \begin{tabular}{l} 
Plain language \\
specifications
\end{tabular}
\end{tabular}

7 Cirrostratus covering the whole sky.

Cirrus, often in bands converging towards one point or two opposite points of the horizon, and Cirrostratus, or Cirrostratus alone; in either case they are progressively invading the sky, and generally growịng denser as a whole; the continuous veil extends more than \(45^{\circ}\) above the horizon, without the sky being completely covered.

Cirrostratus not progressive- Cirrostratus not progressively invadly invading the sky, and not ing the sky, and not completely entirely covering it. covering the celestial dome.

9 Cirrocumulus alone, or Cirro- Cirrocumulus alone, or Cirrocumulus cumulus predominant among the cirriform clouds.
accompanied by Cirrus or Cirrostratus or both, but Cirrocumulus is predominant.

Clouds \(C_{H}\) not visible owing to No Cirrus, Cirrostratus, or Cirrocudarkness, fog, blowing dust mulus visible owing to darkness, fog, or sand, or other similar blowing dust or sand, or other phenomena, or because of a continuous layer of lower \({ }^{\text {. }}\) clouds. similar phenomena, or more often because of the presence of a continuous layer of lower clouds.
greatest height above the sea was used, except (a) clouds observed when the sky was visible through fog or analogous phenomena were reported as though these phenomena had not been present, and (b) persistent condensation trails caused by high-flying aircraft and/or cloud masses obviously developed from such trails were reported as high clouds when they resembled such clouds.

Visibility - Colums 53 and 54. Visibility, or the greatest distance from an observer that an object of known characteristics can be seen and identified, was determined, whenever possible, based upon objects whose distance from the observer was known (the horizon or other ships). Appropriate codes from table \(4-9\) were entered in colums 53 and 54 . When the visibility was not the same in all directions, the highest value common to one-half or more of the horizon circle was used; when the visibility was between two of the distances listed in table 4-9, the code for the lesser distance was used.

Table 4-9.--Code table for visibility

\section*{Code figures Visibility range}
\begin{tabular}{ll}
90 & Less than \(50 \mathrm{yd}(50 \mathrm{~m})\) \\
91 & \(50 \mathrm{yd}(50 \mathrm{~m})\) \\
92 & \(200 \mathrm{yd}(200 \mathrm{~m})\) \\
93 & \(1 / 4 \mathrm{nmi}(500 \mathrm{~m})\) \\
94 & \(1 / 2 \mathrm{nmi}(1,000 \mathrm{~m})\) \\
95 & \(1 \mathrm{nmi}(2,000 \mathrm{~m})\) \\
96 & \(2 \mathrm{nmi}(4,000 \mathrm{~m})\) \\
97 & \(5 \mathrm{nmi}(10 \mathrm{~km})\) \\
98 & \(10 \mathrm{nmi}(20 \mathrm{~km})\) \\
99 & \(25 \mathrm{nmi}(50 \mathrm{~km})\) or more
\end{tabular}.

Present Weather - Columns 55 and 56. "Present weather" refers to the state of weather at the time of, or within 1 hr before, the observation. The appropriate codes listed in table \(4-10\) were entered in column 55 and 56. When more than one code appeared to be required, the highest was entered.

Past Weather - Column 57. "Past weather" refers to the state of weather since the last scheduled observation (either \(11 / 2 \mathrm{hr}\) or 3 hr before observation time). The appropriate codes from table \(4-11\) were used. When two or more codes appeared to be required, the highest code was used.

Table 4-10.--Code table for present weather

00-49 No Precipitation at the Station at the Time of Observation.
00-19: No Precipitation, Fog, Ice Fog, Duststorm, Sandstorm, Drifting or Blowing Snow at the Station (or Ship) at the Time of Observation, Except for 09 and 17, or During the Preceding Hour.


Table 4-10.--Code table for present weather (continued)

20-29: Precipitation, Fog or Ice Fog or Thunderstorm at the Station (or Ship) During the Preceding Hour But Not at the Time of Observation.
\begin{tabular}{|c|c|}
\hline 20 & Drizzle (not freezing) or snow grains \\
\hline 21 & Rain (not freezing) \\
\hline 22 & Snow \\
\hline . 23 & Rain and snow or ice pellets \(\quad\}\) not falling as showers. \\
\hline 24 & Freezing drizzle or freezing rain \\
\hline 25 & Shower (s) of rain \\
\hline 26 & Shower (s) of snow, or of rain and snow. \\
\hline 27 & Shower (s) of hail, or of hail and rain: \\
\hline 28 & Fog or ice fog [visibility less than 1,000 meters ( 1,100 yards)]. \\
\hline 29 & Thunderstorm (with or without precipitation) \\
\hline 30-39: & Duststorm, Sandstorm or Drifting or Blowing Snow. \\
\hline 30 & \(\left.\begin{array}{l}\text { Slight or moderate duststorm } \\
\text { or sandstorm }\end{array}\right\}\)\begin{tabular}{l} 
has decreased during the preceding \\
hour.
\end{tabular} \\
\hline 31 & \(\left.\begin{array}{l}\text { Slight or moderate duststorm } \\
\text { or sandstorm }\end{array}\right\}\)\begin{tabular}{c} 
no appreciable change during the \\
preceding hour.
\end{tabular} \\
\hline 32 & \(\left.\begin{array}{l}\text { Slight or moderate duststorm } \\
\text { or sandstorm }\end{array}\right\}\)\begin{tabular}{l} 
has begun or increased during the \\
preceding hour.
\end{tabular} \\
\hline 33 & \(\left.\begin{array}{l}\text { Severe duststorm } \\ \text { or sandstorm }\end{array}\right\}\) has decreased during the preceding hour. \\
\hline 34 & \[
\left.\begin{array}{l}
\text { Severe duststorm } \\
\text { or sandstorm }
\end{array}\right\} \text { no appreciable change during the preceding hour. }
\] \\
\hline 35 & \[
\left.\begin{array}{l}
\text { Severe duststorm } \\
\text { or sandstorm }
\end{array}\right\} \text { has begun or increased during the preceding hour. }
\] \\
\hline 36 & Slight or moderate drifting snow. \} Drifting snow 10 meters ( 33 feet) \\
\hline 37 & Heavy drifting snow. \({ }^{\text {a }}\), or below at sea. \\
\hline 38 & Slight or moderate blowing snow. \({ }^{\text {a }}\), Blowing snow above 10 meters \\
\hline 39 & Heavy blowing snow. \(\}\) (33 feet) at sea. \\
\hline 40-49: & Fog or Ice Fog at the Time of Observation [visibility less than 1,000 meters (1,100 yards)]. \\
\hline 40 & Fog or ice fog at a distance at the time of observation, but not at the station (or ship) during the last hour, the fog extending to a level above that of the observer. \\
\hline 41 & Fog or ice fog in patches. \\
\hline 42 & Fog or ice fog, sky discernible \(\}\) has become thinner during the \\
\hline 43 & Fog or ice fog, sky not discernible \(\{\) preceding hour. \\
\hline 44 & Fog or ice fog, sky discernible \(\}\) no appreciable change during \\
\hline 45 & Fog or ice fog, sky not discernible , the preceding hour. \\
\hline 46 & Fog or ice fog, sky discernible \(\}\) has begun or has become thicker \\
\hline 47 & Fog or ice fog, sky not discernible \(\}\) during the preceding hour. \\
\hline 48 & Fog, depositing rime, sky discernible. \\
\hline 49 & Fog, depositing rime, sky not discernible. \\
\hline
\end{tabular}

Table 4-10. -Code table for present weather (continued)
\begin{tabular}{|c|c|}
\hline 50-99 & Precipitation at the Station (or Ship) at the Time of Observation. \\
\hline 50-59: & Drizzle at Time of Observation. \\
\hline 50 & Drizzle, not freezing, intermittent \(\}\) slight at time of observation. \\
\hline 51 & Drizzle, not freezing, continuous \(\}\) slight at time of observation. \\
\hline 52 & Drizzle, not freezing, intermittent \(\}\), morate at time of observation. \\
\hline 53 & Drizzle, not freezing, continuous \(\}\) moderate at time of observation. \\
\hline 54 & Drizzle, not freezing, intermittent \(\}\) heavy (dense) at time of \\
\hline 55 & Drizzle, not freezing, continuous \(\}\) observation. \\
\hline 56 & Drizzle, freezing, slight. \\
\hline 57 & Drizzle, freezing, moderate or heavy (dense). \\
\hline 58 & Drizzle and rain, slight. \\
\hline 59 & Drizzle and rain, moderate or heavy. \\
\hline 60-69: & Rain at Time of Observation. \\
\hline \[
60
\] & Rain, not freezing, intermittent \(\}\) slight at time of observation. \\
\hline \[
61
\] & Rain, not freezing, continuous \{ slight at time of observation. \\
\hline 62 & Rain, not freezing, intermittent \} moderate at time of observation. \\
\hline 63 & Rain, not freezing, continuous \(\{\) moderate at time of observation \\
\hline 64 & Rain, not freezing, intermittent \(\}\) heavy at time of observation. \\
\hline 65 & Rain, not freezing, continuous \(\}\) heavy at time of observation. \\
\hline 66 & Rain, freezing, slight. \\
\hline 67 & Rain, freezing, moderate or heavy. \\
\hline 68 & Rain or drizzle and snow, slight. \\
\hline 69 & Rain or drizzle and snow, moderate or heavy. \\
\hline 70-79: & Solid Precipitation Not in Showers at Time of Observation. \\
\hline & Intermittent fall of snowflakes \(\}\) slight at time of observation. \\
\hline \[
71
\] & Continuous fall of snowflakes \\
\hline 72 & Intermittent fall of snowflakes \(\}\) moderate at time of observation. \\
\hline 73 & Continuous fall of snowflakes moderate at time of observation. \\
\hline 74 & Intermittent fall of snowflakes \(\}\) heavy at time of observation. \\
\hline 75 & Continuous fall of snowflakes \(\}\) heavy at time of observation. \\
\hline 76 & Ice prisms (with or without fog). \\
\hline 77 & Snow grains (with or without fog). \\
\hline 78 & Isolated starlike snow crystals (with or without fog). \\
\hline 79 & Ice pellets (i.e., frozen raindrops or largely melted and refrozen snowflakes). \\
\hline 80-99: & Showery Precipitation, or Precipitation With Current or Recent Thunderstorm. \\
\hline 80 & Rain shower(s), slight. \\
\hline 81 & Rain shower(s), moderate or heavy. \\
\hline 82 & Rain shower(s), violent. \\
\hline 83 & Shower(s) of rain and snow, mixed, slight. \\
\hline 84 & Shower (s) of rain and snow mixed, moderate or heavy. \\
\hline 85 & Snow shower(s), slight. \\
\hline 86 & Snow shower(s), moderate or heavy. \\
\hline
\end{tabular}

Table 4-10.--Code table for present weather (continued)
87 Shower (s) of snow pellets or ice pellets* with or without rain or rain and snow mixed
88 Shower(s) of snow pellets or ice pellets* with or without rain or rain and snow mixed
slight. moderate or heavy.
89 Shower (s) of hail, with or without rain or rain and snow mixed, not associated with thunder
90 Shower (s) of hail, with or without rain or rain and snow mixed, not associated with thunder Slight rain at time of observation
91 Moderate or heavy rain at time of
92 Moderate or heavy rain at time of observation 93 Slight snow or rain and snow mixed or hail* at time of observation
94 Moderate or heavy snow, or rain and snow mixed or hail* at time of observation
thunderstorm during the preceding hour but not at time of observation.
95 Thunderstorm, slight or moderate, without hail* but with rain and/or snow at time of observation
96 Thunderstorm, slight or moderate, with hail* at time of observation
97 Thunderstorm, heavy, without hail* but with rain and/or snow at time of observation at time of observation.
**98 Thunderstorm combined with duststorm or sandstorm -at time of observation.
99 Thunderstorm, heavy, with.hail* at time of observation.
* Hail, ice pellets, i.e., pellets of snow encased in a thin layer of ice, snow pellets.
**
In reporting code figure 98, the observer is allowed considerable latitude in the presumption that precipitation is or is not occurring if it is not actually visible.

Precipitation - Columns 58 through 68. The amount of precipitation was recorded by a Weather Bureau shielded precipitation gage \(\# D 101\) mounted on the boom of each fixed ship and graduated in millimeters. With care taken to allow for ship movement, the amount of precipitation during, or \(11 / 2\) or 3 hr before, the observation was read to the nearest millimeter and entered in columns 58, 59, and 60. If precipitation fell, but was too small to be measured, 001 was entered. If no precipitation was observed, 000 was used.

The times of beginning and ending of precipitation were recorded in GMT to the nearest minute in columns 61 through 64 and 65 through 68 , respectiyely. If precipitation began or ended more than once during the observation period, the time of the first beginning and last ending was entered, and the appropriate codes for showery or intermittent activity were entered in the present-and past-weather columns.

Table 4-11.--Code table for past weather

Code figure

\section*{Past weather}

0

1

2

3

4
5
6
7

8
9

Clouds covering \(1 / 2\) or less of the sky throughout period

Clouds covering more than \(1 / 2\) of the sky during part of period, and less than \(1 / 2\) during part of period

Clouds covering more than \(1 / 2\) of the sky throughout period

Sandstorm, duststorm, or drifting or blowing snow

Fog, or ice fog, or thick haze
Drizzle
Rain
Snow, rain and snow mixed, or ice pellets

Shower(s)
Thunderstorm(s), with or without precipitation

Orientiation of Low Clouds - Columns 69 through 71 . When cumulus clouds arranged in bands or several bands separated by clear spaces (streets) were observed, their presence was recorded by entering code 1 in column 69 of the form; 0 was used if they were not present. The orientation of the cloud street axis with respect to true north is indicated in columns 70 and 71 in accordance with table 4-12. (This information was reliably reported.) If columns 69 through 71 are blank, no observations of this type were made.)

Remarks - Columns 72 through 80. These colums were left open for the observer to record any information he considered pertinent to the observation not allowed for in the form, such as wind shifts, gusting wind, waterspouts, hail, second swell group at least \(30^{\circ}\) different from the one reported, reasons for missing data or unreliability of some data, and whether the observation was transmitted to the Barbados Control Center, indicated by TRANS. The GMT for all such entries in the remarks column is given. The observer's initials appear in the last column of the Surface Observations Form.

Table 4-12.-Code table for orientation of cloud band axis with respect to true north
\begin{tabular}{|c|c|c|c|c|}
\hline Code figure & \multicolumn{4}{|l|}{Orientation of band axis with respect to true north along a line} \\
\hline 00 & From & \(0^{\circ}\) & to & \(180^{\circ}\) \\
\hline 01 & " & \(10^{\circ}\) & " & \(190^{\circ}\) \\
\hline 02 & " & \(20^{\circ}\) & " & \(200^{\circ}\) \\
\hline 03 & " & \(30^{\circ}\) & " & \(210^{\circ}\) \\
\hline 04 & " & \(40^{\circ}\) & " & \(220^{\circ}\) \\
\hline 05 & " & \(50^{\circ}\) & " & \(230^{\circ}\) \\
\hline 06 & " & \(60^{\circ}\) & " & \(240^{\circ}\) \\
\hline 07 & " & \(70^{\circ}\) & " & \(250^{\circ}\) \\
\hline 08 & " & \(80^{\circ}\) & " & \(260^{\circ}\) \\
\hline 09 & " & \(90^{\circ}\) & " & \(270^{\circ}\) \\
\hline 10 & " & \(100^{\circ}\) & " & \(280^{\circ}\) \\
\hline 11 & " & \(110^{\circ}\) & 1 & \(290^{\circ}\) \\
\hline 12 & " & \(120^{\circ}\) & " & \(300^{\circ}\) \\
\hline 13 & " & \(130^{\circ}\) & " & \(310^{\circ}\) \\
\hline 14 & " & \(140^{\circ}\) & " & \(320^{\circ}\) \\
\hline 15 & " & \(150^{\circ}\) & " & \(330^{\circ}\) \\
\hline 16 & " & \(160^{\circ}\) & " & \(340^{\circ}\) \\
\hline 17 & " & \(170^{\circ}\) & " & \(350^{\circ}\) \\
\hline
\end{tabular}

\subsection*{4.2 Archive Format and Data Inventory}

The marine meteorological observations as logged on the Surface Observations Form were punched on cards and edited for punching errors only. These data are contained on magnetic tape as the second of five files. The first file consists of \(80-c o l u m n\) card images, one card image per record, describing the formats of the five data files. The third file contains manually recorded ship operations and navigation data (these have been supplemented by corrections for ship motion and ship positions for Periods II and III, after the moorings of the fixed ships failed; see sec. 2). The fourth file contains information logged on the STD Observation Form (see sec. 7) and the fifth file consists of radiometersonde data (see sec. 5). A11 information is in binary-coded-decimal (BCD) format, even parity, 800 bits per inch.

An inventory of the marine meteorological observations is given in table 4-13. The magnetic tape format is as follows:

Character
1
2

3-5
6-7
8-9
10-14.
15
16-17

18-20

21-23

24-25
26-27
28-30
31-32
33-35

36-37

\section*{Element}

Card code, should always be 1
Ship code
0 - Oceanographer
1 - Rainier
2 - Mt. Mitche11
3 - Discoverer
4 - Rockaway
Modified Julian day
Hour, GMT
Minute
Station pressure, millibars and tenths
Three-hour pressure tendency
Three-hour pressure change, millibars and tenths

Dry-bulb temperature, degrees and tenths Celsius

Wet-bulb temperature, degrees and tenths Celsius

Dewpoint temperature, degrees Celsius
Relative humidity, percent
Wind direction, degrees true
Wind speed, knots
Direction from which wind waves come, degrees true
Wind-wave height, half-meters

Character
38-39
40-42

43-44
45-46
47
48
49
50
51
52
53-54
55-56
57
58-60
61-62
63-64
65-66
67-68
69-80

E1ement
Wind-wave period, seconds
Direction from which swell comes, degrees true

Swell height, half-meters
Swell period, seconds
Total cloud amount, eighths
Low cloud amount, eighths
Low cloud type
Low cloud height
Middle cloud type
High cloud type
Visibility
Present weather
Past weather
Precipitation amount, millimeters
Hour precipitation began, GMT
Minute precipitation began, GMT
Hour precipitation ended, GMT
Minute precipitation ended, GMT
Remarks
The. BOMEX surface pressure - marine microbarograms for four of the fixed ships are contained on a reel of \(35-\mathrm{mm}\) microfilm. This reel also contains the Weather Radar Log for the Discoverer (see sec. 8) and the NAVOCEANO CTEM Sea-Surface Temperature Log (see sec. 7). Daily charts are available for the time periods indicated in the inventory given in table 4-14.

Table 4-13.--Inventory of marine meteorological observations


Table 4-13.--Inventory of marine meteorological observations (zontinued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Magnetic \\
tape No.
\end{tabular}} & \multicolumn{3}{|c|}{Date (1969)} & Oceanographer & Rainier & Mt. Mitchell & Discoverer & Rock away \\
\hline & Calen & dar & \[
\begin{aligned}
& \text { Julian } \\
& \text { day }
\end{aligned}
\] & No. of observations \\
\hline \multirow[t]{2}{*}{89622} & June & 1 & 152 & 15 & 15 & 15 & 15 & 8 \\
\hline & " & 2 & 153 & 15 & 15 & 14 & 13 & 7 \\
\hline " & " & 3 & 154 & 15 & 15 & 15 & 15 & \\
\hline \multirow[t]{2}{*}{"} & " & 4 & 155 & 13 & 13 & 14 & 13 & 5 \\
\hline & " & 5 & 156 & 1 & & & 1 & 1 \\
\hline " & " & 6 & 157 & 9 & 10 & 10 & 8 & 7 \\
\hline 1 & " & 7 & 158 & 15 & 15 & 15 & 15 & 8 \\
\hline " & " & 8 & 159 & 8 & 8 & 7 & & 6 \\
\hline \multirow[t]{2}{*}{"} & " & 9 & 160 & 15 & 15 & 16 & 15 & 9 \\
\hline & " & 10 & 161 & 4 & & 3 & 5 & 2 \\
\hline " & " & 11 & 162 & & & & & \\
\hline " & & 12 & 163 & & & & & \\
\hline " & " & 13 & 164 & & & & & \\
\hline \multirow[t]{2}{*}{"} & & 14 & 165 & & & & & \\
\hline & " & 15 & 166 & & & & & \\
\hline " & " & 16 & 167 & & & & & \\
\hline " & & 17 & 168 & & & & & \\
\hline " & & 18 & 169 & & & & & \\
\hline \multirow[t]{2}{*}{"} & " & 19 & 170 & & & & & \\
\hline & " & 20 & 171 & 1 & 1 & & & 1 \\
\hline " & " & 21 & 172 & 8 & 8 & 8 & 8 & 4 \\
\hline " & " & 22 & 173 & 4 & 14 & 15 & 16 & 9 \\
\hline \multirow[t]{2}{*}{"} & " & 23 & 174 & 14 & 15 & 16 & 14 & 8 \\
\hline & & 24 & 175 & 15 & 16 & 14 & 15 & 8 \\
\hline " & " & 25 & 176 & 15 & 15 & 15 & 15 & 8 \\
\hline " & " & 26 & 177 & 13 & 13 & 13 & 13 & 6 \\
\hline " & " & 27 & 178 & 1 & & & 1 & 1 \\
\hline " & " & 28 & 179 & 12 & 13 & 12 & 12 & 6 \\
\hline " & " & 29 & 180 & 15 & 15 & 15 & 15 & 8 \\
\hline " & " & 30 & 181 & 5 & 15 & 14 & 14 & 5 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Magnetic \\
tape No.
\end{tabular}} & \multicolumn{3}{|c|}{Date (1969)} & \multirow[t]{2}{*}{\begin{tabular}{l}
Oceanographer \\
No. of observations
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Rainier \\
No. of observations
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Mt. Mitchell \\
No. of observations
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Discoverer \\
No. of observations
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Rockaway \\
No. of observations
\end{tabular}} \\
\hline & Calen & dar & Julian day & & & & & \\
\hline B9622 & July & 1 & 182 & & 14 & 14 & 14 & 7 \\
\hline " & & 2 & 183 & & 4 & 5 & 4 & 2 \\
\hline " & " & 3 & 184 & & & & & \\
\hline " & " & 4 & 185 & & & & & \\
\hline " & " & 5 & 186 & & & & & \\
\hline " & " & 6 & 187 & & & & & \\
\hline " & " & 7 & 188 & & & & & \\
\hline " & " & 8 & 189 & & & & & \\
\hline " & " & 9 & 190 & & & & & \\
\hline " & " & 10 & 191 & & & & & \\
\hline " & " & 11 & 192 & & 6 & 1 & 5 & 5 \\
\hline " & " & 12 & 193 & 5 & 8 & 3 & 8 & 4 \\
\hline " & " & 13 & 194 & 8 & 8 & 8 & 8 & 8 \\
\hline " & " & 14 & 195 & 8 & 8 & 7 & 8 & 5 \\
\hline " & " & 15 & 196 & 7 & 7 & 7 & 7 & 6 \\
\hline " & " & 16 & 197 & 1 & 1 & & 1 & 1 \\
\hline " & " & 17 & 198 & 8 & 8 & 8 & 8 & 5 \\
\hline " & " & 18 & 199 & 8 & 8 & 8 & 8 & 8 \\
\hline " & " & 19 & 200 & 8 & 8 & 8 & 4 & 8 \\
\hline " & " & 20 & 201 & 8 & 8 & 8 & 8 & 8 \\
\hline " & " & 21 & 202 & 8 & 7 & 8 & 8 & 9 \\
\hline " & " & 22 & 203 & 8 & 9 & 8 & 8 & 6 \\
\hline " & " & 23 & 204 & 8 & 8 & 7 & 4 & 8 \\
\hline " & " & 24 & 205 & 4 & 3 & 4 & 8 & 2 \\
\hline " & " & 25 & 206 & 8 & 8 & 7 & 8 & 8 \\
\hline " & " & 26 & 207 & 8 & 8 & 7 & 8 & \\
\hline " & " & 27 & 208 & 7 & 8 & 8 & 8 & \\
\hline " & " & 28 & 209 & 7 & 7 & 8 & 1 & \\
\hline " & " & 29 & 210 & & & & & \\
\hline
\end{tabular}

Table 4-14.--Inventory of surface-pressure--marine microbarograms
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Microfilm reel No. & \multicolumn{3}{|c|}{\[
\frac{\text { Oceanographer }}{\text { daily charts }}
\]} & \multicolumn{3}{|c|}{Rainier daily charts} & \multicolumn{4}{|l|}{Mt. Mitchell daily charts} & \multicolumn{3}{|c|}{\[
\frac{\text { Discoverer }}{\text { daily charts }}
\]} \\
\hline DOC. - 3 & May & 1 - May & 16 & May & 1 - May & 14 & May & & - May & 14 & May & 3 - May & 15 \\
\hline 11 & May & 22 - May & 31 & May & 22 - May & 31 & May & & - May & 28 & May & 22 - May & 31 \\
\hline " & June & 1 - June & & June & 1 - June & & May & & - May & 31 & June & 1 - June & \\
\hline " & June & 19 - June & & June & 19 - July & & June & 1 & - June & & June & 19 - June & 30 \\
\hline " & July & \(10-J u l y\) & & July & 10 - July & & June & 20 & - June & & July & 1 - July & 5 \\
\hline " & & & & & & & July & 1 & - July & 2 & July & 9 - July & \\
\hline 11 & & & & & & & July & 10 & - July & & & & \\
\hline
\end{tabular}
5. RAWINSONDE AND RADIOMETERSONDE DATA SET

\subsection*{5.1 Instrumentation and Observation Procedures}

Rawinsonde balloons launched from the BOMEX ships carried two instrument packages aloft for each observation: a temperature sonde equipped with a thermistor and a humidity sonde with a hygristor. All sondes and telemetry units were of standard National Weather Service type with these exceptions:
(a) The temperature sondes were specially wired to yield only signals for temperature, low reference ( 190 Hz ) instead of a humidity signal, and a special midreference signal ( 95 Hz ) that replaced every fifth low reference in the sequence. This allowed more frequent reference signals and hence more precise corrections for variations in sonde characteristics. Selected precalibrated thermistors were used.
(b) The temperature sonde pressure sensors were specially selected and precalibrated twice at the factory, once "up" and once "down." Sensors that showed large differences were rejected.
(c) The humidity sondes were modified to yield an almost continuous humidity signal, interrupted only occasionally for a low.reference signal. Because the humidity data are much less sensitive to minor sonde battery variation than the temperature data, there was no need for frequent reference checks. A more sensitive uncalibrated pressure commutator was substituted for the usual baroswitch to further shorten the time occupied by reference signals. All pressure data were taken from the temperature sonde and time correlated to the humidity data. The net result was extraordinarily fine vertical resolution in the humidity profile.

Table 5-1 summarizes the instrumentation and sonde frequency used by the fixed ships during the four BOMEX Observation Periods. Temperature sonde and humidity sonde signal output was acquired by separate receivers aboard ship and recorded automatically on the Signal Conditioning and Recording Device (SCARD), the primary shipboard recording unit, which was developed and operated in the field by personnel from NASA's Mississippi Test Facility (MTF). Data were also recorded on strip charts for quality control.

Two types of balloon-tracking systems were used: the Scanwell Wind Finding at Sea System (WFSS) and radar wind finding systems. The Scanwell WFSS was carried aboard the Oceanographer, Mt. Mitchell, and Rainier. By means of rotary potentiometers mounted within the Scanwell balloon-tracking instrimentation, continuous slant range and azimuth values of balloon position were acquired for computation of upper air wind directions and speeds. These data were also recorded on SCARD, as well as on strip charts for quality control. The Discoverer was equipped with a Selenia radar, METEOR 200 RMT-2S ( \(3.2-\mathrm{cm}\) wavelength). Slant range and azimuth data, for computation of upper air winds, were recorded on punched paper tape at \(15-s\) intervals, with a printed paper tape for quality control. The Rockaway used an AN/SPS-29 radar.

Slant range and azimuth measurements were obtained visually by the radar operator at 1 -min intervals and recorded manually for subsequent conversion to punched cards.

Radiometersonde observations were obtained at 0000 GMT each day from the Discoverer, Rainier, and Rockaway during all four BOMEX periods. A SuomiKuhn economical net radiometer to measure upward and downward IR radiation was attached to the rawinsonde.

Table 5-1.--BOMEX rawinsonde instrumentation



\footnotetext{
\({ }^{1}\) Suomi-Kuhn 403 MHz FM-FM (upward and downward IR) radiometersoncrs flown at 0000 GMT daily.
\({ }^{2}\) Planned termination at approximately 400 mb .
\({ }^{3}\) From surface to burst.
}

The procedures for making rawinsonde observations were essentially the standard ones used by the National Weather Service. An exception was that the frequency of observations, i.e., every \(11 / 2 \mathrm{hr}\), required termination at 400 mb . The requirement for increased accuracy and nearly continuous resolution in hur midity data dictated the use of two sondes on the same balloon train, one that measured temperature, the other humidity.

The temperature sonde was not baselined because individually calibrated thermistors were used. Standard preflight check and inspection were performed, however. The sonde was assembled in the normal fashion, except that no hygristor was installed. After the instrument had been checked externally, the temperature sonde ground equipment was turned on and allowed to warm up, and the activated batteries were placed in the sonde for a 2 - to 3 -min warmup period. By alternate touching of the two test leads with a common lead, the low reference and midscale reference, respectively, were transmitted. The lowreference signal was maintained long enough to set the recorder on ordinate 95.0. After the reference had been tested and set on the strip chart, the temperature signal was checked for proper or expected value. The sonde transmitter was adjusted to the desired frequency; alternate flights were tuned to different frequencies to minimize possibility of an abandoned flight interfering with preflight operations for the next observation. Under normal circumstances, the sonde transmitter was never tuned to the limits of the equipment frequency range, since some latitude was left for postrelease frequency drifts. With the external switching completed and the test leads clipped off, the temperature sonde baroswitch was set to a position corresponding to the nearest 0.1 contact representing the ambient pressure read on the ship's precision aneroid barometer. The procedures used to set the baroswitch were those suggested in Federal Meteorological Handbook 3.

The humidity sonde was inspected and reference checked in the same way as the temperature sonde, and the transmitter was tuned to the proper frequency. Following this, baseline measurements were made in the baseline check box. The baseline wet- and dry-bulb temperature conditions were established to the nearest \(0.1^{\circ} \mathrm{C}\) (by use of special precision thermometers), and the corresponding relative humidity was determined. With the humidity stabilized at 31 to 35 percent (normally around 33 percent), the baseline conditions were recorded on a special Rawinsonde Observation Form (BOMEX Card 0) for use in later data processing. The baseline measurements were considered valid for only 30 min . If release did not occur within 30 min , a fresh humidity element was installed and a new baseline check made. The baroswitch was then set. The humidity sonde baroswitch was set to either contact number 3 or 8 , whichever was closest to the original pen arm position. Since the humidity.sonde baroswitch was not used for pressure measurements, setting the baroswitch according to ambient station pressure was not required. Only the temperature sonde baroswitch was used for pressure measurements. Setting the pen arm as indicated ensured that relative humidity data were transmitted at rel،. se and a low reference shortly thereafter.

A \(300-\mathrm{g}\) balloon was used for flights to 400 mb at the \(11 / 2-\mathrm{hr}\) release frequency. For all 0000 GMT observations and flights released at the \(6-\mathrm{hr}\) release frequency, a \(600-\mathrm{g}\) balloon was used. With two instrumentation packages, the ascent rate was nominally \(200 \mathrm{~m} / \mathrm{min}\) for the 300 g balloon and \(300 \mathrm{~m} / \mathrm{min}\) for the \(600-\mathrm{g}\) balloon. During bOMEX Observation Period I (May 3 to May 15), the two sondes were strapped together, back to back, but signal
interference between the two instruments occurred occasionally, and such flights were not processed. Thereafter, the sondes were separated on the train by \(1 / 2\) to 2 m , with the temperature sonde nearest the balloon. For flight, the arrangement was balloon, train regulator ( 15 to 20 m of line included), sondes spaced \(11 / 2\) to 2 m apart, \(31 / 2 \mathrm{~m}\) of line, and (for the Discoverer and Rockaway only) target.

Just before release, all ground equipment was rechecked, and the SCARD operators were notified to prepare for release. Immediately before release, the humidity sonde external low-reference wire was grounded to the sonde for at least 5 s , and this connection was broken as the balloon was released. The resulting shift in signal frequency was used in later data reduction as indication of lift-off.

After release, the usual procedures for monitoring rawinsonde ground equipment were followed, and the observation was terminated as scheduled or as soon as sonde failure occurred in flight.

The same preflight checks and procedures used for the rawinsondes were used for radiometersonde observations. The radiometer was attached according to instructions given by P.M. Kuhn, Environmental Research Laboratories, NOAA, Boulder, Colo. 80302 .

\subsection*{5.2 Preliminary Data Processing}

The rawinsonde data were initially processed by NASA's Mississippi Test Facility (MTF), Bay St. Louis, Miss. After early review of the digitized SCARD analog data, it became evident that, because of inconsistencies in observational techniques, operational difficulties, and other problems (such as digital noise), a comprehensive set of rawinsonde processing software could not be constructed without some intermediate processing step that would produce sufficiently complete output for review and for design of the final software.

Temperature- and humidity-sonde signals for all ships were recorded as frequency-modulated signals on SCARD. Slant range and azimuth from the Scanwell WFSS installed on the Oceanographer, Mt. Mitchell, and Rainier were also recorded on SCARD, but as amplitude-modulated signals. All these parameters were frequency multiplexed on one of the seven SCARD recording channels. The temperature- and humidity-sonde input signals from groundstation receivers aboard the fixed ships were designed to vary between 10 and 200 Hz , but in many cases exceeded 200 Hz . The slant range and azimuth input voltages from the Scanwell WFSS varied between 0 and 5 V d.c. The slant range was a ramped signal representing successive \(2,000-m\) increments of measured slant range. The azimuth input from Scanwell consisted of two inputs: one voltage ( 0 to 5 V d.c. ramp) representing the range from 0 to \(360^{\circ}\) (called \(A Z 360\) ), the other ( 0 to \(5 \mathrm{~V} \mathrm{d.c}. \mathrm{ramp)} \mathrm{representing} \mathrm{successive} 0\) to \(20^{\circ}\) ranges (called AZ20). These two azimuth voltages, derived from precision potentiometers mounted within the Scanwell antenna servodrive train, were necessary to achieve appropriate resolution in measured azimuth. On the Discoverer, slant range and azimuth were acquired at 15 -s intervals by a Selenia radar, Model METEOR 200 RMT-2S, and recorded digitally on punched paper tape and on a
hard-copy printout. On the Rockaway, slant range and azimuth were acquired by an AN/SPS-29 radar and recorded manually at 1 -min intervals.

Digitization of the above signals required a two-pass operation: a first pass that converted the analog FM/FM (frequency modulated) and FM/PAM (pulse amplitude modulated) signals to digital form at 16 times real-time recording speed, resulting in 10 samples per second ( 10 sps ) digital values of frequency and d.c. voltages; and a second pass that edited, formatted, scaled, and reduced the \(10-\mathrm{sps}\) digitized SCARD data to 2 sps and produced as output one reel of magnetic tape containing all measured frequency values and d.c. voltages gathered in one \(24-\mathrm{hr}\) period ( 0000 through 2400 GMT) for one fixed ship. The first pass was made by an SDS 930 Automatic Telemetry Reduction System, a program-controlled system in which an AMPEX FR-1400 analog tape unit, time-code-generator decoder, 18 discriminators, two cycle counters, input/ output tie-in crossbar units, five levels of a priority interrupt system, three digital tape units, and other peripheral input/output devices were used. The second pass was made by an IBM 7094 program that created SDS 930compatible \(2-s p s\) tape from a \(10-s p s\) tape. This equipment and the programs were operated and managed by the NASA Slidell Computer Complex, Slidell, La.

\subsection*{5.2.1 Temperature- and Humidity-Sonde Data}

First pass. For each element, the demodulated output was input to a zero detection unit. At each positive-going crossover, the following took place:
(a) The appropriate counter was updated by one.
(b) The contents of a \(312.5-\mathrm{kHz}\) clock (recorded on SCARD as 3.125 kHz , then multiplied for system control) was transferred to the appropriate storage register. At the end of each \(1 / 10 \mathrm{~s}\), the output for each element (temperature/temperature references or humidity/humidity references) was computed by \(V=t / c\), where \(V=\) recorded value; \(t=\) the time, in units of the \(312.5-\mathrm{kHz}\) clock; and \(\mathrm{c}=\) the integral number of positive crossovers. Thus, a time series of 10 -sps* values, one \(10-\) sps series for the temperature sonde and one for the humidity sonde, were formed as input to the second pass. Each 10-sps time series contained measured temperature or humidity values and their respective reference values in the sequence of normal occurrence during the observation.

Second pass. The \(10-\) sps samples were converted to Hz values for each \(1 / 10 \mathrm{~s}\) by dividing the output ( V above) of digitizing into 3,125,000. Following conversion to Hz , a noise elimination averaging technique was applied to the \(10-\mathrm{sps}\) data with one \(1 / 2-s\) period, i.e., five \(1 / 10-s\) data points, to form the 2-sps time series. Selective averaging was done by comparing the new arithmetic average of the input data set with the reviously averaged point for this variable. If the difference between these two values exceeded the tolerance as specified on the noise tolerance manual input card to the second pass program \(( \pm 0.5 \mathrm{~Hz}\) for temperature-sonde and \(\pm 1.0 \mathrm{~Hz}\) for humidity-sonde

\footnotetext{
*Used here, and in what follows, to indicate "values per second."
}
data), the point deviating most from the arithmetic mean was discarded, and the previous average was replaced with a new arithmetic mean of ( \(n-1\) ) \(1 / 10-s\) points. The process was then repeated until the correct tolerance was established or until only two points remained. The average of these two points was then accepted as the average for one \(2-s p s\) data point. Following averaging, the digitizing system calibrations were applied to the \(2-s p s\) data points.

\subsection*{5.2.2 Slant Range, Azimuth 360, and Azimuth 20}

First pass. For each channel (one for slant range, one for azimuth 360, and one for azimuth 20), the signals were demodulated through a discriminator giving a d.c. voltage nominally in the range of \(\pm 7.5 \mathrm{~V}\). At the beginning and end of each SCARD tape, the calibration outputs were taken for each channel and recorded separately. Each \(1 / 10 \mathrm{~s}\), the three discriminated voltage outputs were multiplexed to an \(A / D\) converter at the rate of 50 us per channel. The converter was capable of digitizing in the range of \(\pm 10 \mathrm{~V}\), with significance to approximately 0.01 V . Thus, a slant range, azimuth 360 , and azimuth 20 10-sps time series was formed for each variable for input to the second pass program.

Second pass. The \(1 / 10\)-s values were scaled to 10,000 counts, where \(0-5 \mathrm{~V} \equiv 0-10,000\) counts as follows:
\[
\text { Counts }=10,000\left(A_{t}-L_{c}\right) /\left(H_{c}-L_{c}\right),
\]
where \(L_{c}\) and \(H_{c}\) are low-reference calibration and high-reference calibration, respectively, as recorded on SCARD. The calibrations represent the average of the beginning and ending calibrations on one SCARD tape, and \(A_{t}\) is the variable sample. The \(10-s p s\) values were then reduced to 2 -sps values by the noise elimination averaging used for rawinsonde temperature and humidity, with the tolerances for slant range and azimuth 360 being 60 counts and for azimuth 20, 250 counts.

\subsection*{5.3 Final Data Processing}

The 2-sps magnetic tape data from MTF described above were used for final processing, which consisted of both automated and manual procedures. The overall approach was as follows:
(1) Soundings were processed to termination, or end of usable data.
(2) A check was made for baroswitch setting errors, and the few soundings with errors of more than one contact were discarded.
(3) Care was taken to distinguish between temperature signal and midreference signal at their crossover points.
(4) Thermal lag corrections were applied to the temperature and humidity values, but the final output includes both uncorrected and corrected humidities.
(5) An insolation correction was applied to daytime humidity values, but uncorrected values are also included in the final data set.
(6) Automated corrections were introduced for a number of recurring instrumentation problems.
(7) Low-reference frequencies were accepted up to 210 Hz .
(8) Ship-velocity corrections were determined for computation of winds.
(9) Whenever possible, soundings that were missing or could not be processed automatically from the magnetic tapes were processed manually from strip charts.

The system developed for the final processing of the rawinsonde data consisted of three distinct parts: (1) manual processing, (2) automated processing, and (3) an acceptance phase. The major elements of the system are shown in figure 5-1, where each of the rectangles represents an independent main computer program. This partitioning was made to hold individual program memory requirements and computer time within acceptable limits, and to allow for separate development of program parts. In general, each main program produced its own magnetic tape output as a "check point," so that extensive reruns could be cut down in case corrections were required or runs failed. The two trapezoids represent extensive manual preparation and intervention points. As part of these manual procedures, short computer routines were used in editing and displaying the data for evaluation.

In the manual processing, data on temperature and humidity frequencies from strip charts, and slant range and azimuth readings from various listings, punched paper tape, and, in some cases, magnetic tape, were all reduced to punched cards, or to card images on magnetic tape. Three sets of cards were prepared from the manually logged Surface Observation, Rawinsonde Observation, and Ship Operattions Forms. Baroswitch calibration pressures were also punched on cards, a separate set for each sounding. A fifth type of card, one set for each rawinsonde flight, carried the individual flight number assigned during data processing and included several parameters found necessary for correlation with the other punched card data sets. All cards were carefully inspected both visually and by special checking and display programs. A magnetic tape was then prepared, grouping together all data for each flight, and this tape was used as input for a rawinsonde program, by which the conversion to meteorological units and the various sounding computations were carried out. The resulting data were recorded on magnetic tape, from which listings and modified pseudo-adiabatic plots were made on microfilm.

On the magnetic tapes generated at MTF, sea-surface temperature, surface wind, atmospheric pressure, and other data were interspersed with the rawinsonde data. In the automated processing, a first program sorted these data onto two tapes, one containing rawinsonde data, the other the surface data (obtained with the specially instrumented ships' booms; see sec. 3). The rawinsonde data tape was then used as input to two programs. One of these edited and averaged the temperature and humidity data into 5 -s values, on magnetic tape, eliminating noise; the other prepared a similar output tape for slant range and azimuth. Next, the manually worked up data referred to above


Figure 5-1.--BOMEX rawinsonde processing system.
were introduced into the automatic processing, and a merging program was then used to prepare a tape that combined all pertinent data from the temperaturehumidity tape, the slant range-azimuth tape, and the auxiliary data for input to a second rawinsonde program, which was almost identical to the one used in the manual processing and produced output in the same format.

In the acceptance phase, results were reviewed not only at every major intermediate point in the processing, but a final inspection was made of microfilm plots of the individual soundings. If, for example, at this point a particular sounding "looked bad," as processed automatically, a check was made whether strip-chart data were available and; if they were, these data were introduced into the manual processing cycle for computation. As another example, the occurrence of a "super-adiabat" led in some cases to a special diagnostic run of the sounding in question to check whether a correction was needed. Also, computer runs were made of all soundings for a particular ship for a continuous period in order to compare successive soundings at various pressure levels. If such comparison indicated moisture values for one sounding that were, for example, low compared with values for the preceding and succeeding soundings, the microfilm output was examined in detail for signs of "reality," e.g., a close-by inversion.

Finally, the wind data were corrected for ship motion (see sec. 2), and a sorting and merging computer run was made by which all soundings for each of the five ships and for each of the fouf BOMEX observation periods were placed in time order for archival.

In the sections that follow, processing is discussed in terms of type of data rather than within the framework of the structure of the processing system as shown in figure 5-1.

\subsection*{5.3.1 Signal Processing}
5.3.1.1 General. The transmitted frequencies of the reference signals were not exactly 95 and 190 Hz , and the frequency associated with the temperature sensor varied continuously. Also, although the reference frequencies for a particular rawinsonde flight were nearly constant, they were subject to some drift. In order to differentiate between the three signal types and to distinguish them from noise, frequency bounds were established for each type at the beginning of each sounding. After a first occurrence of one type, the range of acceptable values for that type were narrowed down for processing of later occurrences of the same type.

In view of the small range of surface temperature over the tropical BOMEX area, the following initial ranges for the temperature sonde signals were set:

Low reference--178 to 210 Hz , inclusive.
Midreference--87 to 105 Hz , inclusive.
Temperature frequency--125 to 155 Hz , inclusive.
Noise--any frequency not within the above ranges.

Before a new set of samples for a particular type was collected (after the initial set), new tolerances were established for that type. For either of the reference frequencies, the new bounds were established at \(\pm 2 \mathrm{~Hz}\) from the last reference mean. These same bounds were reset also for the temperature frequencies, but were then further expanded as a function of time elapsed since the creation of the last temperature frequency mean. The lower bound was reduced further by 1 Hz and an amount equal to 0.025 times the length of time, in seconds, between the mean time of the-previous occurrence of temperature frequency and the beginning time of the latest signal. The upper bound was increased by 1 Hz and an amount equal to 0.045 times the same time interval. These extended bounds were necessary in order to take care of decreases in frequency that occurred because of dry-adiabatic lapse rates and increases associated with fairly sharp temperature inversions.

One problem was related to signal time extent that can result from a leaking or "floating" balloon, a contact that has stuck, or a noisy signal. To avold uncertain pattern recognition and faulty processing under such circumstances, the time extent of each signal type occurrence was noted and, after some startup uncertainty, an average time extent for each type was computed and kept current for the last five occurrences of each type. The lower tolerance of time extent for a particular type of signal was set at 70 percent of its average time extent, and the higher tolerance at 50 percent longer than the average. When a new signal type could not be recognized because of noise or for other reasons, processing of the sounding was ended if the signal persisted beyond the high tolerance time.

\subsection*{5.3.1.2 Temperature. As temperature decreased with height, its} frequency crossed the midreference frequency somewhere between an altitude of 20,000 to \(30,000 \mathrm{ft}\). This often presented a special problem in the program used for signal recognition when the time window for expecting a new midreference contact occurred at a time when the recognition bounds for temperature frequency and midreference frequency over lapped. In these instances, a sample that was larger than the one generally used was set up to include all temperature-sonde frequency data from the onset of the temperature signal to the low-reference signal following the crossover midreference. Also, the normal tolerance bounds for midreference of \(\pm 2 \mathrm{~Hz}\) from the last mean was reset to \(\pm 0.2 \mathrm{~Hz}\), and this larger data set was then inspected from the first value until four successive values ( 2 s of data) were found to be within the new, closely set, midreference bounds. The first value was accepted as the beginning of the midreference frequency set. The search was then continued until another four successive values were found to be outside the midreference bounds, with the first value adopted as the beginning of the following temperature signal set. When the next low-reference signal appeared, the processing of the larger sample was considered ended and normal processing was resumed. The above solution to the crossover problem is illustrated in figure 5-2.

Based on a given value of one type (temperature, midreference, or low reference) within the appropriate range, an average frequency value was calculated. For midreference or low reference, the entire set of values from a given contact was used to form the average. For a temperature frequency set, a subset of approximately 5 s of data was used to derive each average. After a frequency average had been formed, it was compared with individual values. Any value found to be more than 1 Hz from the average was discarded,


Figure 5-2.--Solution to crossover problem. High and low range of expected tempetature and midreference signals (dashed lines); close high and low range for midreference at crossover (dashed-dotted lines).
and a new average was calculated from the remaining values. This process was continued until all values were within 1 Hz of the average. For temperature frequency, an average time of occurrence was calculated from the clock values associated with the frequency values entered into the final frequency average. In averaging, the time the first value of a set was recognized was used as the reference time.
5.3.1.3 Humidity. Before noise elimination and averaging, corrections were applied to the 2-sps ( 2 values'per second) humidity frequencies for a characteristic of the \(72-\mathrm{MHz}\) ground equipment that caused occasional "frequency doubling" for short periods of time, resulting in humidities that were from 5 to 50 percent too low. Except for the \(1 / 2-s\) values mentioned below, each value was examined for doubling by checking it against one or two preceding values. If doubling had occurred, the frequency was replaced by \(1 / 2\) of its initial value. Excluded from inspection for doubling were (1) null values; (2) values above a certain threshold that were taken to be reference frequencies; (3) values below a threshold of 20 Hz , for which subsequent doubled values were judged to be indistinguishable from real measurements because of the rapid changes possible in humidity measurements; and (4) values succeeding certain values considered to be unreliable for doubling
comparisons. The following three types of values seemed unreliable for doubling comparisons due to noise introduced in the analog-to-digital conversion: (1) values immediately following null values, (2) values immediately following reference values, and (3) values that were lower by more than 20 Hz than the value immediately preceding them.

The reference threshold referred to above was initially set at 175 Hz for each sounding. Values above 175 Hz were considered to be possible reference frequencies or, at least, not possible values for humidity measurements. When a group of such high values was first encountered in a sounding, their average was calculated, and the threshold was then reset to that average minus 3 Hz and maintained for the rest of the sounding.

Each \(1 / 2-s\) value was inspected for doubling. The preceding frequency was doubled, and a range of values was set from minus to plus a small increment from this doubled value. If the value under inspection was within this range, it was replaced by \(1 / 2\) of its initial value; if it was not, a similar range was set based on the value before the immediately preceding one, and if this value fell within this range, it was replaced by \(1 / 2\) of its initial value. The small increment mentioned above was set at 2 Hz until two "doublings" had been discovered. It was then reset at 5 Hz . If no rew doubling was discovered within 60 s of the last occurrence, the increment was reset at its original value of 2 Hz .

Inspection of the results of these correction procedures for flights with known doubling indicate that about 60 to 80 percent of cases of doubling were corrected without introduction of false corrections, i.e., data being "undoubled" when no doubling existed. Also, many flights for which visual inspection of strip charts had not given evidence of doubling were found to contain a few instances of doubling. Not all flights were checked this way, but six soundings were looked at in detail, and the cases of doubling uncovered appeared to be real.

The 2-sps digitized humidity frequency values included relative humidity frequencies and reference frequencies. This made recognition easier than for the three-signal temperature data. Relative humidity measurements can change rapidly, however, and meaningful frequency values at any point in a sounding can range from less than 20 Hz to about 170 Hz . To avoid more sophisticated methods, such as recognizing trends and setting limits on change in time, the processing method used limited groups for averaging to no more than 5 s (about 10 values, each \(1 / 2 \mathrm{~s}\) ), set a wide range of \(\pm 5 \mathrm{~Hz}\) from the last calculated average for collection of new samples to be averaged, and permitted all values within \(\pm 2 \mathrm{~Hz}\) of an average to be included in the group processing. Because some changes were very rapid, the signal was occasionally "lost" during processing. In such instances, a "restart" was used in programming by which any values in the range from 0 to 175 Hz were accepted for a new group, a procedure similar to that used at the start of a sounding. For both start and restart, at least two values were required to fall within \(\pm 2 \mathrm{~Hz}\) of the average for the average to be formed.

Inspection of 2 -sps values of humidity frequencies in "noisy" soundings showed rather frequent rapid excursions of up to 20 to 50 Hz above or below what could be "seen" to be the average value. Where these excursions occurred
over a few seconds, they were generally eliminated in the averaging process. However, some persisted in the averaged values, and were apparently associated with dropouts to null values, or near-dropouts, resulting possibly from weak signals and attendant digitizing problems. These spikes were considered unreal and were eliminated by the procedure described below.

A "spike" is here defined as a rapid change in average frequency that returns close to its original value within a short time. The programming for eliminating these spikes consisted of setting an alert when a rapid frequency change- -20 Hz in \(5 \mathrm{~s}, 30 \mathrm{~Hz}\) in 10 s , and 40 Hz in \(20 \mathrm{~s}-\) occurred. If the spike alert was not cancelled within less than 1 min by the frequency returning to near-prealert values, or to a new stable value, the intervening humidity indications were judged unreliable, and were nulled (-999). If, within the time limit, four averages were found to be within \(\pm 10 \mathrm{~Hz}\) of one another at values beyond the criteria for rapid change, the alert was cancelled and intervening averages were retained.

Only one reference frequency was used with the humidity-sonde transmitter, and its signal occupied much less of the total transmission time than the reference for the temperature sonde. After a range of acceptable values had been established for the first occurrence, 2 -sps frequencies from each reference contact were assembled for averaging if it had been found that (1) four successive values fit the reference criteria and (2) the average was within 2 Hz of the average calculated for the previous reference contact. The individual values were then compared with the average, any case found to deviate by more than 1 Hz from the average was dropped, and a new average was calculated from the remaining values. The time of the first reference within each group was noted, and these times were later used to develop reference averages by interpolation at each 5-s time point in order to have reference values available for each time point for which final computations were made. As with other averages, the time points were for every 5 s , beginning 2.5 s after "start-up" time. (For an explanation of "start-up" time, see sec. 5.3.1.5.)
5.3.1.4 Wind. Azimuth measurements from the Scanwell WFSS on the Oceanographer, Mt. Mitchell, and Rainier were recorded from two potentiometers, one for the full range, 0 to \(360^{\circ}\), and one for the \(20^{\circ}\) sector, constituting the coarse and fine azimuths, respectively. These two ranges were used to achieve the necessary resolution in azimuth for wind computations. The coarse azimuth was used in determining for which \(20^{\circ}\) sector the fine azimuth was valid and to estimate the azimuth bias error. The first step was to convert the azimuth \(2-s p s\) voltage values to degrees of azimuth, as follows:
\[
\begin{aligned}
\mathrm{CAZ} & =0.36 \mathrm{~V}_{\mathrm{C}} \\
\mathrm{FAZ} & =0.002 \mathrm{~V}_{\mathrm{F}}
\end{aligned}
\]
where
CAZ \(=\) coarse azimuth in degrees.
FAZ \(=\) fine azimuth in degrees,
\[
\begin{aligned}
\mathrm{V}_{\mathrm{C}}= & \text { coarse azimuth voltage in voltage counts } \\
& (0-10,000 \text { counts } \equiv 0-5 \mathrm{~V} \mathrm{~d} \cdot \mathrm{c}) \text {, and } \\
\mathrm{V}_{\mathrm{F}}= & \text { fine azimuth voltage in voltage counts. }
\end{aligned}
\]

If at some time, \(t\), either a coarse azimuth or fine azimuth did not exist, there was no conversion to scientific units. In such instances, the 2-sps values were replaced by "dead words" (no data indicator) and not considered or used in any subsequent averaging. After conversion of CAZ and FAZ to degrees, the bias correction was applied. In practice, it was impossible to zero the two potentiometers measuring azimuth (CAZ and FAZ; FAZ \(=0\) or \(20^{\circ}\) when CAZ \(=0\) or multiple of \(20^{\circ}\) ). Therefore, an adjustment for relative bias was necessary before combining the two azimuth readings into a measured azimuth value. The maximum relative bias tolerated was \(10^{\circ}\) and included an allowance for backlash in the antenna drive gears to which the CAZ and FAZ potentiometers were attached. The azimuth bias routine was based on the assumption that the fine azimuth was correct and that the error was less than \(10^{\circ}\). (This assumption, in turn, was based on the operating procedures for orienting the directional antenna.)

The following Fortran routine was used to compute the measured azimuth from CAZ and FAZ and to apply bias correction:
\[
\begin{aligned}
& A=C A Z-F A Z \\
& I A=A / 20 \\
& A=A-20 * I A \\
& I F(A-10) 2,2,1 \\
& 1 \quad I A=I A+1 \\
& 2 \quad A=F A Z+20 * I A \\
& I F(A-360) 4,3,3 \\
& 3 \quad A=A-360 \\
& 4 \quad C O N T I N U E
\end{aligned}
\]

As one can see, this method fails when the relative bias reaches \(10^{\circ} .^{\circ}\). Because this happened occasionally at higher altitudes due to change of bias during flight, an initial bias was determined from the first 5 -s averages for each flight. The initial bias was used as a correction to all coarse azimuth averages for the rest of the sounding before the correction routine described above was applied. Change of bias during flight is believed to have been caused by backlash in the gearing between the two potentiometers, but may also have included a small amount of gear slippage on the driving shafts and some minor nonlinearities in potentiometer windings. The corrected bias at this point was always less than \(10^{\circ}\).

Following the above manipulation of the 2 -sps azimuth values, the' resulting values were averaged to form two series of 60 -s averages of azimuth. In one, 60 -s averages were centered on the minute, in the other on the halfminute. These two series were used alternately in the wind computations.

Slant range from the Scanwell WFSS on the Oceanographer, Rainier, and Mt. Mitchell was recorded as a ramped voltage, where \(0 \mathrm{~m}=0 \mathrm{~V} \mathrm{~d} . \mathrm{c}\). and . \(2,000 \mathrm{~m}=5 \mathrm{~V}\) d.c. Thus, during any one observation, slant-range measurements consisted of repeating voltages in the range of 0 to 5 V d.c. every \(2,000 \mathrm{~m}\) of slant range. This field of digital voltages was first converted from 2-sps voltage "counts" to 2 -sps slant range values in meters as follows:
\[
\mathrm{s}=0.2 \mathrm{v}
\]
where
\[
\begin{aligned}
S= & \text { slant range, in meters }, \\
& \text { modulo } 2,000 \mathrm{~m}, \text { and } \\
\mathrm{V}= & \text { voltage in counts } \\
& (0-10,000 \text { counts }=0-5 \mathrm{~V} \text { d.c. }) .
\end{aligned}
\]

After conversion, \(30-s\) averages were calculated as follows:
(1) Five-second averages were formed from the \(2-s p s\) data and \(30-s\) averages were formed from the 5-s averages. Displacement between each 5-s average and the preceding \(30-s\) average was checked, with an acceleration of 20 to \(25 \mathrm{~m} / \mathrm{s} / \mathrm{min}\) allowed.
(2) After a 30 -s average had been obtained, the 5 -s averages contained in it were checked again, as in (1) above, but against the 30 -s average for these 5 -s data points rather than the preceding \(30-s\) average.
(3) Values were linearly interpolated for any missing 30 -s averages. If data for more than 3 min were missing, wind computations were terminated.
5.3.1.5 Sea-Level and Station Pressure. The sea-level pressure for processing a sounding was obtained from shipboard National Weather Service aneroid barometer readings near launch time.

When the rawinsondes were released during BOMEX, the balloon and instrument package on most flights dipped below deck level before starting normal ascent. Study showed that the average time from release to a return-to-deck level, and, therefore, to the original station pressure, was close to 5 s . All calculations were based on this 5-s return-to-deck-level, or "start-up" time, unless there was direct evidence : J the contrary, i.e., if the type of signal being transmitted at the time of release changed to another type within 5 s (change of temperature frequency to reference, or vice versa), it was assumed that such a change in signal type meant that the instrument was already rising above deck level.

The station pressure needed to process each sounding was obtained by subtracting a pressure, based on the height of the launching deck of each ship, from the recorded sea-level pressure. The factors used were 0.9 mb for the Oceanographer, 1.0 mb for the Rainier and the Mt. Mitchell, and 0.8 mb for the Discoverer and the Rockaway.
5.3.1.6 Baroswitch Pressure. The baroswitch contacts for reference on the temperature sonde were wired in the following two sequences (contact 0 through 125):
\[
M(0), L, L, L, L, M(5), L, L, L, L, M(10), \ldots,
\]
where \(M\) refers to the midreference ( 95 Hz ) and \(L\) to low reference ( 190 Hz ). Above the 125th contact the pattern becomes:
\[
M(125), L, L, L, L, M(130), L, M, M, L, M(135), \ldots
\]

The beginning of each reference contact, as the aneroid-driven linkage moved across the baroswitch, was associated with a calibration pressure provided for each instrument. Because of the limited range of station pressures during BOMEX, the reference transmitted at launch, or shortly thereafter, had to be the 4 th, 5 th, or 6 th contact (counting the first reference as 0 ). This was used in the automatic processing to determine which contact was in effect at launch and to establish a valid reference pattern, i.e., if a midreference was the first reference signal transmitted, it had to be from the 5 th reference contact. If the first reference signal was a low reference, it had to be the 4 th or 6 th; if it was followed by a midreference, it was the 4 th, otherwise it was the 6 th and had to be followed by three more low reference contacts. Any sounding showing a different initial pattern was rejected.

The correct pressure calibration contact number at release was estimated by the calculation described below instead of by the usual method outlined in Federal Meteorological Handbook No. 3. The estimate was made by noting the beginning time of the first and fourth reference contacts after release and the start-up time (see sec. 5.3.1.5). The contact number at time of release was taken as the linear extrapolation of contact number (pressure) at the start-up time from the contact numbers and times of first and fourth contacts after release. The pressure indicated by the baroswitch is the pressure at this start-up time contact in the array of calibration pressures. The difference between this baroswitch pressure and the station pressure, as derived from the aneroid barometer at time of release, was used to compute a contact correction, which was then applied to all contact numbers for the individual soundings. If the correction was equal to or greater than one contact, the sounding was not processed.

After the first and fourth contact times had been located and the indicated baroswitch pressure had been obtained by interpolation, a program was used to calculate the contact correction from:
\[
\text { SWOCR }=(\text { PRESS-PREST }) /(\text { PRESZ-PRES1 }),
\]
where
SWOCR is the correction in fractional contacts,
PRESS is the indicated baroswitch pressure,
PREST is the station pressure obtained from the reading of the aneroid barometer,

PRESI is the calibration-array pressure corresponding to the first contact after launch, and

PRESZ is the calibration-array pressure corresponding to the first contact before launch, the one immediately preceding PRES1.

The pressure at any time during a sounding was obtained by interpolation based on the fractional corrected baroswitch contact number for that time point and the temperature sonde baroswitch pressure calibration provided by the manufacturer for each instrument.

The beginning time of each baroswitch reterence contact was noted during temperature-frequency processing. These times and their implied contact numbers were used to develop fractional baroswitch contact numbers at \(5-s\) time points throughout a sounding by interpolation, beginning at 2.5 s after launch. The baroswitch launch-time correction was then applied to each interpolated value to arrive at an array of corrected fractional contact numbers.

\subsection*{5.3.2 Conversion to Meteorological Units}
5.3.2.1 Temperature. The low reference correction (a correction for nonstandard battery voltages) applied to temperature and temperature-sonde midreference 5-s average frequencies was as follows:
\[
\mathrm{f}=\mathrm{f}_{\mathrm{R}} * \frac{190}{\mathrm{f}_{\mathrm{LR}}},
\]
where
\[
\begin{aligned}
& f= \begin{array}{l}
\text { corrected temperature, or temperature-sonde midreference } \\
\\
5-s \text { average frequency, }
\end{array} \\
& f_{R}= \text { uncorrected temperature, 5-s average frequency, or } \\
& \quad \text { temperature-sonde midreference 5-s average, }
\end{aligned}
\]

The internal resistances of the temperature sondes were computed from the midreference frequency obtained by switching a precision 50,000 -ohm resistor into the circuit (every fifth reference contact being a midreference,
the other four low reference). The internal resistance in ohms was calculated from
\[
B=\frac{f_{m s}^{*} 50,000}{190-f_{\mathrm{ms}}}-\mathrm{f}_{\mathrm{ms}}
\]
where
\[
\begin{aligned}
\mathrm{B}= & \text { internal resistance in ohms, } \\
\mathrm{f}_{\mathrm{ms}}= & \text { midreference (midscale) frequency corrected for } \\
& \text { low-reference drift, as described above, } \\
& \text { and } \\
*= & \text { multiplication. }
\end{aligned}
\]

With the above midreference correction, sensor frequency representing temperature in terms of resistance in ohms was calculated from
\[
R=\frac{190 *(B+f)}{f}-(B+f)
\]
where
\[
\left.\begin{array}{rl}
\mathrm{R}= & \text { sensor resistance in ohms representing measured } \\
& \text { temperature, } \\
\mathrm{B}= & \text { internal resistance in ohms, } \\
\mathrm{f}= & \text { temperature frequency corrected for low-reference } \\
& \mathrm{drift}, \text { and }
\end{array}\right\}
\]

The temperature and thermistor resistances are related by the equation (furnished by Viz Mfg. Co.):
\[
\log _{10} \frac{R}{R_{30}}=\sqrt{27.3710+\frac{16,949.6}{T+273.00}}-9.12742
\]
where
\[
\begin{aligned}
\mathrm{R}= & \text { thermistor resistance, } \\
\mathrm{R}_{30}= & \text { resistance of thermistor at } 30^{\circ} \mathrm{C} \text { (furnished by the } \\
& \text { manufacturer for each thermistor, eliminating the need } \\
& \text { for baselining the temperature sondes), and } \\
\mathrm{T}= & \text { temperature in }{ }^{\circ} \mathrm{C} .
\end{aligned}
\]

Solving for \(T\), we have
\[
T=\frac{16,949.6}{\left(9.12742+\log _{10} \frac{R}{R_{30}}\right)^{2}-27.3710}-273.0 .
\]

Following this solution for \(T\), a calibration correction was applied as shown in table 5-2. (The thermistors were calibrated individually by the manufacturer to conform within \(\pm 0.1^{\circ} \mathrm{C}\) with the values given in the table.)

Table 5-2.--Calibration corrections for rawinsonde temperature
\begin{tabular}{|c|c|}
\hline Indicated temperature, \(T\) ( \({ }^{\circ} \mathrm{C}\) ) & \[
\begin{gathered}
\text { Correction, } C \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] \\
\hline 30.00 & \(+0.00\) \\
\hline 20.18 & - 0.18 \\
\hline 10.21 & - 0.21 \\
\hline 0.18 & - 0.18 \\
\hline - 19.92 & - 0.08 \\
\hline - 40.14 & \(+0.14\) \\
\hline - 60.07 & + 0.07 \\
\hline - 70.04 & \(+0.04\) \\
\hline
\end{tabular}

Note: \(\quad \mathrm{T}_{\mathrm{c}}=\mathrm{T}+\mathrm{C}\), where \(\mathrm{T}_{\mathrm{c}}=\) corrected 5-s average temperature ( \({ }^{\circ} \mathrm{C}\) ),
\(T=\) uncorrected temperature, and \(C=\) correction. For values of \(T\) not shown in the table, a correction was linearly interpolated.

The lag coefficient of the thermistor was determined from information furnished by C. Harmantas of the National Weather Service. The values used were functions of balloon type, which governed the rate of ascent, and of pressure:
\begin{tabular}{ccccc} 
& \multicolumn{4}{c}{ Pressure } \\
\cline { 3 - 6 } & \(\geq 500 \mathrm{mb}\) & \(<500 \mathrm{mb}\) & \(\geq 200 \mathrm{mb}\) & \(<200 \mathrm{mb}\) \\
300 g & 4 s & 5 s & 4 s & 6 s
\end{tabular}

The basic equation (from Meteorological Instruments, by W.E.K. Middleton and A. F. Spilhaus, 1953) is
\[
\begin{equation*}
\frac{d \theta}{d t}=-\frac{1}{\lambda}\left(\theta-T_{0}-B t\right), \tag{1}
\end{equation*}
\]
 seconds, \(\lambda=\) the lag coefficient in seconds; \(T_{0}=\) true temperature at initial time, and \(\beta=d T / d t\) at the sensor, assumed constant over the correction interval.

The true temperature at time \(t\) is given by
\[
\begin{equation*}
T=T_{0}+B t \tag{2}
\end{equation*}
\]

Combining (1) and (2) gives
\[
\begin{equation*}
T=\theta+\lambda \frac{d \theta}{d t} \tag{3}
\end{equation*}
\]

Equation (3) can be evaluated by
\[
\begin{equation*}
T_{n}=\theta_{n}+\lambda\left(\frac{\theta_{n+1}-\theta_{n-1}}{t_{n+1}-t_{n-1}}\right) \tag{4}
\end{equation*}
\]
where \(n=\) sequence number of data point, and \(t=\) time of data point from launch. For BOMEX data, the time interval \(\left(t_{n+1}-t_{n-1}\right)\) was 10 s .

Equation (4) was applied after calibration corrections had been made. The use of a correction interval longer than the lag coefficient resulted in a small amount of smoothing in the results. For the data automatically recorded on SCARD, correction was started at the \(17.5-s\) point. Earlier points were given the same correction as the \(17.5-s\) point except for the first temperature, a manual reading, which was not corrected for lag.
5.3.2.2 Humidity. The low-reference correction (a correction for nonstandard battery voltages) applied to the humidity frequencies was
\[
\mathrm{f}=\mathrm{f}_{\mathrm{R}} * \frac{190}{\mathrm{f}_{\mathrm{LR}}},
\]
where
\[
\begin{aligned}
\mathrm{f}= & \text { corrected humidity frequency, } \\
\mathrm{f}_{\mathrm{R}}= & \text { uncorrected humidity frequency, } \\
\mathrm{f}_{\mathrm{LR}}= & \text { low reference, linearly interpolated in time between } \\
& \text { low-reference frequencies on either side of the } f_{R}, \\
& \text { and } \\
*= & \text { multiplication. }
\end{aligned}
\]

The corrected humidity frequencies were converted to total resistance values as follows:
\[
R=\frac{190 *(B+f)}{f}-(B+f),
\]
where
```

$R=$ sensor resistance in ohms,
$B=47,680$ ohms (nominal internal resistance of the sonde),
f $=$ 5-s average frequency corrected for low-reference drift,
and

* $=$ multiplication.

```

The resistance \(R\) as computed above is that of the hygristor and a \(1.2 \times 10^{6}\) ohm resistor in parallel. Therefore, the hygristor resistance was calculated from
\[
R_{H}=\frac{1.2 \times 10^{6} * R}{1.2 \times 10^{6}-R},
\]
where \(R_{H}=\) hygristor resistance.
The resistance at 33 percent relative humidity, \(\mathrm{R}_{33}\), was determined by a baseline check prior to launch of the sonde. In the baseline check box, \(H_{T}\) was measured independently of the sonde from the wet-bulb and dry-bulb temperatures. If conditions were different from the standard 33 percent and \(25^{\circ} \mathrm{C}\), a correction was made by the equation
\[
H_{25} \simeq H_{T}-\frac{C\left(H_{t}-33\right)(t-25)}{H_{T}}
\]
where
\[
\begin{aligned}
\mathrm{H}_{\mathrm{T}} & =\text { relative humidity determined from dry- and wet-bulb readings, } \\
\mathrm{H}_{25} & =\mathrm{H}_{\mathrm{T}} \text { corrected to } 25^{\circ} \mathrm{C}, \\
\mathrm{~T} & =\text { dry-bulb temperature in baseline box, }{ }^{\circ} \mathrm{C} \text {, and } \\
\mathrm{C} & =\text { constant }=0.25 \text { if } \mathrm{H}_{\mathrm{T}}>33 \text { percent and } 0.03 \text { if } \mathrm{H}_{\mathrm{T}}<33 \text { percent. }
\end{aligned}
\]
\(\mathrm{H}_{25}\), as calculated above, was substituted in the equation
\[
A=\log _{10} \frac{R_{H}}{R_{33}}=4.733-2.500 \log _{10}\left(110-H_{25}\right)
\]
to obtain
\[
\mathrm{R}_{33}=\mathrm{R}_{\mathrm{H}} / 10^{\mathrm{A}}
\]
where
\(\begin{aligned} & R_{H}=\text { hygristor resistance, determined as above from } \\ & \text { humidity-signal baseline frequency, and }\end{aligned}\)
Relative humidity during the sounding was computed by
\[
H_{25}=110-\operatorname{antilog}_{10}\left(\frac{4.733-\log _{10} \frac{R_{H}}{R_{33}}}{2.500}\right)
\]
where
\[
\begin{aligned}
\mathrm{R}_{\mathrm{H}} & =\text { hygristor resistance at some temperature } \mathrm{t}, \text { computed as above, } \\
\mathrm{R}_{33} & =\begin{array}{l}
\text { hygristor resistance at } 33 \text { percent (from the baseline } \\
\text { computation), and }
\end{array} \\
\mathrm{H}_{25} & =\text { relative humidity at } 25^{\circ} \mathrm{C} .
\end{aligned}
\]

The relative humidity at temperature \(T\) was calculated from
\[
H_{T}=H_{25}+\frac{\mathrm{C}_{1}\left(\mathrm{H}_{25}-33\right)(\mathrm{T}-25)}{\mathrm{H}_{25}}
\]
where
\[
\begin{aligned}
& \mathrm{C}_{1}=0.25 \text { for } \mathrm{H}_{25}>33 \text { percent, } \\
& \mathrm{C}_{1}=0.03 \text { for } \mathrm{H}_{25}<33 \text { percent, and } \\
& \mathrm{H}_{\mathrm{T}}=\text { measured relative humidity at ambient temperature } T .
\end{aligned}
\]

Following these computations, a calibration correction was applied to \(\mathrm{H}_{\mathrm{T}}\) to obtain the corrected relative humidity. The calibration corrections are shown in table 5-3. Note that these particular corrections apply only to relative humidity as computed above; they include both calibration corrections and corrections for errors in these simplified equations. The procedures described above are expected to give an rms error of less than 3 percent relative humidity (not including errors due to hygristor exposure and thermal lag). Humidities computed to be less than 10 percent were reported as 10 percent. Humidity was reported missing for temperatures below \(-40^{\circ} \mathrm{C}\).

Table 5-3.--Calibration corrections for rawinsonde relative humidity
\begin{tabular}{cc}
\hline Indicated relative humidity, \(\mathrm{H}_{\mathrm{T}}\) & \begin{tabular}{c} 
Correction, C \\
(percent)
\end{tabular} \\
\hline & \\
14.5 & -4.5 \\
24.5 & -4.5 \\
27.0 & -1.0 \\
31.8 & +1.2 \\
37.5 & +2.5 \\
46.1 & +3.9 \\
56.4 & +3.6 \\
68.3 & +1.7 \\
80.3 & -0.3 \\
89.7 & +0.3 \\
95.0 & +2.5 \\
100.0 & +0.0
\end{tabular}

Note: \(H_{c}=H_{T}+C\), where \(H_{c}=\) corrected humidity, \(H_{T}=\) calculated humidity, and \(C=\) correction from above for a given \(H_{T}\). If \(H_{T}\) differed from the above, a correction was linearly interpolated.

When humidity is measured with a hygristor, the temperature of the hygristor itself is critical. Because of radiation effects and lack of ventilation, expecially during daytime, the hygristor temperature at the beginning of the sounding differed at times by several degrees from the ambient temperature. In order to arrive at the magnitude of this difference, it was assumed that the specific humidity at the first point of the sounding (usually 5 s after release) was identical to that of the shipboard psychrometer reading at the time of release. The hygristor temperature established under this assumption was used as the initial one in correcting for thermal lag.

In determining the uncorrected moisture measurements, the hygristor temperature was assumed to be the same as the lag-corrected thermistor temperature as determined from the thermistor frequency average. Under the assumption that the instrument was measuring moisture correctly, the problem of correcting the measured moisture became that of making a good estimate of the actual hygristor temperature. From the definition of relative humidity, the true moisture was then obtained from
\[
\begin{aligned}
\mathrm{RH} \text { (true) }= & \mathrm{RH} \text { (measured) * (saturation vapor pressure at the } \\
& \text { hygristor temperature/saturation vapor pressure at } \\
& \text { ambient temperature). }
\end{aligned}
\]

The problem of correcting the BOMEX rawinsonde data for both thermal lag and radiation effects has been discussed in detail by L.D. Sanders, J.T. Sullivan, and P.J. Pytlowany (NOAA Technical Memorandum EDS BOMAP-16, "Correction of BOMEX Radiosonde Humidity Errors," Center for Experiment Design. and Data Analysis, National Oceanic and Atmospheric Administration, U.S. Department of Commerce, 1975). The thermal lag coefficient based on their
study is given by
\[
\begin{equation*}
\lambda=34.9 /(\rho \mathrm{V})^{0.4}, \tag{5}
\end{equation*}
\]
where
\[
\begin{aligned}
\lambda= & \text { thermal lag coefficient of the hygristor in seconds, } \\
\rho= & \text { air density in kilograms per cubic meters } \\
= & \frac{0.34837}{T(1+0.000608 q)}, \\
T= & \text { ambient temperature in degrees Kelvin } . \\
q= & \text { specific humidity in grams per kilogram, and } \\
V= & \text { ventilation rate of the hygristor, which in the case of BOMEX } \\
& \text { was one-third of the rate of ascent. }
\end{aligned}
\]

The basic equation for lag correction of the hygristor is the same as for the thermistor. The problem is reverse, however, since the true temperature is known, as determined from the thermistor reading, and the hygristor temperature must be computed. The basic equation was therefore rewritten as
\[
\begin{equation*}
\frac{d \theta}{d t}+\frac{\theta}{\lambda}=\frac{T_{0}+B t}{\lambda}, \tag{6}
\end{equation*}
\]
where
\[
\begin{aligned}
\theta & =\text { temperature of the hygristor at time } t, \\
T_{0} & =\text { true air temperature at time zero, } \\
\beta & =d T / d t, \text { assumed constant over the correction interval, and } \\
t & =\text { time from beginning of correction interval. }
\end{aligned}
\]

Equation (6) is of the type
\[
\frac{d x}{d y}+P(y) \quad x=Q(y)
\]
and a solution is
\[
\begin{equation*}
\theta=T_{0}+\beta(t-\lambda)+C_{e}^{-t / \lambda} \tag{7}
\end{equation*}
\]

Letting \(\theta=\theta_{0}\) when \(t=0\) gives
\[
\begin{align*}
\theta_{0} & =T_{0}-\beta \lambda+C  \tag{8}\\
C & =\theta_{0}-T_{o}+\beta \lambda .
\end{align*}
\]

Combining (7) and (8) yields
\[
\begin{equation*}
\theta=\theta_{0} e^{-t / \lambda}+\beta t+\left(T_{0}-\beta \lambda\right)\left(1-e^{-t / \lambda}\right) \tag{9}
\end{equation*}
\]

If \(\theta_{0}=T_{0}\), eq. (9) reduces to (Meteorological Instruments, by W.E.K. Middleton and A.F. Spilhaus, 1953)
\[
\theta-T=\beta \lambda\left(1-e^{-t / \lambda}\right) .
\]

For purposes of computation, eq. (9) was rewritten as
\[
\begin{equation*}
\theta_{n}-T_{n}=\left(\theta_{n-1}-T_{n-1}\right)-\beta \lambda\left(1-e^{\left(-t_{n}-t_{n-1}\right)^{T}}\right) \tag{10}
\end{equation*}
\]
where
\[
\beta=\frac{T_{n}-T_{n-1}}{t_{n}-t_{n-1}},
\]
\(n\) is the sequence number of the data point, and \(t_{n}-t_{n-1}\) is normally 5 s .
In the processing of BOMEX data, uncorrected humidities had already been computed before the correction method was developed. Corrections were therefore applied by the procedure described below.

The vapor pressure at the hygristor was, of course, the same for both temperatures ( \(\theta_{\mathrm{n}}\) and \(\mathrm{T}_{\mathrm{n}}\) ). Thus,
\[
\begin{equation*}
\frac{\mathrm{H}_{T}}{100} * e_{s T}=\frac{H_{\theta}}{100} * e_{s} \theta, \tag{11}
\end{equation*}
\]
where \(H=\) relative humidity and \(e_{s}=\) saturation vapor pressure.
Saturation vapor pressure is given by Teten's equation (Handbook of Meteorology, McGraw-Hill Book Co., N.Y., 1945, p. 343)
\[
\begin{equation*}
e_{s}=6.11 * 10 * * \frac{7.5 * T}{237.3+T} \tag{12}
\end{equation*}
\]
where T is temperature in \({ }^{\circ} \mathrm{C}\).
Substituting (12) in (11) and solving for relative humidity at the hygristor temperaturn gives
\[
\begin{align*}
& \mathrm{H}_{\mathrm{Tn}}=\mathrm{H}_{\theta \mathrm{n}} * 10 * *\left[\frac{7.5 * 237.3\left(\theta_{\mathrm{n}}-\mathrm{T}_{\mathrm{n}}\right)}{\left(237.3+\left(\mathrm{T}_{\mathrm{n}}-273.15\right)\left(237.3+\left(\theta_{\mathrm{n}}-273.15\right)\right.\right.}\right] \\
& \mathrm{H}_{\mathrm{Tn}}=\mathrm{H}_{\theta \mathrm{n}}+10 * *\left[\frac{1779.75\left(\theta_{\mathrm{n}}-\mathrm{T}_{\mathrm{n}}\right)}{\left(\mathrm{T}_{\mathrm{n}}-35.85\right)\left(\theta_{\mathrm{n}}-35.85\right)}\right], \tag{13}
\end{align*}
\]
where \(\theta_{n}-T_{n}\) is obtained from eq. (10).
A value of 35.86 rather than 35.85 as given in eq. (13) was mistakenly used in the actual computations, but the resulting error is always less than 0.05 percent relative humidity and hence insignificant.

As noted earlier, the soundings were also subject to error caused by radiation. The hygristor duct on the radiosondes used during BOMEX allowed the hygristor to be heated by solar radiation both directly through the translucent walls of the duct, and indirectly by reflection from the internal duct surfaces. The heated hygristor in turn heated the ambient air, resulting in relative humidity measurements that were as much as 24 percent lower than the humidity in the free atmosphere.

The empirical method used in correcting the isolation error is described in detail by Sanders et al. in NOAA Technical Memorandum EDS BOMAP-16, cited earlier. Briefly, by this method the mean humidity for daytime soundings was made the same as for nighttime soundings. Since radiation data for individual soundings were not available, the correction factor was a mean value, dependent on pressure and time of day only, and resulted in slight overcorrection for soundings taken during very cloudy conditions. The corrected humidities are believed to be accurate to within 5 percent relative humidity.
5.3.2.3 Wind. Inputs to rawinsonde wind computations were slant range (30-s averages), azimuth angle (two series of 60 -s averages, one for averages centered on the minute, one centered on the half-minute), altitude (from thickness computation and converted to geometric units), and surface wind (from the Surface Observation Form, Card \#1).

The Discoverer used the Selenia radar model METEOR 200 RMT-2S for balloon tracking, with output consisting of printed and punched paper tape containing slant range, azimuth angle, and elevation angle at 15-s intervals. The punched paper tape was converted to magnetic tape and a printout of the results prepared, which was scanned and compared with the printed paper tape. Observers' comments on the printed paper tape were used to edit the data. For instance, such a comment as "balloon lost" was used to delete bad data. After deletion from the magnetic tape of records proven to be bad, a computer edit of alternate 15-s data points was performed as follows:
(1) The time difference between alternate samples was first edited for consistent changes (30-s apart). "Dead words" or missing data indicators were inserted for unrecognizable or inconsistent times and the associated slant ranges and azimuths.
(2) For \(i=30,60,90, \ldots \mathrm{~N} S\), successive second differences were computed for slant range or azimuth from \(M=S_{t_{i}}-2\left(S_{t_{i+1}}\right)+S_{t_{i+2}}\), where
\(S_{t_{i}}=s l a n t\) range or azimuth at time \(t\).
(3) The following logic was used to edit the data:
(a) Until the first value of \(M\) less than 100 , the value of \(S_{t_{i}}\) was replaced with a "dead word." After \(M\) of less than 100 was found, the value of \(S_{t_{i}}\) remained unchanged.
(b) After the first value of \(M\) less than 100 and whenever a value of \(M\) greater than 100 was detected, the value of \(\mathrm{S}_{\mathrm{t}_{i+2}}\) was replaced with a "dead word."
(c) Whenever a "dead. word" was encountered in \(S_{t_{i}}, S_{t_{i+1}}\), or \(S_{t_{i+2}}\), the value of \(M\) could not be computed and was irrelevant. The dead word was left in the table; condition (a) above was reverted to.

The results of this edit were values of slant range and azimuth sampled at \(30-s\) intervals and, depending on the edit, containing periods of time when no values existed for one or more \(30-s\) periods. No wind computations were made unless two or more consecutive \(30-s\) values of slant range and azimuth were found.

The Rockaway used an AN/SPS-29 radar for balloon tracking. Slant range and azimuth measurements were usually made at 1 -min intervals and recorded manually. These data were then punched on cards directly from the form and transferred to magnetic tape. Since the measurements were made at 1 -min, rather than \(30-s\), intervals, linear interpolation was used to supply the intermediate \(30-s\) values of slant range and azimuth.

The slant range, azimuth angle, and altitude values for all fixed ships were used to compute horizontal distance out to the balloon and the \(\mathrm{S}-\mathrm{N}\) and \(W-E\) coordinates of that distance for each \(30-s\) point. At each \(30-s\) point, \(t\), the 1 -min movement from point \(t-30\) s to \(t+30 \mathrm{~s}\) along each coordinate (divided by 60, giving units in meters per second) gave the zonal and meridional components at time \(t\). Linear interpolation was used to derive components at 5-s intervals.

The terms used in the computations are listed below and shown in figure 5-3 as related to wind computations.

HDO \(=\) horizontal distance out, meters
SLR \(=\) slant range, meters
\(\mathrm{GH}=\) height of balloon above ship's deck, meters
\(A Z=a z i m u t h\) angle
\(W_{(t)}=W-E\) wind component
\(W_{(t)}=S-N\) wind component


Figure 5-3.--Diagram of terms used in wind computations.

The following equations were then used:
\[
\begin{aligned}
H D O & =\sqrt{S L R^{2}-\mathrm{GH}^{2}} * \\
X_{C} & =\operatorname{HDO}(\sin (A Z)), \\
Z_{C} & =\operatorname{HDO}(\cos (A Z)), \\
W_{W E E}(t) & =\frac{X_{t+30}-X_{C} C_{t-30}}{60}, \\
W_{(t)} & =\frac{Z_{t+30}-Z_{C} C_{t-30}}{60},
\end{aligned}
\] 500 mb for average BOMEX conditions) is negligible.

The following ship deck heights, \(H\), were used:
\begin{tabular}{|c|c|}
\hline Oceanographer & 8.230 m \\
\hline Rainier & 9.144 m \\
\hline Mt. Mitchell & 9.144 m \\
\hline Discoverer & 6.706 m \\
\hline Rockaway & 7.010 m \\
\hline
\end{tabular}

\subsection*{5.3.3 Derived Quantities}

Equations used in computing derived.parameters from those measured are given below. These computations were done for each 5-s data point for each, sounding in the case of automatically recorded data and for significant levels in the case of manually recorded data.

Saturation Vapor Pressure
\[
e_{s}=6.11 * 10 * *(7.5 * T /(T+237.3)),
\]
which is based on Teten's equation (Handbook of Meteorology, McGraw-Hill Book Co., 1945, p. 343), and where
```

es}=\mathrm{ saturation vapor pressure in millibars,
T = ambient temperature in degrees Celsius,
* = multiplication, and
** = exponentiation.

```

\section*{Vapor Pressure}
\[
e=e_{s} * R H / 100,
\]
where
\[
\begin{aligned}
e & =\text { ambient vapor pressure in millibars, and } \\
\mathrm{RH} & =\text { relative humidity in percent. }
\end{aligned}
\]

\section*{Specific Humidity}
\[
q=622 * e /(P-0.37802 * e) \text {, }
\]
where
\[
\begin{aligned}
& q=\text { specific humidity in grams per kilogram, and } \\
& P=\text { atmospheric pressure in millibars. }
\end{aligned}
\]

\section*{Dewpoint}
\[
T_{d p}=237.3 * \log _{10}(e / 6.11) /\left(7.5-\log _{10}(\mathrm{e} / 6.11)\right),
\]
which is also based on Teten's equation, and where
\(\mathrm{T}_{\mathrm{dp}}=\) dewpoint in degrees Celsius.

\section*{Virtual Temperature}
\[
T_{v}=(T+273.15) * P /(P-0.37802 * e),
\]
where
\(T_{v}=\) virtual temperature in degrees Kelvin.

\section*{Layer Thickness}

The mean virtual temperature was computed by a method adopted from the Smithsonian Meteorological Tables (Smithsonian Institution, Washington, D.C., 1951, p. 266):
\[
\bar{T}_{v}=\left(T_{v 2}-T_{v 1}\right) / \log _{e}\left(T_{v 2} / T_{v 1}\right),
\]
where
\[
\begin{aligned}
\overline{\mathrm{T}}_{\mathrm{v}} & =\text { mean virtual temperature in degrees Kelvin, } \\
\mathrm{T}_{\mathrm{v} 2} & =\text { virtual temperature at the } 5-\mathrm{s} \text { data point, and } \\
\mathrm{T}_{\mathrm{v} 1} & =\text { virtual temperature at the preceding } 5-\mathrm{s} \text { data point. }
\end{aligned}
\]

When humidity measurements for a sounding were missing, a correction in degrees was added to the temperature to obtain an estimate of the virtual temperature. The correction was calculated from specific humidities of a sample of soundings that were considered representative of BOMEX at the pressure levels shown in table 5-4. Values at pressures not shown in the table were arrived at through interpolation. No correction was made above 300 mb .

From the mean virtual temperature, the layer thickness was calculated by the equation
\[
\Delta z=29.2911 * \bar{T}_{v} *\left(\log _{e} P_{1}-\log _{e} P_{2}\right),
\]
where
\(\Delta z=1\) ayer thickness in geopotential meters,
\(P_{2}=\) atmospheric pressure in millibars at the 5-s data point, and
\(P_{1}=\) atmospheric pressure at the preceding 5 -s data point.

Table 5-4.--Virtual temperature correction
\begin{tabular}{cc}
\hline Pressure (mb) & Correction \(\left({ }^{\circ} \mathrm{C}\right)\) \\
\hline 1,020 & 3.1 \\
1,000 & 2.9 \\
900 & 2.6 \\
850 & 2.1 \\
800 & 1.6 \\
700 & 0.8 \\
600 & 0.5 \\
500 & 0.4 \\
400 & 0.2 \\
300 & 0.03 \\
\hline
\end{tabular}

\section*{Geopotential Height}
\[
z=z_{1}+z
\]
where
\(z=\) height of the 5-s data point in geopotential meters above sea level, and
\(z_{1}=\) height at the preceding 5-s data point.

Geometric Height
\[
w=6337838 * z /(6327368-z),
\]
which was also adapted from the Smithsonian Meteorological Tables (p. 219), and where
\(w=\) height of data point in geometric meters above sea level, and the constants are for latitude \(15^{\circ} \mathrm{N}\), approximately the center of the BOMEX array.

\subsection*{5.4 Special Problems}

\subsection*{5.4.1 Slant Range}

The rotary potentiometers used in BOMEX to obtain slant range and azimuth readings cover slightly less than a full circle, i.e. they go through their full resistance range in slightly less than \(360^{\circ}\). This is important only in terms of slant range. A multiplier of 0.98 applied to the raw data solved the problem, and since the raw slant-range readings were modulo \(2,000 \mathrm{~m}\), there was no possibility of cumulative error.

The potentiometer readings were also reduced somewhat by the load imposed by the recorder circuit. Potentiometer resistance was 5,000 ohms, recorder circuit resistance was 98,000 ohms, and the power supply was 5 V . A correction was computed for all readings, but amounted, at most, to less than 1 percent.

During BOMEX Periods I and II, one ship had a slant-range error because an electrolytic capacitor was connected backward across the recorder circuit. This placed, in effect, a voltage-controlled variable resistor across the circuit, giving slant-range ramps curved as shown in figure.5-4, rather than the usual nearly straight lines. A calculated correction gave suspicious results, and an empirical correction was therefore developed from data recorded when the "black box" that measured slant range was not locked onto the sonde signal but was running away at a steady rate. The corrected data are believed to be indistinguishable from normal slant-range data, without possibility of cumulative error.

The effect of another slant-range error, apparently in the recording circuit, had the effect of an additional resistor seemingly being occasionally inserted in series with the recorder (fig. 5-5). When it appeared at a ramp change, it caused the "zero reading" to be 252 m , but the maximum ramp value of \(2,000 \mathrm{~m}\) was not affected. The error appeared and disappeared at infrequent intervals and in a random manner. A correction routine was developed for cases where this error was large, i.e., at, or soon after, a ramp change, but when it was small it was not considered worthwhile to expend the additional effort or time needed to distinguish it from ordinary noise or wind shear. Again, there is no possibility of cumulative error.

In the Scanwell WFSS used by three of the ships during BOMEX the phase comparison for slant-range measurements is the same as for the AN/GMD-2, except that readout is in modules of \(2,000 \mathrm{~m}\) rather than \(2,000 \mathrm{yd}\). It is well known that there are occasional problems in slant-range measurements with the GMD-2, but the \(2-s p s\) BOMEX data brought a number of other problems to light. Unfortunately, it was not possible to investigate these problems beyond the minimum necessary to achieve acceptable accuracy in the data processing.

The most striking feature of the plots of the \(2-s p s\) slant-range data is the large number of noise spikes, ranging from a few meters to a few tens of meters. A second striking feature is that these spikes are predominantly toward higher values. This type of problem, however, can be handled by simple editing procedures and is believed not to contribute significantly to errors in the BOMEX wind data.

Multiple ramp changes are illustrated in figures 5-6 to 5-9. This problem, too, can be solved by simple editing, but the unexplained slant-range jumps shown in figure 5-8 are more troublesome. When a jump is followed by a return to normal within a few seconds, as illustrated by (1) in figure 5-8a and by (2) in figure 5-8c, no error resulted in processing; the errors were simply discarded as noise. When the return to normal did not occur as quickly, the processing program interpreted the jump as a short-term increase in radial windspeed, and the resulting displacement in the computed winds would be carried to the end of the sounding.


Figure 5-4.--Slant range vs. time, showing variable-resistor error.


Figure 5-5.--Slant range vs. time, showing intermittent fixed-resistor error combined with variableresistor error. Dashed line is expected position of trace.


Figure 5-6.--Slant range vs. time, showing typical noise spikes and multiple ramp change.


Figure 5-7.--Slant range vs. time, showing multiple ramp change in otherwise clean data.


Figure 5-8.--Slant range vs. time, showing unexplained jumps.


Figure 5-9.--Slant range vs. time, showing "gear slip" error and multiple ramp crossings. The two examples are from different ships.

Figure 5-9 illustrates a "gear slip" error. It was not known whether the cause lay in the normal GMD-2 "black box" or in the special BOMEX readout or recording devices. It resulted in too small a radial displacement of the sonde, but since the error was infrequent, no correction was applied.

\subsection*{5.4.2 Azimuth}

The most serious azimuth error was caused by signal saturation of the receiver at time of sonde release. This made it impossible to obtain good direction during the first few seconds of flight, and wind data were therefore disregarded for approximately the first 30 s of flight. In the archived data, winds for this interval were interpolated between the surface wind and wind centered at 1 min after launch. Wind data were also lost during the first few seconds of flight on the Discoverer because of the Selenia radar's inability to track close-in targets.

\subsection*{5.4.3 Pressure}

A complicating factor, though not a serious one, in determining the baroswitch correction and low-level temperature is that a rawinsonde released aboard ship rarely begins to rise immediately. It first moves downward, horizontally away below deck level, and then begins to rise. Also, the slight pressure increase occasionally causes the baroswitch to back onto a pressure contact for a short time, making contact recognition difficult.

The mean time at which the sonde rises through deck level ("start-up" time) can be estimated by linear extrapolation back to station pressure, assuming that, in the mean, baroswitch pressures are correct. Eight plots were made of mean pressure versus time from launch.for different ships and on-station periods, based on 19 to 54 soundings. The resulting start-up times ranged from 3 to 8 s . In the example shown in figure \(5-10\), the time is 4 s , the mean station pressure is \(1,013.66 \mathrm{mb}\), and its mean deviation is 1.04 mb . Mean absolute error of sonde pressure extrapolated to the mean start-up time is 1.50 mb .

Although it seems reasonable that surface windspeed should be a factor in determining when the sonde begins to rise above deck level, examination of 70 soundings from one ship, with surface windspeeds ranging from 5 to \(10 \mathrm{~m} / \mathrm{s}\), showed no significant correlation.

An attempt was also made to determine individual start-up times by use of the 2 -sps temperature data. The small amount of noise in these data made this impossible.

The problem of start-up time deserves additional research, which could not be justified for data processing purposes, and a start-up time of 5 s was therefore used for all soundings (see sec. 5.3.1). The only error involved is a small one in baroswitch setting, which cannot be determined more closely than within 1 mb or so.

Baroswitch errors are assumed to be mostly the result of (a) error in the aneroid element, (b) baroswitch detent-setting step ( \(\sim 0.5 \mathrm{mb}\) ), (c) improper setting during baseline check, or (d) mechanical shifting of the baroswitch because of shock during launch. The general, National Weather Service, procedure for determining the error is to extrapolate linearly backward in time from the first two, or several, contacts after launch to find the actual contact value at time of release. The actual value is then compared with the contact values corresponding to station pressure at launch as determined from the baroswitch calibration table. The difference is the baroswitch error, which is subtracted from all contacts during a sounding, and the pressures are then obtained from the calibration table. In processing the BOMEX data, the extrapolation was done in pressure, rather than in contacts (fig. 5-10), because pressure proved to be somewhat more linear with time, for short periods, than the contact numbers. Also, values were extrapolated to the start-up time discussed above, not to launch time.

National Weather Service procedures in 1969 called for baroswitch corrections only if the correction exceeded 0.3 contacts, about 4 mb at the surface. For convenience in computations, corrections were calculated for all BOMEX soundings, although most were insignificant.


Figure 5-10.--Baroswitch pressure vs. time, from launch data for 52 soundings from the Mt. Mitchell, Period III.

\subsection*{5.5 Archive Format and Data Inventory}

\subsection*{5.5.1 Rawinsonde Data}

Data from each ship for each BOMEX Observation Period are available on microfilm and on seven-channel, \(556 \mathrm{BPI}, \mathrm{BCD}\) magretic tape. Each tape has three files: (1) ANSI standard system label, 80 BCD characters, followed by an end-of-file; (2) descriptive information and a program that will read the data (in 80-character \(B C D\) records), followed by an end-of-file; and (3) data file, 1,300 characters per record, followed by a double end-of-file.

The data file is divided into four sections: (1) 5-s or significant levels; (2) \(10-\mathrm{mb}\) surfaces; (3) standard pressure surfaces (1,000, 950, 900 , \(850,800, \ldots \mathrm{mb})\); and (4) standard aircraft operating levels (305, 1,220, 2,135, and \(3,040 \mathrm{~m}\) ). Each section has a header, which indicates the number of valid counts, and a variable number of data scans of 1,300 characters.

There are 22 variables and 10 levels per record, except for the last record, which may be a partial record and is blank filled to complete the record. The format is as follows:
\begin{tabular}{|c|c|c|c|}
\hline Word & Format & Data Element & Units \\
\hline 1 & F7.1 & Time from launch (start-up time) & seconds \\
\hline 2 & F7.1 & Pressure & millibars \\
\hline 3 & F6.1 & Temperature & degrees Celsius \\
\hline 4 & F6. 1 & Relative humidity (no lag correction) & percent \\
\hline 5 & F5. 1 & Specific humidity " & grams per kilogram \\
\hline 6 & F5.1 & Dewpoint & degrees Celsius \\
\hline 7 & F6.1 & Relative humidity (lag correction) & percent \\
\hline 8 & F5.l & Saturated vapor pressure & millibars \\
\hline 9 & F5.1 & Vapor pressure & millibars \\
\hline 10 & F5.1 & Specific humidity (lag correction) & grams per kilogram \\
\hline 11 & F5.1 & Dewpoint " & degrees Celsius \\
\hline 12 & F6.1 & Virtual temperature & degrees Kelvin \\
\hline 13 & F7.I & Thickness & meters \\
\hline 14 & F8.1 & Geopotential height & meters \\
\hline 15 & F8.1 & Geometeric height & meters \\
\hline 16 & F6.1 & Potential temperature & degrees Kelvin \\
\hline 17 & F6.1 & U wind component & meters per second \\
\hline 18 & F6.1 & \(V\) wind component & meters per second \\
\hline 19 & F6.1 & Wind direction & degrees \\
\hline 20 & F5.1 & Windspeed & meters per second \\
\hline 21 & F5.1 & U component, ship motion & meters per second \\
\hline 22 & F5.1 & Y component, ship motion 999. = missing data & meters per second \\
\hline
\end{tabular}

A summary inventory of the rawinsonde data is given in table 5.5.

Table 5.5--BOMEX archive rawinsonde magnetic tapes and microfilm
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Magnetic tape No.} & \multirow[t]{2}{*}{Microfilm reel No.} & \multirow[b]{2}{*}{Ship} & \multirow[t]{2}{*}{BOMEX Observation Period} & \multicolumn{4}{|c|}{First sounding} & \multicolumn{3}{|c|}{Last sounding} \\
\hline & & & & Julian day & & & \[
\begin{aligned}
& \text { Time } \\
& \text { (GMT) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Julian } \\
& \text { day }
\end{aligned}
\] & \[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Time } \\
& \text { (GMT) }
\end{aligned}
\] \\
\hline B8455 & RS-1 & Oceanographer & I & 123 & May & 3 & 0300 & 134 & May 14 & 1800 \\
\hline B8456 & RS-2 & Rainier & " & 121 & May & 1 & 1200 & 134 & May 14 & 1800 \\
\hline B8475 & RS-3 & Mt. Mitchell & " & 122 & May & 2 & 1800 & 134 & May 14 & 1800 \\
\hline B8458 & RS-4 & Discoverer & " & 127 & May & 7 & 0300 & 135 & May 15 & 0000 \\
\hline B8459 & RS-5 & Rockaway & " & 122 & May & 2 & 0400 & 134 & May 14 & 1200 \\
\hline B8461 & RS-6 & Oceanographer & II & 144 & May & 24 & 1200 & 161 & June 10 & 0430 \\
\hline B8462 & RS-7 & Rainier & " & 144 & May & 24 & 0300 & 161 & June 10 & 0000 \\
\hline B8463 & RS-8 & Mt. Mitchell & " & 144 & May & 24 & 0300 & 152 & June 1 & 1800 \\
\hline B8463 & RS-9 & Mt. Mitchell & " & 153 & June & 2 & 0300 & 161 & June 10 & 0600 \\
\hline B8464 & RS-10 & Discoverer & " & 144 & May & 24 & 0300 & 154 & June 3 & 0730 \\
\hline B8464 & RS-11 & Discoverer & " & 154 & June & 3 & 0900 & 161 & June 10 & 0730 \\
\hline B8465 & RS-12 & Rockaway & " & 144 & May & 24 & 0300 & 161 & June 10 & 0300 \\
\hline B8467 & RS-13 & Oceanographer & III & 172 & June & & 0000 & 181 & June 30 & 0900 \\
\hline B8468 & RS-14 & Rainier & " & 172 & June & 21 & 0000 & 183 & July 2 & 1200 \\
\hline B8469 & RS-15 & Mt. Mitchell & " & 172 & June & 21 & 0000 & 177 & June 26 & 0430 \\
\hline B8469 & RS-16 & Mt. Mitchell & " & 177 & June & 26 & 0600 & 183 & July 2 & 1200 \\
\hline
\end{tabular}

Table 5.5--BOMEX archive rawinsonde magnetic tapes and microfilm (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Magnetic tape No.} & \multirow[t]{2}{*}{Microfilm reel No.} & \multirow[b]{2}{*}{Ship} & \multirow[t]{2}{*}{\begin{tabular}{l}
BOMEX \\
Observation Period
\end{tabular}} & \multicolumn{3}{|c|}{First sounding} & \multicolumn{3}{|c|}{Last sounding} \\
\hline & & & & ```
Julian
    day
``` & Date
(1969) & \[
\begin{aligned}
& \text { Time } \\
& \text { (GMT) }
\end{aligned}
\] & ```
Julian
    day
``` & \[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Time } \\
& \text { (GMT) }
\end{aligned}
\] \\
\hline B8470 & RS-17 & Discoverer & III & 172 & June 21 & 0000 & 177 & June 26 & 0430 \\
\hline B8470 & RS-18 & Discoverer & " & 177 & June 26 & 0000 & 183 & July 2 & 1200 \\
\hline B8471 & RS-19 & Rockaway & " & 171 & June 20 & 1200 & 183 & July 2 & 1200 \\
\hline B8472 & RS-28 & Oceanographer & "* & 171 & June 20 & 0000 & 181 & June 30 & 0000 \\
\hline B8472 & RS-29 & Rainier & "* & 172 & June 21 & 0000 & 183 & July 2 & 1200 \\
\hline B8472 & RS-30 & Mt. Mitchell & "* & 172 & June 21 & 0000 & 183 & July 2 & 1200 \\
\hline B8473 & RS-31 & Discoverer & "* & 172 & June 21 & 0000 & 183 & July 2 & 1200 \\
\hline B8473 & RS-32 & Rockaway & "* & 171 & June 20 & 1200 & 182 & July 1 & 1800 \\
\hline B8474 & RS-20 & Oceanographer & IV & 193 & Ju1y 12 & 1200 & 203 & July 22 & 0600 \\
\hline B8474 & RS-21 & Oceanographer & " & 203 & July 22 & 1200 & 210 & July 29 & 0300 \\
\hline B8475 & RS-22 & Rainier & " & 192 & July 11 & 1200 & 209 & July 28 & 2100 \\
\hline B8476 & RS-23 & Mt. Mitchell & " & 201 & Ju1y 20 & 1200 & 210 & July 29 & 0600 \\
\hline B8476 & RS-24 & Mt. Mitchell & " & 193 & July 12 & 1200 & 201 & July 20 & 0900 \\
\hline B8477 & RS-25 & Discoverer & " & 192 & Ju1y 11 & 0100 & 201 & July 20 & 0600 \\
\hline B8477 & RS-26 & Discoverer & " & 201 & July 20 & 1500 & 209 & July 28 & 2100 \\
\hline B8478 & RS-27 & Rockaway & " & 192 & Ju1y 11 & 0000 & 209 & July 28 & 1800 \\
\hline
\end{tabular}

\footnotetext{
*Manually worked-up soundings.
}

\subsection*{5.5.2 Radiometersonde Data}

The radiometersonde data are archived as the last of four data files on magnetic tape No. B9622 and consist of all observations from the Discoverer, Rainier, and Rockaway, and observations made near Paragon House, Barbados. The first file consists of 80 -column card images, one card image per record, describing the formats of the data file. The other files contain data that were either recorded manually or were read manually from strip-chart recordings. The data are in \(B C D\) card images, 50 cards ( 4,000 characters) per record. The second file contains the marine meteorological data (see sec. 4); the third file contains ship operations data (see sec. 2); and the fourth file contains hand-tabulated STD data (see sec. 7).

Each radiometersonde sounding is preceded by a header card with 1 in column 1 indicating beginning of the sounding. The header card gives ship's name and the date of the sounding. The data cards, on which column 1 is left blank, follow the header cards with data elements in the following order on each card:
```

    Pressure, millibars
    Time from launch, minutes
    Temperature, degrees Ce1sius
    IR radiation upward, langleys per minute
    IR radiation downward, langleys per minute
    Net IR radiation, langleys per minute
    Warming, degrees Celsius per day
    Mixing ratio, grams per kilogram
    Relative humidity, percent
    ```
The format is: 3F*.1, 3F8.4,F8.1, F8.3, 18.
    5.6 Supplementary Material Available From the Archive
        Microfilm reel No.
        Description
        DOC-5
        DOC-6
            DOC-8
        SCARD Event Log.
        Card 0 - Rawinsonde Form; also on this reel is
        Card 1 - Surface Observation Form.
        Card 5 - Observation Summary Form; Card 6 -
        System parameter failure; Card 7 - Slant
        range and azimuth, Rockaway; also on this
        reel is Card 9 - Boom Calibration Form.

Documents
(BO-1-1-1000) R-066-9
(BO-1-1A-1000) R-066-10

Title
BOMEX Software System, Program Documentation for Rawinsonde Two Samples per Second Reduction, General Electric, May 1971.
BOMEX Software System, Program Documentation for Rawinsonde Edit, General Electric, May 1971.
(BO-1-1B-1000) R-066-8
(BO-1-2-1000) R-066-15
(BO-1-3-1000) R-066-16
(BO-1-6-1000) R-066-14
(B0-1-7-1000) R-066-13
(B0-1-9-1000)
(BO-1-10-1000) R-066-12
(B0-1-1B-4995) R-066-2

Title

BOMEX Software System, Program Documentation for Rawinsonde Raw Data Plots, General Electric, May 1971.
BOMEX Software System, Program Documentation for Rawinsonde Engineering Units Conversion, General Electric, May 1971.
BOMEX Software System, Program Documentation for Rawinsonde Five Second Engineering Units Profile-Plot, General Electric, May 1971.
BOMEX Software System, Program Documentation for Rawinsonde Calibration File Preparation, General Electric, May 1971.
BOMEX Software System, Program Documentation for Rawinsonde Master Pressure/Contact File Preparation, General Electric, May 1971. BOMEX Software System, Program Documentation for Rawinsonde Selenia Tape Revision, General Electric, May 1971.
BOMEX Software System, Program Documentation for Rawinsonde Selenia Tape Edit, General Electric, May 1971.
BOMEX Software System, Program Documentation for SCARD Digitize Rawinsonde, General Electric, June 1971.

The U.S. Air Force Air Weather Service 6th Mobile Weather Squadron obtained upper air soundings daily from May 14 to June 4 and from July 8 to 28 near the BOMEX Field Headquarters using GMD-1A tracking and recording equipment. Standard Air Weather Service procedures were used for these rawinsonde observations, which supplemented soundings made at Seawell Airport by the Barbados Meteorological Service. These data are available from the archive in the form of adiabatic charts and winds-aloft computation sheets (WBAN-20).

\subsection*{5.7 Material in Temporary Storage}

Hard-copy material, consisting of original manual logs, strip charts, and the like, has been placed in temporary storage for a period of 3 years. Inquiries concerning this material should be addressed to the Center for Experiment Design and Data Analysis, EDS, NOAA, Washington, D.C. 20235.

\section*{6. BOUNDARY LAYER INSTRUMENT PACKAGE (BLIP) DATA SET}

The data set consists of meteorological parameters measured during BOMEX by the Boundary Layer Instrument Package (BLIP) from the four corner ships of the BOMEX array, the Oceanographer, Mt. Mitchell, Discoverer, and Rainier. The BLIPs were launched by means of tethered balloons or parakites. The tether line was attached to a winch mounted on the afterdeck of the ship. Lifted from a few meters above the deck to various heights, generally about 300 m , the instrument packages were retained at that level for several hours and lowered to the deck. Each of these flights is referred to as a "run."

Data were collected during BOMEX Observation Periods (Phases) II, III, and IV by the Oceanographer and Mt. Mitchell, during Period II by the Discoverer, and a few runs were made from the Rainier during Periods II and III.

Contained in the data set are one-sample-per-second (1 sps) measurements of dry- and wet-bulb temperatures, horizontal windspeed and wind direction, and pressure or relative humidity. Also included are quantities derived from these measurements, consisting of lateral and transversal wind components, and relative humidity computed from the differences between the dry- and wet-bulb temperatures.

The data are available on magnetic tape and in the form of continuous plots on \(35-\mathrm{mm}\) microfilm.

\subsection*{6.1 Sensors}

The sensors were mounted on an aluminum A-frame that was attached by swivels to the tether line. The electronic circuits, the telemetry system, and the batteries were also mounted on the \(A-f r a m e\), which was directed into the wind by a drogue chute or a fin.

Horizontal wind was measured by a WINDAV transducer developed especially for BOMEX. The transducer consists of a lightweight (2 oz.) three-cup anemometer that incorporates the use of the Earth's magnetic field for determining orientation. Two signals are produced: a sinusoidal wave per revolution for determining windspeed and compass points and a short square wave for determining orientation.

Dry- and wet-bulb temperatures were measured by bead thermistors. The wet-bulb thermistor was kept moist by a wick dipped in a distilled-water reservoir.

Atmospheric pressure was determined by a modified version of the aneroid baroswitch used in a conventional radiosonde, except for the Mt. Mitchell during Period II, when a variable resistance sensor was used. These pressure values (in millibars) for the Mt. Mitchell are contained on the magnetic tape.

Relative humidity was measured with a carbon hygristor, which was substituted for the pressure sensor in several runs (table 6-1).

Table 6-1.--Pressure and relative humidity measurements

values. In these instances, the dry- and wet-bulb temperatures are consistently good, casting suspicion on the measured humidity data.

\subsection*{6.2.2 Automated Editing}

After the manual editing, an automated editing routine was used to. (1) delete erroneous data, (2) flag or label suspect data, and (3) filter the temperature and wind data.

The dry- and wet-bulb temperatures were edited by a \(\pm 1.5^{\circ} \mathrm{C}\) window. Each successive sample was compared with the previous one and was excluded if the di.fference in magnitude was greater than \(1.5^{\circ} \mathrm{C}\). The computed relative humidity value was, of course, deleted in such cases. Similarly the windspeed was edited by \(a \pm 2.5 \mathrm{~m} / \mathrm{s}\) and the wind direction by a \(\pm 15 \mathrm{C}\) difference. The wind components were deleted for the values that failed this tolerance test.

The microfilm plots clearly show the single points that might have passed through the filter window but are still suspect. The user may want to eliminate these by means of another editing routine.

\subsection*{6.3 Archive Format and Data Inventory}

The archived BLIP data include the following measured meteorological parameters:

Windspeed.
Wind direction.
Dry-bulb temperature.
Wet-bulb temperature.
Pressure or relative humidity.
Included also are derived values for:
Wind u component.
Wind \(v\) component.
Relative humidity from dry- and wet-bulb differences.
All data are archived in l-sps format. An inventory of these data is given in tables 6-2 through 6-5.

\subsection*{6.3.1 Magnetic Tape Data}
\begin{tabular}{|c|c|l|l|}
\hline FILE 3 & E & FILE 2 & E \\
\hline ANSI Tape Label & 0 & Descriptive Tape Header & 0 \\
\((2-80\) character records \()\) & F & (223-80 character records \()\) & F \\
\hline
\end{tabular}
\(\left.\left.\begin{array}{|ll|l|}\hline \text { FILE } 3 & \\ \hline \text { File Header } & \text { Data Record } \\ (4-80 \text { character records }) & (1120 \text { characters) }\end{array}\right\} \begin{array}{ll}3 & E \\ \hline \text { Data Record } \\ \text { (1120 characters) }\end{array}\right)\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{FILE n} & \multirow[t]{3}{*}{E} & \multirow[t]{2}{*}{E} \\
\hline File Header & Data Record Data Record & & \\
\hline (4-80 character records) & (1120 characters) \() \underset{\left(\begin{array}{c}\text { (1120 charac- } \\ \text { ters })\end{array}\right.}{( }\) & & F \\
\hline
\end{tabular}

Each tape has an ANSI standard label. Following the standard label all data are written in even parity EBCDIC in the following format:
(1) A descriptive tape header in \(80-c h a r a c t e r ~ p h y s i c a l ~ r e c o r d s . ~\)
(2) A single physical end-of-file.
(3) A file header, which consists of four 80-character physical records.
(4) One or more data records (all 1,120 characters long).
(5) A single physical end-of-file.
(6) Items (3), (4), and (5) may be repeated, in that order, several times.
(7) A double physical end-of-file.

Each file header, item (3), contains the following:

Record 1, which gives ship name, phase number, and run number.
Record 2, which gives Julian day, run number, and ship number.
Record 3 and 4 , which contain the following headers and units that describe the data in the data record, item (4):
\begin{tabular}{ccl} 
Element & Header & \multicolumn{1}{c}{ Description } \\
1 & TIME & GMT time in seconds. \\
2 & A & Blank. \\
& SPEED & Windspeed in meters per second. \\
& Windspeed label, S indicating suspect \\
data.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 3 & DIREC & Wind direction in degrees. The corrected wind direction was obtained by comparing the mast wind direction with the BLIP wind direction and adding a bias, if needed, to the direction as measured by the BLIP. \\
\hline \(\pm\) & C & Wind direction label, \(S\) indicating suspect data. \\
\hline 4 & U & East-west wind component. \\
\hline 5 & V & North-south wind component. \\
\hline 6 & N & Number of samples used in computing the l-s average for windspeed and wind direction. \\
\hline 7 & TDB & Dry-bulb temperature in degrees Celsius. \\
\hline & D & Dry-bulb temperature label, \(S\) indicating suspect data. \\
\hline 8 & TWB & Wet-bulb temperature in degrees Celsius. \\
\hline & E & Wet-bulb temperature label, \(S\) indicating suspect data. \\
\hline 9 & PR/RH1 & Pressure in millibars for the Mt. Mitchell Period II, and pressure in "levels" for all baroswitch measurements; for time and pressure in millibars, see table 6-6. RH1 is the relative humidity in percent measured by the carbon hygristor. \\
\hline & F & RHl value label, S indicating suspect data. \\
\hline 10 & RH2 & Relative humidity in percent computed from the dry- and wet-bulb differences. A constant pressure value of \(1,000 \mathrm{mb}\) (not the actual surface pressure nor the pressure at flight level) was used in the computation of RH2. The computation method is the one given in the Smithsonian Meteorological Tables, 1966, Tables 94 and 98. \\
\hline 11 & N & Number of samples used in computing 1-s averages of temperatures and RH1. \\
\hline & G & B1ank. \\
\hline
\end{tabular}

There are 14 data sets in each data record. The format of the data record is as follows:
\begin{tabular}{|c|c|c|c|c|c|}
\hline Element & \[
\frac{\text { Character }}{\text { position }}
\] & \[
\frac{\text { Fortran }}{\text { field }}
\] & \[
\frac{\mathrm{Mi}}{\mathrm{~A}}
\] & \[
\frac{\text { ing data* }}{\underline{B}}
\] & Description \\
\hline 1 & 1-6 & (I6) & & 999999 & Time \\
\hline A & 8 & & & 9 & Dummy \\
\hline 2 & 10-15 & (F6.2) & -99.99 & 999.99 & Windspeed \\
\hline B & 17 & (1H) & & 9 & F1ag \\
\hline 3 & 20-24 & (F6.2) & -99.99 & 999.99 & Wind direction \\
\hline C & 26 & (1H) & & 9 & Flag \\
\hline 4 & 28-33 & (F6.2) & -99.99 & 999.99 & u component \\
\hline 5 & 35-40 & (F6.2) & -99.99 & 999.99 & \(v\) component \\
\hline 6 & 42 & (II) & & 9 & N \\
\hline 7 & 44-49 & (F6.2) & -99.99 & 999.99 & Dry bulb \\
\hline D & 51 & (1H) & & 9 & Flag \\
\hline 8 & 53-58 & (F6.2) & -99.99 & 999.99 & Wet bulb \\
\hline \(E\) & 60 & (1H) & & 9 & Flag \\
\hline 9 & 62-68 & (F7.2) & -99.99 & 9999.99 & Pressure or relative humidity \\
\hline F & 70 & (1H) & & 9 & Flag \\
\hline 10 & 72-76 & (F5.1) & -99.9 & 999.9 & Computed relative humidity \\
\hline 11 & 78 & (I1) & & 9 & N \\
\hline G & 80 & & & 9 & Dummy \\
\hline
\end{tabular}
* When an individual element is missing, form \(A\) is used. When all data for a particular second are missing, form \(B\) is used.

\subsection*{6.3.2 Microfilm Data}

The l-sps data are shown on \(35-m m\) microfilm in the form of graphical plots consisting of 8 -min frames ( 480 points) that have been butted to form a continuous series of a particular run. Each frame contains a heading giving ship's name, BOMEX Phase number, BLIP run number, and Julian day.

The following is an example of the five-column legend that appears at the beginning of each series:
\begin{tabular}{ccrrr} 
& MIN. & MAX. & MIN. & MAX. \\
TRACE & INPUT & INPUT & PLOT & PLOT \\
& & & & \\
DIR & 0.00 & 360.00 & 100 & 900 \\
SPEED & 0.00 & 50.00 & 0 & 1000 \\
TDB & 0.00 & 50.00 & 0 & 1000 \\
TWB & 0.00 & 50.00 & 0 & 1000 \\
PRESS & 10. & 40. & 840 & 990 \\
RH2 & 10.00 & 110.00 & 0 & 1000
\end{tabular}

The abscissa is time in hours, minutes, and seconds, e.g., 15.19.00 means \(1500 \mathrm{hr}, 19 \mathrm{~min}\), and 0 s . Tbe ordinate is labeled 0 to 1000 in increments of 100. The values in the legend correspond to this scale, e.g., the input for windspeed is from 0 to \(50 \mathrm{~m} / \mathrm{s}\), which means that each marked increment, or line, is \(5 \mathrm{~m} / \mathrm{s}\).

Note again that the pressure data have not been reduced to pressure units, except for the Mt. Mitchell, Phase II, and that the contact point changes shown on the plots served as the basis for the pressure values given in table 6-6. The relative humidity plots are labeled RH1 or RH2, the former referring to the hygristor values of relative humidity, the latter to the values derived from the dry- and wet-bulb temperature differences. There is a 10 percent offset in the plots of RH1 and RH2 to facilitate viewing; the legend shows the offset values.

\subsection*{6.4 Sources of Error}

The wind bias used in correcting wind direction might be in error by several degrees. Comparison of l-hr averages between runs will show any such discrepancy.

The catenary. caused nonhorizontal wind measurements when the instrument package was at low altitudes. At higher levels ( 100 m ) , the package was generally on a horizontal plane.

No pressure reading (in millibars) is given while the package is at flight level. In cases where the pressure data are shown for ascents and descents, the pressure at flight level might be inferred, but the change from one contact to another as the balloon rose and dropped cannot be readily determined. For runs without pressure sensor, the hydrostatic equation and the temperature data might be used to obtain an approximation of the height profiles.

The Mt. Mitchell pressure sensor was not calibrated. In reducing the pressure data obtained, which cover Phase II only, a "first estimate" transfer equation was used. No extensive effort was made to validate the pressure values.

The relative humidity values, RH , from the carbon hygristor were dzrived from a standard curve of resistance (R) vs. relative humidity (RH)
from Humidity and Moisture: Measurement and Control in Science and Industry, Vol. I, by A. Wexler, Ed., Reinhold Publishing Corporation, New York, N.Y., 1965, p.323. The calibration done before the experiment involved the frequency vs. resistance data. The relationship at \(25^{\circ} \mathrm{C}\) is logarithmic, sharply increasing above humidity values in the 90 -percent range. The BLIP data contain values higher than 180 percent; these could be due to the transfer equation derived from the standard curve data. The values above 100 percent are included in the magnetic tape data, but are truncated in the microfilm plots.

The height of the balloon was estimated by use of the linear line footage from the counter on the winch. The catenary was not taken into account.

\subsection*{6.5 Recommendations for Data Users}

It is highly recommended that the microfilm plots be reviewed before the data are used. Since these are in the form of time series, data gaps can be readily discerned. First estimates of the data can also be made. The BLIP Log (see below) might also be helpful. Note, however, that the times in the log are not necessarily the same as the edited times shown in tables 6-2 through 6-5. The ship motion corrections (see sec. 2) can be used to further correct the BLIP wind data.
6.6 Supplementary Material Available From the Archive

\section*{BLIP Log}

BOMEX Software System, Program Documentation for SCARD Digitized BLIP. (BO-1-1C-4995), R-066-22, General Electric, June 1971.

BOMEX Software System, Program Documentation for BLIP PAM Detect and Wind Computation (BO-1-3-4995), R-066-23, General Electric, July 1971.

BOMEX, Calibration Documentation for Boundary Layer Instrumentation Package, R-074, General Electric.

BOMEX Software System, Program Documentation for BLIP Pressure Contact Change (BO-1-21-1000), R-066-30, General Electric, June 1971.

BOMEX Software System, Program Documentation for BLIP Averaging and Engineering Units Conversion (BO-1-4-4995) and (BO-1-6-4995), R-066-24, General Electric, July 1971.

BOMEX Software System, Program Documentation for BLIP Engineering Units Conversion and Tabulation (B0-1-4A-4995), R-066-35, General Electric, July 1971

BOMEX Software System, Program Documentation for BLIP/STD Plot (B0-1-5A-4995), R-066-25, General Electric, July 1971.

BOMEX Software System, Program Documentation for BLIP Calibration (BO-1-9-4995), R-066-31, General Electric, June 1971.

Microfilm reel No. DOC-7, containing Card 2, BLIP Calibration Form; also on this reel are Card 3, STD Observation Form, and Card 4, Ship Operations Form.

Table 6-2.--BLIP data inventory, Oceanographer
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Magnetic \\
tape No.
\end{tabular} & \begin{tabular}{l}
Microfilm \\
reel No.
\end{tabular} & \[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\] & Julian day & BOMEX Observation Period & \begin{tabular}{l}
Run \\
No.
\end{tabular} & \begin{tabular}{l}
Edited \\
start \\
time \\
(GMT)
\end{tabular} & \begin{tabular}{l}
Edited \\
stop \\
time \\
(GMT)
\end{tabular} \\
\hline B6320 & BL-1 & May 25 & 145 & II & 1 & 19:54:22 & 23:51:00 \\
\hline " & " & May 26 & 146 & " & & 19:36:35 & 23:53:55 \\
\hline " & " & May 28 & 148 & " & & 16:36:46 & 23:40:34 \\
\hline " & " & May 30 & 150 & " & 4 & 00:00:05 & 10:48:41 \\
\hline " & " & " & " & " & 5 & 11:12:41 & 12:44:10 \\
\hline " & " & " & " & " & 6 & 13:00:30 & 21:15:11 \\
\hline B6321 & " & May 31 & 151 & " & 7 & 00:14:10 & 08:58:30 \\
\hline " & " & " & " & " & 8 & 09:56:01 & 13:58:25 \\
\hline " & " & " & " & " & 9 & 15:13:51 & 20:27:51 \\
\hline " & " & " & " & " & 10 & 21:20:21 & 04:20:05 \\
\hline " & " & June 1 & 152 & " & 11 & 05:20:23 & 10:25:13 \\
\hline " & " & " & " & " & 12 & 11:12:09 & 17:34:00 \\
\hline B6322 & \(\cdots\) & " & " & " & 13 & 18:21:14 & 20:18:10 \\
\hline " & " & " & " & " & 14 & 23:35:46 & 02:20:46 \\
\hline " & " & June 3 & 154 & " & 15 & 21:45:10 & 01:12:10 \\
\hline " & " & June 4 & 155 & " & 16 & 10:59:50 & 19:30:50 \\
\hline " & " & " & " & " & 17 & 19:59:25 & 23:53:13 \\
\hline " & " & June 6 & 157 & " & 18 & & \\
\hline " & " & " & " & " & 19 & 14:39:01 & 20:14:01 \\
\hline " & " & " & " & " & 20 & 21:39:38 & 08:53:31 \\
\hline
\end{tabular}

Table 6-2.--Blip data inventory, Oceanographer (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Magnetic tape No. & Microfilm reel No. & \[
\begin{aligned}
& \text { Date } \\
& (1969)
\end{aligned}
\] & \[
\begin{gathered}
\text { Julian } \\
\text { day }
\end{gathered}
\] & BOMEX Observation Period & \begin{tabular}{l}
Run \\
No.
\end{tabular} & Edited start time (GMT) & Edited stop time (GMT) \\
\hline B6323 & BL-1 & June 7 & 158 & II & 21 & 09:15:51 & 20:19:21 \\
\hline " & " & " & " & " & 22 & 21:19:30 & 07:40:01 \\
\hline " & " & June 8 & 159 & " & 23 & 08:20:00 & 19:11:41 \\
\hline B6344 & " & " & 11 & " & 24 & 21:34:30 & 07:19:21 \\
\hline " & " & June 9 & 160 & " & 25 & 07:38:04 & 17:09:22 \\
\hline " & " & " & " & " & 26 & 21:35:39 & 07:01:39 \\
\hline B6331 & BL-2 & June 21 & 172 & III & 1 & 00:07:21 & 01:16:22 \\
\hline " & " & 11 & " & " & 2 & 16:28:00 & 20:36:00 \\
\hline " & " & June 22 & 173 & " & 3 & 00:10:00 & 11:51:47 \\
\hline " & 11 & " & " & " & 4 & 15:30:43 & 19:15:05 \\
\hline " & " & " & " & " & 5 & 21:23:20 & 01:12:00 \\
\hline " & 11 & June 23 & 174 & " & 6 & 02:34:20 & 13:16:41 \\
\hline B6332 & " & " & " & " & 7 & 13:33:24 & 21:02:58 \\
\hline " & " & June 24 & 175 & " & 8 & 21:37:27 & 08:46:26 \\
\hline " & " & " & " & " & 9 & 12:19:21 & 21:08:48 \\
\hline B3681 & 11 & " & " & " & 10 & 21:31:12 & 12:46:22 \\
\hline B6333 & " & June 25 & 176 & " & 11 & 15:08:41 & 21:13:11 \\
\hline " & " & " & " & 11 & 12 & 21:32:25 & 07:52:21 \\
\hline " & " & June 26 & 177 & " & 13 & 08:04:40 & 12:35:20 \\
\hline 11 & 11 & " & " & " & 14 & 12:45:38 & 19:15:03 \\
\hline
\end{tabular}

Table 6-2.-BLIP data inventory, Oceanographer (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Magnetic tape No. & Microfilm reel No. & \[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\] & \[
\begin{gathered}
\text { Julian } \\
\text { day }
\end{gathered}
\] & BOMEX Observation Period & \[
\begin{aligned}
& \text { Run } \\
& \text { No. }
\end{aligned}
\] & Edited start time (GMT) & \begin{tabular}{l}
Edited \\
stop \\
time \\
(GMT)
\end{tabular} \\
\hline B6334 & BL-2 & June 26 & 177 & III & 15 & 23:50:52 & 12:44:43 \\
\hline " & " & " & " & " & 16 & & \\
\hline " & " & June 28 & 179 & " & 17 & 13:34:17 & 21:18:03 \\
\hline " & " & " & " & 11 & 18 & 21:41:39 & 06:59:00 \\
\hline " & " & June 29 & 180 & " & 19 & 15:27:01 & 21:08:05 \\
\hline B6347 & 11 & 1 & 11 & " & 20 & 21:28:47 & 03:57:43 \\
\hline B6324 & BL-3 & July 12 & 193 & IV & 1 & 12:33:21 & 14:50:41 \\
\hline " & 11 & " & 11 & " & 2 & 15:37:43 & 21:07:30 \\
\hline " & " & " & " & ' & 3 & 21:28:08 & 09:58:08 \\
\hline 11 & " & July 13 & 194 & " & 4 & 10:19:00 & 12:06:06 \\
\hline " & " & 11 & 11 & 11 & 5 & 17:30:00 & 21:09:25 \\
\hline " & " & " & " & -1 & 6 & 21:20:36 & 06:44:36. \\
\hline B6325 & 11 & July 14 & 195 & " & 7 & 16:59:25 & 19:23:29 \\
\hline " & " & " & " & " & 8 & 23:11:45 & 06:01:45 \\
\hline " & " & July 15 & 196 & " & 9 & 06:03:21 & 10:03:03 \\
\hline " & " & " & " & " & 10 & 10:18:43 & 12:30:45 \\
\hline " & " & " & " & 11 & 11 & 13:10:21 & 22:56:02 \\
\hline 11 & " & July 16 & 197 & " & 12 & 23:41:45 & 02:00:50 \\
\hline " & " & July 17 & 198 & " & 13 & 02:49:35 & 09:55:06 \\
\hline B6326 & 1 & " & 11 & " & 14 & 10:33:30 & 21:04:55 \\
\hline " & " & " & " & " & 15 & 10:33:30 & 21:04:55 \\
\hline " & " & " & " & " & 16 & 21:28:36 & 09:52:36 \\
\hline " & 11 & July 18 & 199 & " & 17 & 10:06:00 & 13:38:15 \\
\hline " & 11 & " & " & " & 18 & 15:14:30 & 17:43:40 \\
\hline
\end{tabular}

Table 6-2.--BLIP data inventory, Oceanographer (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Magnetic tape No. & Microfilm reel No. & \[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\] & \[
\begin{gathered}
\text { Julian } \\
\text { day }
\end{gathered}
\] & \begin{tabular}{l}
BOMEX \\
Observation Period
\end{tabular} & \[
\begin{aligned}
& \text { Run } \\
& \text { No. }
\end{aligned}
\] & Edited start time (GMT) & Edited stop time (GMT) \\
\hline B6327 & BL-3 & July 18 & 199 & IV & 19 & 21:35:15 & 08:47:21 \\
\hline " & " & July 19 & 200 & " & 20 & 09:20:00 & 13:44:20 \\
\hline " & " & 11 & " & " & 21 & 14:13:23 & 19:04:23 \\
\hline " & " & " & " & " & 22 & 21:22:00 & 09:06:21 \\
\hline " & " & July 20 & 201 & 11 & 23 & 09:25:32 & 10:57:32 \\
\hline " & " & " & " & " & 24 & 11:24:01 & 14:12:01 \\
\hline B6328 & \(\stackrel{4}{ }\) & " & 11 & " & 25 & 15:15:10 & 19:01:43 \\
\hline " & " & " & 11 & " & 26 & 19:35:45 & 22:07:40 \\
\hline " & " & " & 11 & " & 27 & 22:34:35 & 09:54:35 \\
\hline " & " & July 21 & 202 & 11 & 28 & 10:09:30 & 13:29:03 \\
\hline " & " & " & " & 11 & 29 & 16:53:53 & 17:31:03 \\
\hline " & " & " & " & " & 30 & 21:37:35 & 09:31:50 \\
\hline B6380 & 11 & July 22 & 203 & 11 & 31 & 09:57:23 & 16:59:30 \\
\hline " & " & " & " & 11 & 32 & 19:12:10 & 21:08:02 \\
\hline " & " & " & " & " & 33 & 21:34:21 & 02:11:21 \\
\hline " & " & July 23 & 204 & " & 34 & 03:59:13 & 08:34:10 \\
\hline 11 & 11 & 1 & " & " & 35 & 08:54:29 & 09:33:29 \\
\hline " & " & " & " & 11 & 36 & 09:50:49 & 21:04:49 \\
\hline " & " & " & 11 & " & 37 & 21:27:10 & 02:12:59 \\
\hline
\end{tabular}
* Deleted due to erroneous data.

Table 6-3.--BLIP data inventory, Mt. Mitchell
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Magnetic tape No. & \begin{tabular}{l}
Microfilm \\
reel No.
\end{tabular} & \[
\begin{gathered}
\text { Date } \\
\text { (1969) }
\end{gathered}
\] & Julian day & BOMEX Observation Period & \begin{tabular}{l}
Run \\
No.
\end{tabular} & Edited start time (GMT) & \begin{tabular}{l}
Edited \\
stop \\
time \\
(GMT)
\end{tabular} \\
\hline B6335 & BL-5 & May 26 & 146 & II & 1 & 02:56:33 & 06:03:33 \\
\hline " & " & May 27 & 147 & " & 2 & 07:19:00 & 15:34:28 \\
\hline " & " & " & " & " & 3 & 16:43:40 & 22:33:37 \\
\hline " & " & May 31 & 151 & " & 4 & 17:38:46 & 23:07:46 \\
\hline " & " & June 1 & 152 & " & 5 & 13:08:41 & 21:12:21 \\
\hline " & " & June 2 & 153 & " & 6 & 00:44:05 & 04:20:01 \\
\hline " & " & " & " & " & 7 & 07:27:40 & 12:17:00 \\
\hline B6336 & " & " & " & " & 8 & 13:30:09 & 18:50:41 \\
\hline " & " & June 3 & 154 & " & 9 & 00:02:40 & 04:23:27 \\
\hline " & " & " & " & " & 10 & 07:49:27 & 12:16:27 \\
\hline " & " & " & " & " & 11 & 23:45:00 & 04:15:11 \\
\hline " & " & June 4 & 155 & " & 12 & 18:12:22 & 23:08:22 \\
\hline " & " & June 7 & 158 & " & 13 & 01:33:23 & 04:33:23 \\
\hline " & " & " & " & " & 14 & 07:31:15 & 12:31:15 \\
\hline B6337 & " & " & " & " & 15 & 13:12:41 & 20:19:41 \\
\hline " & " & June 8 & 159 & " & 16 & 00:07:03 & 04:15:05 \\
\hline " & " & " & " & " & 17 & 07:17:05 & 10:53:03 \\
\hline " & " & " & " & " & 18 & 12:39:21 & 16:02:01 \\
\hline " & " & " & " & " & 19 & 21:15:18 & 23:53:55 \\
\hline " & " & June 9 & 160 & " & 20 & 07:21:05 & 12:25:20 \\
\hline " & " & " & " & " & 21 & 12:47:40 & 20:23:21 \\
\hline " & " & " & " & " & 22 & 23:33:56 & 04:10:41 \\
\hline
\end{tabular}

Table 6-3.--BLIP data inventory, Mt. Mitchell (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Magnetic tape No. & Microfilm reel No. & \[
\begin{gathered}
\text { Date } \\
\text { (1969) }
\end{gathered}
\] & Julian day & BOMEX Observation Period & \[
\begin{aligned}
& \text { Run } \\
& \text { No. }
\end{aligned}
\] & Edited start time (GMT) & Edited stop time (GMT) \\
\hline B6338 & BL-6 & June 23 & 174 & III & 1 & 01:16:01 & 04:26:30 \\
\hline " & " & " & " & " & 2 & 09:23:40 & 12:33:55 \\
\hline " & " & " & " & " & 3 & 13:08:21 & 21:00:30 \\
\hline " & " & June 24 & 175 & " & 4 & 00:02:21 & 04:12:06 \\
\hline " & " & " & " & " & 5 & 07:28:28 & 12:25:03 \\
\hline " & " & " & " & " & 6 & 05:23:02 & 20:05:02 \\
\hline " & " & June 25 & 176 & " & 7 & 00:28:41 & 04:13:26 \\
\hline B6339 & " & " & " & " & 8 & 07:34:15 & 12:41:26 \\
\hline " & " & " & " & " & 9 & 14:12:26 & 20:31:05 \\
\hline " & " & June 26 & 177 & " & 10 & 00:06:06 & 04:27:41 \\
\hline " & " & " & " & " & 11 & 07:26:35 & 12:20:00 \\
\hline " & " & " & " & " & 12 & 12:44:02 & 16:52:02 \\
\hline " & " & June 28 & 179 & " & 13 & 01:12:13 & 04:20:13 \\
\hline " & \(\cdots\) & " & " & " & 14 & 07:28:13 & 12:42:08 \\
\hline B6340 & 11 & June 29 & 180 & " & 15 & 02:25:05 & \[
04: 33: 03
\] \\
\hline " & " & " & " & " & 16 & \[
07: 32: 48
\] & \[
12: 17: 15
\] \\
\hline " & " & June 30 & 181 & " & 17 & 00:00:00 & 04:33:15 \\
\hline " & " & " & " & " & 18 & 07:51:31 & 12:27:31 \\
\hline " & " & " & " & " & 19 * & & \\
\hline " & " & " & " & " & 20 & 19:26:40 & 23:15:30 \\
\hline " & " & July 1 & 182 & " & 21 & 00:08:16 & 04:41:16 \\
\hline " & " & " & " & " & 22 & 07:44:22 & 12:38:22 \\
\hline " & " & " & " & " & 23 & 13:06:17 & 20:22:41 \\
\hline
\end{tabular}

Table 6-3.--BLIP data inventory, Mt. Mitchel1 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Magnetic tape No. & Microfilm reel No. & \[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\] & Julian day & BOMEX Observation Period & \[
\begin{aligned}
& \text { Run } \\
& \text { No. }
\end{aligned}
\] & Edited start time (GMT) & Edited stop time (GMT) \\
\hline B6348 & BL-6 & July 2 & 183 & III & 24 & 00:24:56 & 04:40:56 \\
\hline " & " & 1 & " & " & 25 & 07:26:17 & 12:42:27 \\
\hline B6341 & BL-7 & July 12 & 193 & IV & 1 & 17:46:00 & 21:06:30 \\
\hline " & " & July 13 & 194 & " & 2 & 00:00:22 & 04:27:30 \\
\hline " & " & 1 & " & 11 & 3 & 07:27:01 & 08:24:30 \\
\hline " & " & " & 1 & " & 4 & 12:23:41 & 20:16:55 \\
\hline " & 11 & " & " & " & 5 & 23:57:26 & 04:15:50 \\
\hline " & " & July 14 & 195 & 11 & 6 & 07:38:43 & 12:18:50 \\
\hline " & " & " & " & " & 7 & 12:48:42 & 20:05:41 \\
\hline B6342 & " & " & " & " & 8 & 23:57:10 & 02:37:47 \\
\hline " & 11 & July 17 & 198 & " & 9 & 14:42:22 & 20:01:29 \\
\hline " & " & July 18 & 199 & " & 10 & 00:58:24 & 04:42:24 \\
\hline 11 & " & " & " & " & 11 & 08:16:24 & 12:11:29 \\
\hline " & " & July 19 & 200 & " & 12 & 00:34:43 & 04:15:55 \\
\hline 11 & 1 & " & " & " & 13 & 08:17:15 & 08:44:00 \\
\hline " & " & " & " & " & 14 & 18:40:02 & 22:51:55 \\
\hline " & " & July 20 & 201 & " & 15 & 04:44:27 & 05:28:15 \\
\hline " & " & July 21 & 202 & " & 16 & 01:49:01 & 04:39:01 \\
\hline " & " & " & " & " & 17 & 07:18:22 & 12:27:21 \\
\hline B6343 & 11 & " & " & " & 18 & 12:27:41 & 19:30:25 \\
\hline " & " & July 22 & 203 & " & 19 & 00:19:35 & 04:26:35 \\
\hline " & " & " & 1 & " & 20 & 07:21:00 & 12:35:05 \\
\hline " & " & " & 11 & " & 21 & 14:59:40 & 19:56:46 \\
\hline
\end{tabular}

Table 6-3.--BLIP data inventory, Mt. Mitchell (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Magnetic tape No. & Microfilm reel No. & \[
\begin{gathered}
\text { Date } \\
\text { (1969) }
\end{gathered}
\] & Julian day & BOMEX Observation Period & \[
\begin{aligned}
& \text { Run } \\
& \text { No. }
\end{aligned}
\] & \begin{tabular}{l}
Edited \\
start \\
time \\
(GMT)
\end{tabular} & \begin{tabular}{l}
Edited \\
stop \\
time \\
(GMT)
\end{tabular} \\
\hline B6343 & BL-7 & July 23 & 204 & IV & 22 & 00:24:02 & 04:21:02 \\
\hline " & " & & " & " & 23 & 18:22:41 & 23:07:41 \\
\hline " & " & July 24 & 205 & " & 24 & 07:25:22 & 08:59:55 \\
\hline " & " & July 26 & 207 & " & 25. & 18:07:21 & 21:04:25 \\
\hline B6349 & " & " & " & " & 26 & 23:58:01 & 04:22:01 \\
\hline " & " & July 27 & 208 & " & 27 & 08:10:21 & 12:46:30 \\
\hline " & " & & " & " & 28 & 13:52:03 & 19:53:01 \\
\hline " & " & July 28 & 209 & " & 29 & 00:16:51 & 04:43:51 \\
\hline
\end{tabular}
* Deleted due to erroneous data.

Table 6-4.--BLIP data inventory, Discoverer
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Magnetic tape No. & Microfilm reel No. & \[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\] & Julian day & BOMEX Observation Period & Run
No. & Edited start time (GMT) & Edited stop time (GMT) \\
\hline B6345 & BL-4 & June 24 & 175 & III & 1 & 00:04:58 & 06:40:50 \\
\hline " & " & & " & " & 2 * & & \\
\hline " & " & June 28 & 179 & " & 3 & 00:28:44 & 06:02:14 \\
\hline " & " & " & " & " & 4 & 06:34:20 & 10:38:25 \\
\hline " & " & " & " & " & 5 & 16:51:44 & 20:57:29 \\
\hline " & " & June 29 & 180 & " & 6 & 00:17:00 & 04:47:00 \\
\hline " & " & June & " & " & 7 & 07:19:53 & 12:58:53 \\
\hline " & " & " & " & " & 8 & 17:04:45 & 19:39:25 \\
\hline B6346 & " & \[
\text { June } 30
\] & 181 & " & 9 & 06:39:15 & 12:53:11 \\
\hline " & " & " & " & " & 10 & 16:00:05 & 20:12:30 \\
\hline
\end{tabular}
* Deleted due to erroneous data.

Table 6-5.--BLIP data inventory, Rainier
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Magnetic tape No. & Microfilm reel No. & \[
\begin{aligned}
& \text { Date } \\
& (1969)
\end{aligned}
\] & \[
\begin{aligned}
& \text { Julian } \\
& \text { day }
\end{aligned}
\] & BOMEX Observation Period & \[
\begin{aligned}
& \text { Run } \\
& \text { No. }
\end{aligned}
\] & Edited start time (GMT) & Edited stop time (GMT) \\
\hline B6329 & BL-4 & May \({ }^{\text {- }} 31\) & 151 & II & 1 & 00:03:38 & 04:13:35 \\
\hline " & " & " & " & " & 2 & 07:37:21 & 12:47:41 \\
\hline B6330 & 11 & June 22 & 173 & III & 1 & 14:07:23 & 19:51:53 \\
\hline " & " & " & " & " & 2 * & & \\
\hline " & " & June 23 & 174 & " & 3 & 01:16:23 & 02:24:21 \\
\hline " & " & " & 1 & " & 4 & 16:24:05 & 20:11:05 \\
\hline " & 1 & June 26 & 177 & " & 5 & 17:11:11 & 17:41:51 \\
\hline
\end{tabular}
* Deleted due to erroneous data.

Table 6-6,--Pressure contact time
(Last column indicates BOMEX Observation Period and BLIP run No.)

OCEANOGRAPHER
PHASE 3 ASCENT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 00.16.08 & 29.90 & 00.16 .59 & 29.85 & 00.31 .58 & 29.00 & & & 0301 \\
\hline 16.31.41 & & 16.34 .14 & 29.90 & 16.34 .43 & 29.85 & 16.38.39 & 29.68 & 0302 \\
\hline 16.39.37 & 29.61 & 16.42 .04 & 29.46 & 16.43.12 & 29.40 & 16.45.07 & 29.22 & 0302 \\
\hline 16.45.52 & & 16.50.14 & & 16.55.22 & & & & 0302 \\
\hline 00.12 .53 & & 00.15 .12 & 29.90 & 00.16.11 & 29.85 & 00.18 .51 & 2.9.68 & 0303 \\
\hline 00.20 .00 & 29.61 & 00.23 .17 & 29.46 & 00.24.12 & 29.40 & 00.28 .53 & 29.22 & 0303 \\
\hline 00.30 .42 & 29.14 & 00.36 .30 & 29.00 & & & & & 0303 \\
\hline 15.37 .16 & 29.90 & 15.37 .46 & 29.85 & 15.39.08 & 29.68 & 15.39.37 & 29.61 & 0304 \\
\hline 15.41 .02 & 29.46 & 15.41 .26 & 29.40 & 15.43 .15 & 29.22 & 15.44.20 & 29.14 & 0304 \\
\hline 15.46 .09 & 29.00 & 15.47.16 & 28.88 & 15.55.42 & 28.74 & 15.57 .52 & 28.65 & 0304 \\
\hline 21.29.22 & 29.90 & 21.29 .41 & 29.85 & 21.30.58 & 29.68 & 21.31 .17 & 29.61 & 0305 \\
\hline 21.32.45 & 29.46 & 21.33 .02 & 29.40 & 21.34.17 & 29.22 & 21.34 .33 & 29.14 & 0305 \\
\hline 21.36 .13 & 29.00 & 21.37 .03 & 28.88 & 21.38.58 & 28.74 & 21.40 .01 & 28.65 & 0305 \\
\hline 21.44.38 & 28.51 & & & & & & & 0305 \\
\hline 02.39 .39 & 29.93 & 02.40.18 & 29.86 & 02.42 .13 & 29.69 & 02.42 .59 & 29.64 & 0306 \\
\hline 02.45.29 & 29.47 & 02.46 .10 & 29.40 & 02.48.33 & 29.25 & 02.49.36 & 29.17 & 0306 \\
\hline 02.53 .45 & 29.04 & 02.57 .10 & 28.94 & 03.00 .23 & 28.76 & & & 0306 \\
\hline 13.38 .01 & 29.86 & 13.39.36 & 29.69 & 13.40 .11 & 29.64 & 13.41.51 & 29.47 & 0307 \\
\hline 13.42 .22 & 29.40 & 13.44 .36 & 29.25 & 13.45 .09 & 29.17 & 13.46 .30 & 29.04 & 0307 \\
\hline 21.42 .17 & 29.86 & 21.43 .54 & 29.69 & 21.44 .27 & 29.64 & 21.45 .58 & 29.47 & 0308 \\
\hline 21.46 .29 & 29.40 & 21.48 .15 & 29.25 & 21.48 .47 & 29.17 & 21.50 .29 & 29.04 & 0308 \\
\hline 15.17 .59 & 29.94 & 15.18 .18 & 29.87 & 15.19.25 & 29.72 & 15.19.54 & 29.65 & 0311 \\
\hline 15.21.08 & 29.465 & 15.21.30 & 29.41 & 15.22.51 & 29.25 & 15.23.30 & 29.20 & 0311 \\
\hline 15.25 .23 & 29.04 & & & & & & & 0311 \\
\hline 21.37.39 & 29.94 & 21.38 .09 & 29.87 & 21.39.51 & 29.72 & 21.40 .21 & 29.65 & 0312 \\
\hline 21.42 .26 & 29.465 & 21.43 .04 & 29.41 & 21.45 .00 & 29.25 & 21.45.29 & 29.20 & 0312 \\
\hline \(21: 47.39\) & 29.04 & & & & & & & 0312 \\
\hline 08.08 .22 & 29.94 & 08.09 .08 & 29.87 & 08.10.24 & & 08.11 .05 & 29.65 & 0313 \\
\hline 08.12.31 & 29.465 & 08.14 .10 & 29.41 & 08.20.47 & 29.25 & 08.21 .47 & 29.20 & 0313 \\
\hline 08.23 .59 & 29.04 & & & & & & & 0313 \\
\hline 23.55 .44 & 29.94 & 23.56 .20 & 29.87 & 23.57.58 & 29.72 & 23.58 .40 & 29.65 & 0315 \\
\hline 00.00 .32 & 29.465 & 00.01 .33 & 29.41 & 00.05.35 & 29.25 & 00.11 .45 & 29.20 & 0315 \\
\hline 00.14 .15 & 29.04 & & & & & & & 0315 \\
\hline
\end{tabular}

Table 6-6.--Pressure contact time (continued
(Last column indicates BOMEX Observation Period and BLIP run No.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 17.11.21 & 29.94 & 17.11.48 & 29.87 & 17.13 .42 & 29.72 & 17.14 .13 & 29.65 & 0317 \\
\hline 17.16.30 & 29.465 & 17.17.03 & 29.41 & 17.19.55 & 29.25 & 17.21.18 & 29.20 & 0317 \\
\hline 17.24.15 & 29.04 & & & & & & & 0317 \\
\hline 21.45.05 & 29.94 & 21.45 .30 & 29.87 & 21.46 .59 & 29.72 & 21.47 .25 & 29.65 & 0318 \\
\hline 21.49.02 & 29.465 & 21.49.25 & 29.41 & 21.51.33 & 29.25 & 21.52.18 & 29.20 & 0318 \\
\hline 21.54 .06 & 29.04 & & & & & & & 0318 \\
\hline 10.04 .41 & 29.94 & 10.05.01 & 29.87 & 10.06 .34 & 29.72 & 10.06.55 & 29.65 & 0319 \\
\hline 10.08.52 & 29.465 & 10.09.11 & 29.41 & 10.10 .53 & 29.25 & 10.12.20 & 29.20 & 0319 \\
\hline 10.15 .07 & 29.04 & 10.16 .20 & 28.92 & & & & & 0319 \\
\hline 21.33.14 & 29.94 & 21.33 .32 & 29.87 & 21.34 .46 & 29.72 & 21.35.12 & 29.65 & 0320 \\
\hline 21.36 .19 & 29.465 & 21.36 .56 & 29.41 & 21.38.04 & 29.25 & 21.38.49 & 29.20 & 0320 \\
\hline 21.40 .21 & \[
29.04
\] & & & & & & & 0320 \\
\hline PHA & \[
E 3
\] & CENT & & & & & & \\
\hline 00.52 .40 & 29.14 & 00.54 .00 & 29.22 & 00.57 .43 & 29.40 & 00.58.59 & 29.46 & 0301 \\
\hline 01.02 .05 & 29.61 & 01.03 .22 & 29.68 & 01.06 .42 & 29.85 & 01.08 .04 & 29.90 & 0301 \\
\hline 01.12 .31 & & & & & & & & 0301 \\
\hline 20.10 .11 & 29.14 & 20.19.56 & 29.40 & 20.28.32 & 29.61 & 20.29.12 & 29.68 & 0302 \\
\hline 20.32 .20 & 29.85 & 20.32 .56 & 29.90 & 20.35 .37 & & & & 0302 \\
\hline 11.34 .30 & 29.00 & 11.39 .26 & 29.14 & 11.40 .25 & 29.22 & 11.45 .08 & 29.40 & 0303 \\
\hline 11.45 .57 & 29.46 & 11.49 .28 & 29.61 & 11.50 .11 & 29.68 & & & 0303 \\
\hline 12.51.11 & 28.76 & .13.01.26 & 28.94 & 13.02 .33 & 29.04 & 13.05.28 & 29.17 & 0306 \\
\hline 13.06 .35 & 29.25 & 13.08 .48 & 29.40 & 13.09 .32 & 29.47 & 13.11 .59 & 29.64 & 0306 \\
\hline 13.12 .49 & 29.69 & 13.14 .52 & 29.86 & 13.15 .40 & 29.93 & & & 0306 \\
\hline 20.43 .00 & 29.04 & 20.49.50 & 29.17 & 20.51 .14. & 29.25 & 20.54.12 & 29.40 & 0307 \\
\hline 20.55 .12 & 29.47 & 20.58.14 & 29.64 & 21.00 .00 & 29.69 & 21.03.15 & 29.86 & 0307 \\
\hline 08.41.17 & 29.69 & 08.44.54 & 29.86 & 08.46 .11 & 29.93 & & & 0308 \\
\hline 20.59.24 & 29.04 & 21.03 .16 & 29.20 & 21.03 .47 & 29.25 & 21.06.23 & 29.41 & 0311 \\
\hline 21.07 .03 & 29.465 & 21.09 .03 & 29.65 & 21.09.41 & 29.72 & 21.12.17 & 29.87 & 0311 \\
\hline 21.12 .41 & 29.94 & & & & & & & 0311 \\
\hline 07.37 .00 & 29.04 & 07.39 .58 & 29.20 & 07.40 .46 & 29.25 & 07.43 .27 & \[
29.41
\] & 0312 \\
\hline 07.44.27 & 29.465 & 07.46 .41 & 29.65 & 07.47.55 & 29.72 & 07.50 .10 & 29.87 & 0312 \\
\hline 07.51 .07 & 29.94 & & & & & & & 0312 \\
\hline 12.24 .56 & 29.04 & 12.27 .23 & 29.20 & & & & & 0313 \\
\hline 20.41.39 & 29.04 & 21.07 .40 & 29.20 & 21.08.43 & 29.25 & 21.11.35 & 29.41 & 0317 \\
\hline 21.12 .12 & 29.465 & 21.14 .50 & 29.65 & 21.15.15 & 29.72 & 21.17 .30 & 29.87 & 0317 \\
\hline 21.18 .04 & 29.94 & & & & & & & 0317 \\
\hline 21.00 .47 & 29.04 & 21.03 .22 & 29.20 & 21.03 .53 & 29.25 & 21.06 .02 & 29.41 & 0319 \\
\hline 21.06.18 & 29.465 & & & & & & & 0319 \\
\hline
\end{tabular}

Table 6-6.--Pressure contact time (continued)
(Last column indicates BOMEX Observation Period and BLIP run No.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline P1A & 4 & ASCENT & & & & & & \\
\hline 12.38.35 & & 12.40 .06 & 29.90 & 12.40 .43 & 29.85 & 12.42.08 & 29.68 & 0401 \\
\hline 12.42 .49 & 29.61 & 12.44.15 & 29.46 & 12.45 .18 & 29.40 & 12.56 .26 & 29.22 & 0401 \\
\hline 12.57 .00 & 29.14 & 12.59.42 & 29.00 & 13.01.09 & 28.88 & 13.03 .07 & 28.74 & 0401 \\
\hline 15.55.25 & & 15.57.07 & 29.90 & 15.57 .37 & 29.85 & 15.59.16 & 29.68 & 0402 \\
\hline 15.59.45 & 29.61 & 16.00.57 & 29.46 & 16.01.39 & 29.40 & 16.02.59 & & 0402 \\
\hline 16.03.22 & & 16.05.52 & 29.00 & & & & & 0402 \\
\hline 21.36 .16 & & 21.37.36 & 29.90 & 21.38 .02 & 29.85 & 21.39 .29 & 29.68 & 0403 \\
\hline 21.39 .58 & 29.61 & 21.41 .23 & 29.46 & 21.41 .47 & 29.40 & 22.09.11 & 29.22 & 0403 \\
\hline 22.09.38 & 29.14 & 22.12.06 & 29.00 & 22.15.09 & 28.88 & 22.18.03 & 28.74 & 0403 \\
\hline 10.22.39 & & 10.24.32 & 29.90 & 10.27.22 & 29.68 & 10.28.16 & 29.61 & 0404 \\
\hline 10.30 .40 & 29.46 & 10.31.44 & 29.40 & 10.33.54 & 29.22 & 10.35.07 & 29.14 & 0404 \\
\hline 10.39 .07 & 29.00 & & & & & & & 0404 \\
\hline 17.34.33 & & 17.35.44 & 29.90 & 17.36.03 & 29.85 & 17.41 .51 & 29.68 & 0405 \\
\hline 21.23.41 & & 21.25.04 & 29.90 & 21.25.48 & 29.85 & 21.26.59 & 29.68 & 0406 \\
\hline \[
\begin{array}{r}
21.27 .22 \\
\text { PHAS }
\end{array}
\] & 29.61 & DESCENT & & & & & & 0406 \\
\hline 14.31 .21 & 29.00 & 14.31 .56 & 29.14 & 14.32 .26 & 29.22 & 14.41 .46 & 29.40 & 0401 \\
\hline 14.42 .19 & 29.46 & 14.46.07 & 29.61 & 14.47 .25 & 29.68 & 14.48 .46 & 29.85 & 0401 \\
\hline 14.49.15 & 29.90 & 14.50.20 & & & & & & 0401 \\
\hline 20.57.00 & 29.00 & 20.59.01 & 29.14 & 20.59.38 & 29.22 & 21.01 .37 & 29.40 & 0402 \\
\hline 21.02 .06 & 29.46 & 21.03 .55 & 29.61 & 21.04 .16 & 29.68 & 21.05 .57 & 29.85 & 0402 \\
\hline 21.06 .24 & 29.90 & 21.07.37 & & & & & & 0402 \\
\hline 09.47 .16 & 29.00 & 09.49.22 & 29.14 & 09.50 .16 & 29.22 & 09.52 .05 & 29.40 & 0403 \\
\hline 09.52 .51 & 29.46 & 09.55 .11 & 29.61 & 09.55.36 & 29.68 & 09.57.09 & & 0403 \\
\hline 10.54.11 & 29.00 & 10.56.14 & 29.14 & 10.56.59 & 29.22 & 10.58.24 & 29.40 & 0404 \\
\hline 10.59.05 & 29.46 & 11.01.04 & 29.61 & 11.01 .41 & 29.68 & 11.03.53 & 29.85 & 0404 \\
\hline 11.04 .46 & 29.90 & & & & & & & 0404 \\
\hline 21.01 .50 & 29.40 & 21.03 .46 & 29.46 & 21.05 .27 & 29.61 & 21.05 .57 & 29.68 & 0405 \\
\hline 21.07.25 & 29.85 & 21.07 .49 & 29.90 & 21.09.20 & & & & 0405 \\
\hline \multicolumn{9}{|c|}{\multirow[b]{2}{*}{PHASE 3 ASCENT PARESSURE TIMES}} \\
\hline & & & & & & & & \\
\hline 14.16.39 & 29.90 & 14.18.35 & 29.81 & 14.23 .00 & 29.72 & 14.23 .53 & 29.67 & 1301 \\
\hline 14.28 .29 & 29.44 & 14.29 .45 & 29.37 & 14.34 .40 & 29.24 & 14.36 .00 & 29.15 & 1301 \\
\hline 14.40 .40 & 28.98 & & & & & & & 1301 \\
\hline 01.16.40 & 29.81 & 01.20 .20 & 29.72 & 01.21 .12 & 29.67 & 01.25 .40 & 29.44 & 1303 \\
\hline
\end{tabular}

Table 6-6.--Pressure contact time (continued)
(Last column indicates BOMEX Observation Period and BLIP run No.)
\begin{tabular}{lllllllll}
01.26 .30 & 29.37 & 01.30 .50 & 29.24 & 01.32 .05 & 29.15 & 01.37 .50 & 28.98 & 1303 \\
16.30 .29 & 29.90 & 16.31 .25 & 29.81 & 16.34 .58 & 29.72 & 16.35 .43 & 29.67 & 1304 \\
16.39 .44 & 29.44 & 16.40 .13 & 29.37 & 16.44 .38 & 29.24 & 16.45 .40 & 29.15 & 1304 \\
16.48 .42 & 28.98 & 16.57 .39 & 28.89 & 17.06 .30 & 28.75 & 17.09 .01 & 28.65 & 1304 \\
17.16 .41 & 28.58 & 17.26 .43 & 28.47 & 17.33 .50 & 28.32 & & & 1304 \\
PHASE & 3 & DESCENT & & & & & & \\
19.45 .58 & 29.24 & 19.48 .27 & 29.37 & 19.48 .57 & 29.44 & 19.50 .03 & 29.67 & 1301 \\
19.50 .35 & 29.72 & 19.51 .23 & 29.81 & 19.51 .50 & 29.90 & & & 1301 \\
17.58 .56 & 28.32 & 18.01 .19 & 28.47 & 18.02 .04 & 28.58 & 18.03 .59 & 28.65 & 1304 \\
18.04 .50 & 28.75 & 18.09 .04 & 28.89 & 18.09 .58 & 28.98 & & & 1304
\end{tabular}

PHASE 3 ASCENT
\begin{tabular}{lllllllll}
01.39 .42 & & 01.40 .18 & & 01.41 .19 & 29.81 & 01.41 .48 & 29.73 & 2301 \\
01.444 .57 & 29.57 & 01.45 .27 & 29.53 & 01.46 .38 & 29.38 & 01.47 .38 & 29.30 & 2301 \\
01.49 .11 & 29.17 & 01.49 .41 & 29.10 & 01.51 .04 & 28.96 & 01.51 .48 & 28.86 & 2301 \\
01.56 .13 & 28.71 & 01.57 .01 & 28.62 & & & & 2301 \\
13.20 .40 & & 13.23 .18 & 29.81 & 13.24 .26 & 29.73 & 13.27 .14 & 29.57 & 2303 \\
13.27 .52 & 29.53 & 13.29 .31 & 29.38 & 13.30 .53 & 29.30 & 16.40 .30 & 28.96 & 2303 \\
00.10 .22 & & 00.11 .14 & 29.81 & 00.11 .25 & 29.73 & 00.12 .23 & 29.57 & 2304 \\
00.12 .43 & 29.53 & 00.13 .36 & 29.38 & 00.13 .58 & 29.30 & 00.15 .21 & 29.17 & 2304 \\
00.16 .07 & 29.10 & 00.17 .45 & 28.96 & 00.19 .07 & 28.86 & 00.20 .39 & 28.71 & 2304 \\
00.21 .11 & 28.62 & & & & & & & \\
07.31 .41 & & 07.32 .26 & 29.81 & 07.32 .46 & 29.73 & 07.33 .48 & 29.57 & 2304 \\
07.34 .09 & 29.53 & 07.35 .02 & 29.38 & 07.35 .23 & 29.30 & 07.36 .36 & 29.17 & 2305 \\
07.36 .58 & 29.10 & 07.38 .28 & 28.96 & 07.39 .27 & 28.86 & 07.41 .05 & 28.71 & 2305 \\
07.41 .59 & 28.62 & & & & & & & 2305 \\
16.12 .44 & 29.53 & 16.14 .03 & 29.81 & 16.14 .38 & 29.73 & 16.16 .04 & 29.57 & 2306 \\
16.16 .27 & 29.16 & 29.38 & 16.19 .47 & 29.30 & 16.22 .14 & 29.17 & 2306 \\
16.22 .47 & 29.10 & 16.24 .27 & 28.96 & 16.25 .48 & 28.86 & 16.29 .46 & 28.71 & 2306 \\
16.30 .37 & 28.62 & & & & & & & \\
00.41 .30 & & 00.42 .10 & 29.81 & 00.42 .28 & 29.73 & 00.43 .20 & 29.57 & 2306 \\
00.43 .47 & 29.53 & 00.44 .28 & 29.38 & 00.44 .51 & 29.30 & 00.45 .51 & 29.17 & 2307 \\
00.46 .23 & 29.10 & 00.47 .31 & 28.96 & 00.48 .24 & 28.86 & 00.50 .01 & 28.71 & 2307 \\
00.50 .28 & 24.62 & 00.52 .24 & 28.50 & 00.53 .59 & 28.44 & & & \\
07.41 .48 & & 07.42 .21 & & 07.43 .11 & 29.81 & 0.7 .43 .31 & 29.73 & 2307 \\
07.44 .27 & 29.57 & 07.44 .51 & 29.53 & 07.45 .31 & 29.38 & 07.45 .52 & 29.30 & 2308
\end{tabular}

Table 6－6．－－Pressure cortact time（continued）
（Wast colum indicates GOMBX Observation Period and BLIP run To．）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(4-4802\) & 20.17 & \(47=47.39\) & 20.30 & 97：68：33 & 23.95 & 9\％8\％\％．3\％ & 23.36 & 2300 \\
\hline 97.57 .36 & 30.75 & 17－52： 22 & 28.62 & & & & & 2300 \\
\hline \(\therefore 4 \% 604\) & & 34038．99 & 20．03 & 5428.040 & 26.73 & 24020：6 & 29.57 & 2309 \\
\hline ：\％\％ 45 & 20．53 & \(\because A, 230\) ？ & 20.30 &  & 29.30 & 14， 3 ？ 22 & 20.7 & 2300 \\
\hline \(\because\) U－20．37 & 20． 10 & \(\because 6,32,34\) & 20.06 & 乐，34，43 & 20.06 & ¢4w37．15 & 20.73 & 2309 \\
\hline ¢ 53.20 & 29．02 & & & & & & & 2309 \\
\hline i！0：-7.50 & & 06.10 .22 & &  & 28.83 & 10．32，96 & 20.73 & \(\because=10\) \\
\hline 50． 90.80 & 29.95 & 30．20．30 & 29.52 & 00．2？ 34 & 29.30 &  & 20.36 & 23.0 \\
\hline 49 ： 20.35 & 20.17 &  & 29050 &  & 28.96 & \％10．24， 56 & 28，36 & 330 \\
\hline  & 28： & \％）26m30 & 习3．62 & 90，20－20 & 20.50 & 10， 20.05 & 3906 & \(\because 300\) \\
\hline a；abuc & & \(\therefore 79303\) & & \％7 30， 0 ？ & \(30.3 \%\) & 67， 380 & 39.75 & 23i \\
\hline 478 & 89\％ & \(49.39,33\) & 20.53 & ध\％， 20.29 & 9923 & A7：\％ 0 & 20.10 & \(23!\) \\
\hline  & 29．67 & 9\％ 92.2 & －9．50 &  & 93， 6 &  & 28－35 & \(23 \leq\) \\
\hline \(\because \because 5.31\) & 28.73 & \(\because 3\)－ & －0．6\％ & \％－40－\(?\) & 38.50 & \％\(\%\) \％ 05 & 20 & －3 \\
\hline \(\cdots 30 \cdot 27\) & & \(\therefore \square^{2} 0 \times 3\) & 20．32 & \(\because 2 \mathrm{Ba}=10\) & \(90 \% 3\) & S，¢\％， & 99.5 & 232 \\
\hline \(\therefore 100.15\) & 20.50 &  & 39.30 & \(\therefore 3 \cdot 62.10\) & 29.30 & 4，05，32 & \(2901 \%\) & 2312 \\
\hline ¢ 0 － 60 & O6．\(\quad 1\) &  & \(\therefore 2\) & \(\because \because\) & 30.36 & \(\therefore \therefore 3.20\) & 2963 & 2312 \\
\hline 53.306 & 2 s & \(\therefore: 35.54\) & 30.50 & 5 S6： & 20，44 & 1\％ 29.36 & 29， 5 &  \\
\hline  & & \(\therefore 1-2303\) & 29.32 &  & ¢0\％ & 4\％20． 5 & 20， & 2313 \\
\hline 11．※7 10 & 20．3． & a \(\because: 0,0 \%\) & 2900 & 习 & 89.35 & 4 O & ？ 3 \％ & 2313 \\
\hline B \(\therefore \therefore 905\) & \(\because \%\) & \(\because \because \%\) \％ & & \(1,2, \ldots 600\) & 28.86 & \(i_{i}^{2}, 33040\) & 20.7 & 2353 \\
\hline  & & & & & & & & 2313 \\
\hline 97－30．53 & & \(\because 7.30 .39\) & 20.33 & \(07-998\) & 29.35 & 10060， 5 & 20.50 & 2346 \\
\hline  & 29.55 & \(\because \because 64\) & \(\because 9.30\) &  & 29.30 & 07－303 & 30．\(\%\) & 2314 \\
\hline \(3 \% \times 350\) & ¢0 & \(\therefore 7.643\) & & 9\％，4506 & 33036 & 为 7 ， \(7=64\) & 38.72 & 2334 \\
\hline 93.704 & 2为 &  & 20.50 & \(97 \% 03\) &  & \(4 \% 505\) & \(\because 8.3\) & 三3it \\
\hline \(19: 53032\) & \(23:\) & & & & & & & 23？ \\
\hline \(43.3 \begin{gathered}3 \%\end{gathered}\) & & \(\because \mathrm{yc} 3\) & \％0，0 &  & 20.50 & 12xancters & 29.64 & 2325 \\
\hline 3\％－3 36 & 908 & \(\because\) O，\(\because\) & 29.6 & \(\cdots \cdots\) & \(\because 20\) & \％ 00.00 & \(29,2 \%\) & 2315 \\
\hline C\％－30， 6 & 30， & \(\because \therefore 26\) & \(23,0 \%\) & 93080 & 20．7\％ & 12，\％－\％ & 28.3 & 235 \\
\hline COM， & 23.6 \％ & & & & & & & \(\because 34\) \\
\hline 3，\(\because 5.00\) & & \(\because \because \quad \therefore \quad\) \％ & 29.3 & a；mis 3 & 29．69 & 09,0008 & 20．64 & 2336 \\
\hline \(37 \cos\) & 20， 4 & 37，60037 & 29， & y\％aysy & 2300 &  & 29， & 2315 \\
\hline i7 05050 & \(29 . \therefore\) & \(\because \square \mathrm{Ba}\) & \(\therefore 3,4\) &  & \(20.7 \%\) & \(\because 7.630 .5\) & 280\％ & 23：6 \\
\hline \(10 \% 55,33\) & 28；\(\because\) & i） 70.36 .46 & 28.65 &  & 23034 & & & 23.6 \\
\hline 000．20．29 & & 20 ¢ \(9 \mathrm{C}=24\) & 29068 & 00012056 & 20.73 & 940．3030 & \(29.5 \%\) & ．23！ \\
\hline
\end{tabular}

Table 6-6.--Pressure contact time (continued)
(Last column indicates BOMEX Observation Period and BLIP run No.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 00.14 .42 & 29.53 & 00.15 .03 & 29.38 & 00.15 .34 & 29.30 & & & 2317 \\
\hline 08.01.53 & & 08.02 .40 & 29.81 & 08.03 .00 & 29.73 & 08.04 .09 & 29.57 & 2318 \\
\hline 08.04.24 & 29.53 & 08.06.59 & 29.38 & 08.07.34 & 29.30 & 08.09.44 & 29.17 & 2318 \\
\hline 08.10 .21 & 29.10 & 08.15 .33 & 28.96 & & & & & 2318 \\
\hline 19.46 .46 & & 19.47 .48 & 29.81 & 19.48 .17 & 29.73 & 19.49 .26 & 29.57 & 2320 \\
\hline 19.49.52 & 29.53 & 19.51.12 & 29.38 & 19.51 .47 & 29.30 & 20.05.03 & 29.17 & 2320 \\
\hline 00.19 .03 & & 00.19 .34 & & 00.20 .26 & 29.81 & 00.22 .23 & 29.73 & 2321 \\
\hline 00.23 .32 & 29.57 & 00.23 .57 & 29.53 & 00.25 .20 & 29.38 & 00.25 .48 & 29.30 & 2321 \\
\hline 00.27 .11 & 29.17 & 00.27 .37 & 29.10 & 00.30 .00 & 28.96 & 00.30 .55 & 28.86 & 2321 \\
\hline 07.54 .08 & & 07.54 .30 & & 07.55 .17 & 29.81 & 07.55 .35 & 29.73 & 2322 \\
\hline 07.56 .30 & 29.57 & 07.56 .57 & 29.53 & 07.58.35 & & 07.59 .13 & & 2322 \\
\hline 08.01.09 & 29.17 & 08.01 .28 & & 08.02.59 & 28.96 & 08.04.23 & & 2322 \\
\hline 13.16 .02 & & 13.16.57* & & 13.18 .28 & 29.81 & 13.19 .02 & 29.73 & 2323 \\
\hline 13.20 .35 & 29.57 & 13.21 .01 & 29.53 & 13.22 .29 & 29.38 & 13.22 .53 & 29.30 & 2323 \\
\hline 13.24 .34 & 29.17 & 13.24 .40 & 29.10 & 13.25 .44 & 28.96 & 13.27 .55 & 28.86 & 2323 \\
\hline 00.37 .52 & & 00.38 .13 & & 00.39 .05 & 29.81 & 00.39.24 & 29.73 & 2324 \\
\hline 00.40 .23 & 29.57 & 00.40 .44 & 29.53 & 00.41 .43 & 29.38 & 00.42 .27 & 29.30 & 2324 \\
\hline 00.55 .13 & 29.17 & 00.56 .11 & 29.10 & 00.58.54 & 28.96 & 01.00 .13 & 28.86 & 2324 \\
\hline 01.04 .19 & 28.71 & 01.05 .12 & 28.62 & & & & & 2324 \\
\hline 07.37 .52 & & 07.38.25 & & 07.39 .11 & 29.81 & 07.39 .33 & 29.73 & 2325 \\
\hline 07.51 .42 & 29.57 & 07.52 .16 & 29.53 & 07.54.06 & 29.38 & 07.54.32 & 29.30 & 2325 \\
\hline 07.56.18 & 29.17 & 07.57.14 & 29.10 & 07.58.12 & 28.96 & 07.59.37 & 28.86 & 2325 \\
\hline PHASE & 8 & SCENT & & & & & & \\
\hline 04.02 .37 & 28.96 & 04.09.05 & 29.10 & 04.10 .29 & 29.17 & 04.12 .44 & 29.30 & 2301 \\
\hline 04.13.26 & 29.38 & 04.15.18 & 29.53 & 04.15 .53 & 29.57 & 04.17 .43 & 29.73 & 2301 \\
\hline 04.18 .17 & 29.81 & 04.19.51 & & & & & & 2301 \\
\hline 12.04.05 & 28.96 & 12.10.09 & 29.10 & 12.11.18 & 29.17 & 12.14.26 & 29.30 & 2302 \\
\hline 12.15.21 & 29.38 & 12.16.51 & 29.53 & 12.17.19 & 29.57 & 12.18.51 & 29.73 & 2302 \\
\hline 17.19.19 & 29.81 & 12.20.31 & & & & & & 2302 \\
\hline 63.58.37 & 28.96 & 04.08.39 & 29.10 & 04.09.19 & 29.17 & 04.11 .07 & 29.30 & 2304 \\
\hline 04.11.34 & 29.38 & & & & & & & 2304 \\
\hline 11.42 .58 & 28.96 & 12.03.03 & 29.10 & 12.03 .40 & 29.17 & 12.05.39 & 29.30 & 2305 \\
\hline 12.06.17 & 29.38 & 12.08.34 & 29.53 & 12.09.15 & 29.57 & 12.10 .44 & 29.73 & 2305 \\
\hline 12.11.12 & 29.81 & 12.12.07 & & & & & & 2305 \\
\hline 19.26.32 & 28.96 & 19.44 .44 & 29.10 & 19.45.34 & 29.17 & 19.47.15 & 29.30 & 2306 \\
\hline 19.47.38 & 29.38 & 19.49.14 & 29.53 & 19.49.49 & 29.57 & 19.51 .10 & 29.73 & 2306 \\
\hline
\end{tabular}

Table 6-6.--Pressure contact time (continued)
(Last column indicates BOMEX Observation Period and BLIP run No.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 19.51.39 & 29.81 & 1.9.52.42 & & & & & & 2306 \\
\hline 03.53.29 & 28.96 & 03.54.55 & 29.10 & 03.55 .26 & 29.17 & 03.57 .01 & 29.30 & 2307 \\
\hline 03.57 .30 & 29.38 & 03.59 .11 & 29.53 & 03.59 .40 & 29.57 & 04.01 .00 & 29.73 & 2307 \\
\hline 04.01 .21 & 29.81 & 04.02 .30 & & & & & & 2307 \\
\hline 12.10 .04 & 28.96 & 12.11.54 & 29.10 & 12.12.24 & 29.17 & 12.13.48 & 29.30 & 2308 \\
\hline 12.14.18 & 29.38 & & & & & & & 2308 \\
\hline 20.04.45 & 28.86 & 20.05.54 & -28.96 & & & & & 2309 \\
\hline 04.07.13 & 28.96 & 04.10 .55 & 29.10 & 04.11 .40 & 29.17 & 04.13 .16 & 29.30 & 2310 \\
\hline 12.01.59 & 2R.96 & 12.03.51* & 29.10 & 12.04.28 & 29.17 & 12.06.06 & 29.30 & 2311 \\
\hline 04.18.27 & 29.81 & 04.19 .23 & & & & & & 2310 \\
\hline 04.13.53 & 29.38 & 04.15 .11 & 29.53 & 04.16.05 & 29.57 & 04.17 .48 & 29.73 & 2310 \\
\hline 04.05 .23 & 29.10 & 04.06 .11 & 29.17 & 04.08 .14 & 29.30 & 04.08 .47 & 29.38 & 2313 \\
\hline 12.10 .14 & 29.81 & 12.11.24 & & & & & & 2311 \\
\hline 12.06.41 & 29.38 & 12.08 .08 & 29.53 & 12.08.33 & 29.57 & 12.09.43 & 29.73 & 2311 \\
\hline 04.10.14 & 29.53 & 04.10.42 & 29.57 & 04.11 .57 & 29.73 & 04.12 .27 & 29.81 & 2313 \\
\hline 04.13.44 & & & & & & & & 2313 \\
\hline 12.19 .44 & & 12.21 .41 & & 12.22.20 & & 12.24.00 & 29.30 & 2314 \\
\hline 12.24.25 & 29.38 & 12.25 .56 & 29.53 & 12.26.19 & 29.57 & -12.27.29 & 29.73 & 2314 \\
\hline 12.27 .57 & 29.81 & 12.29 .08 & & & & & & 2314 \\
\hline 04.18,03 & 29.05 & 04.20 .25 & 29.22 & 04.21 .21 & 29.26 & 04.22 .47 & 29.42 & 2315 \\
\hline 04.23 .35 & 29.48 & 04.24.33 & 29.64 & 04.25 .37 & 29.69 & 04.26 .37 & 29.82 & 2315 \\
\hline 04.27 .10 & & & & & & & & 2315 \\
\hline 04.20 .22 & 29.53 & 04.21 .05 & 29.57 & 04.23 .03 & 29.73 & 04.23 .45 & 29.81 & 2317 \\
\hline 04.25 .03 & & & & & & & & 2317 \\
\hline 12.13.25 & 29.53 & 12.14 .05 & 29.57 & 12.16.12 & 29.73 & 12.16.38 & 29.81 & 2318 \\
\hline 12.17.57 & & 12.18 .32 & & & & & & 2318 \\
\hline 22.49 .16 & 29.17 & 22.51 .12 & 29.30 & 22.51 .37 & 29.38 & 22.53 .24 & 29.53 & 2320 \\
\hline 22.53 .57 & 29.57 & 22.55.19 & 29.73 & 22.55 .50 & 29.81 & 22.57 .08 & & 2320 \\
\hline 04.24 .25 & 29.17 & 04.28 .57 & 29.30 & 04.29 .37 & 29.38 & 04.31.24 & 29.53 & 2321 \\
\hline 04.32 .02 & 29.57 & 04.32.58 & 29.73 & 04.33 .27 & 29.81 & 04.34 .29 & & 2321 \\
\hline 04.35 .09 & & & & & & & & 2321 \\
\hline 12.23 .12 & 29.17 & 12.24.36 & 29.30 & 12.25.09 & 29.38 & 12.26.53 & 29.53 & 2322 \\
\hline 12.27 .20 & 29.57 & 12.28.26 & 29.73 & 12.28 .56 & 29.81 & 12.30 .13 & & 2322 \\
\hline 12.30 .53 & & & & & & & & 2322 \\
\hline 19.36.26 & 28.96 & 19.45.41 & 29.10 & 19.46 .34 & 29.17 & 20.02 .16 & 29.30 & 2323 \\
\hline 20.02.57 & 29.38 & 20.04.10 & 29.53 & 20.04.36 & 29.57 & 20.05.41 & 29.73 & 2323 \\
\hline
\end{tabular}

Table 6-6.--Pressure contact time (continued)
(Last column indicates BOMEX Observation Period and BLIP run No.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 20.06.08 & 29.81 & 20.07 .15 & & & & & & 2323 \\
\hline 04.29 .23 & 29.30 & 04.30.04 & 29.38 & 04.31 .27 & 29.53 & 04.31.49 & 29.57 & 2324 \\
\hline 04.33 .07 & 29.73 & 04.33 .32 & 29.81 & 04.34 .35 & & 04.37 .05 & & 2324 \\
\hline 12.18.48 & 29.30 & 12.19.20 & 29.38 & 12.20.48 & 29.53 & 12.21 .14 & 29.57 & 2325 \\
\hline 12.22.32 & 29.73 & 12.23.05 & 29.81 & 12.24.1.7 & & 12.2.5.06 & & 2325 \\
\hline \multicolumn{9}{|c|}{ASCENT} \\
\hline 18.38.18 & 29.52 & 18.38 .53 & 29.38 & 18.40.07 & 29.28 & 18.40.21 & 29.16 & 2401 \\
\hline 18.41 .46 & 29.03 & 18.42 .50 & 28.88 & 18.44.37 & 28.72 & 18.44 .57 & 28.66 & 2401 \\
\hline 18.47.00 & 28.47 & 18.47 .45 & 28.29 & 18.49.53 & 28.15 & 18.50 .27 & 28.07 & 2401 \\
\hline 18.52.44 & 27.94 & 18.55.12 & 27.80 & & & & & 2401 \\
\hline 07.53.02 & 29.52 & 07.53 .40 & 29.38 & 07.54 .20 & 29.28 & 07.54.54 & 29.16 & 2406 \\
\hline 07.55 .58 & 29.03 & 07.56 .51 & 28.88 & 07.58.18 & & 07.58.48 & 28.66 & 2406 \\
\hline 08.00 .23 & & 08.00 .44 & & 08.03 .20 & 28.15 & 08.05.26 & 28.07 & 2406 \\
\hline 13.07 .05 & 29.82 & 13.07 .36 & 29.76 & 13.08 .53 & 29.52 & 13.09 .14 & 29.38 & 2407 \\
\hline 13.10 .36 & 29.28 & 13.10 .58 & 29.16 & 13.12.32 & 29.03 & 13.13 .39 & 28.88 & 2407 \\
\hline 13.15 .00 & 28.72 & 13.15 .20 & 28.66 & 13.18 .12 & 28.47 & 13.20 .58 & 28.29 & 2407 \\
\hline 13.22 .53 & 28.15 & 13.23 .01 & 28.07 & & & & & 2407 \\
\hline 00.08 .46 & 29.82 & 00.10 .49 & 29.76 & 00.12 .00 & 29.52 & 00.12.31 & 29.38 & 2408 \\
\hline 00.13 .50 & 29.28 & 00.14 .22 & 29.16 & 00.16 .20 & & 00.17 .25 & & 2408 \\
\hline 00.19 .53 & 28.72 & 00.20 .49 & 28.66 & 00.23 .45 & 28.47 & 00.26 .08 & 28.29 & 2408 \\
\hline 14.59.59 & & 15.00 .47 & & 15.03.59 & 29.52 & 15.04 .20 & 29.38 & 2409 \\
\hline 15.05 .51 & 29.28 & 15.06 .21 & 29.16 & 15.07 .42 & 29.03 & 15.08.26 & & 2409 \\
\hline 15.09.51 & 28.72 & 15.10 .25 & 28.66 & 15.14.42 & 28.47 & 15.15 .47 & 28.29 & 2409 \\
\hline 01.28 .34 & & 01.37 .24 & 29.76 & 01.38 .11 & 29.52 & 01.38 .35 & 29.38 & 2410 \\
\hline 01.39 .37 & 29.28 & 01.40 .00 & 29.16 & 01.41 .08 & & 01.41 .51 & & 2410 \\
\hline 01.42 .50 & 28.72 & 01.43 .32 & 28.66 & 01.45 .15 & & 01.46 .21 & 28.29 & 2410 \\
\hline 01.47 .44 & 28.15 & 01.48 .22 & 28.07 & 01.53 .37 & 27.94 & 01.54.54 & 27.80 & 2410 \\
\hline 01.03 .27 & 29.82 & 01.03 .48 & 29.76 & 01.07 .00 & & 01.08 .14 & 29.38 & 2412 \\
\hline 01.09 .26 & 29.28 & 01.09 .50 & 29.16 & 01.10 .51 & & 01.11 .12 & & 2412 \\
\hline 01.13 .29 & 28.72 & 01.14 .16 & 28.66 & 01.16.22 & 28.47 & 01.16 .54 & 28.29 & 2412 \\
\hline 01.19.04 & 28.15 & 01.19 .20 & 28.07 & & & & & 2412 \\
\hline 00.27.58 & 29.85 & 00.28 .17 & 29.78 & 00.32 .41 & 29.62 & 00.33 .07 & 29.57 & 2419 \\
\hline 00.33 .55 & 29.42 & 00.34 .21 & 29.35 & 00.35 .13 & 29.19 & 00.35 .38 & 29.14 & 2419 \\
\hline 00.36 .43 & 29.01 & 00.37 .16 & 28.90 & 00.38 .20 & 28.72 & 00.38 .52 & 28.66 & 2419 \\
\hline 00.40 .17 & 28.54 & & & & & & & 2419 \\
\hline
\end{tabular}

Table 6-6.--Pressure contact time (continued)
(Last column indicates BOMEX Observation Period and BLIP run No.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 07.29 .46 & 29.85 & 07.30.04 & 29.78 & 07.31 .13 & 29.62 & 07.31 .30 & 29.57 & 2420 \\
\hline 07.32 .19 & 29.42 & 07.32 .39 & 29.35 & 07.33 .29 & 29.19 & 07.33 .49 & 29.14 & 2420 \\
\hline 07.34 .44 & 29.01 & 07.35.26 & 28.90 & 07.36 .13 & 28.72 & 07.36 .36 & 28.66 & 2420 \\
\hline 07.38.21 & 28.54 & & & & & & & 2420 \\
\hline PHAS & 4 D & ENT & & & & & & \\
\hline 19.08 .28 & 27.80 & 19.09.29 & 27.94 & 19.12.56 & 28.07 & 19.13 .22 & 28.15 & 2401 \\
\hline 19.16 .04 & 28.29 & 19.16.12 & 28.47 & 19.21.21 & 28.66 & 19.23 .33 & 28.72 & 2401 \\
\hline 19.26.16 & 28.88 & & & & & & & 2401 \\
\hline 20.28 .53 & 29.03 & 20.41.47 & 29.16 & 20.41.58 & 29.28 & 20.43 .47 & 29.38 & 2401 \\
\hline 20.44.25 & 29.52 & 20.45.39 & 29.76 & & & & & 2401 \\
\hline 14.58 .16 & 28.15 & 15.00.33 & 28.29 & 15.01.11 & 28.47 & 15.02.58 & 28.66 & 2404 \\
\hline 15.03.41 & 28.72 & 15.05.58 & 28.88 & & & & & 2404 \\
\hline 19.50 .10 & 29.16 & 19.50 .34 & 29.28 & 19.52.11 & 29.38 & 19.52.35 & 29.52 & 2404 \\
\hline 19.54.00 & 29.76 & 19.54 .24 & 29.82 & & & & & 2404 \\
\hline 08.15 .52 & 28.07 & 08.16.25 & 28.15 & 08.17 .48 & 28.29 & 08.18 .34 & 28.47 & 2406 \\
\hline 08.20 .09 & 28.66 & 08.20 .46 & 28.72 & 08.22 .10 & 28.88 & & & 2406 \\
\hline 12.02 .05 & 29.03 & 12.03.34 & 29.16 & 12.03.59 & 29.28 & 12.05.31 & 29.38 & 2406 \\
\hline 12.06.07 & 29.52 & 12.07 .33 & 29.76 & 12.08 .09 & 29.82 & & & 2406 \\
\hline 14.53.44 & 28.29 & 14.55 .26 & 28.47 & 14.58 .26 & 28.66 & 14.59 .14 & 28.72 & 2407 \\
\hline 15.02.37 & 28.88 & & & & & & & 2407 \\
\hline 19.46.31 & 29.03 & 19.48 .28 & 29.16 & 19.48.54 & 29.28 & 19.50.31 & 29.38 & 2407 \\
\hline 19.51.02 & 29.52 & 19.52 .19 & 29.76 & 19.52 .46 & 29.82 & & & 2407 \\
\hline 19.35.53 & 29.03 & 19.39 .43 & 29.16 & 19.40.21 & 29.28 & 19.41 .49 & 29.38 & 2409 \\
\hline 19.42.21 & 29.52 & 19.43.36 & 29.76 & 19.44.54 & 29.82 & 19.57.54 & & - 2409 \\
\hline 19.58 .08 & & & & & & & & 2409 \\
\hline 02.00.53 & 27.80 & 02.03 .43 & 27.94 & 02.05 .48 & 28.07 & 02.06 .39 & 28.15 & 2410 \\
\hline 02.08.24 & 28.29 & 02.08.44 & 28.47 & 02.10 .26 & 28.66 & 02.10 .45 & 28.72 & 2410 \\
\hline 02.12 .16 & & & & & & & & 2410 \\
\hline 04.28 .27 & & 04.30.25 & 29.16 & 04.31 .01 & 29.28 & 04.32 .35 & 29.38 & 2410 \\
\hline 04.33 .04 & 29.52 & 04.34 .30 & 29.76 & 04.34 .56 & 29.82 & & & 2410 \\
\hline 01.28 .07 & & 01.29 .56 & 28.15 & 01.33 .10 & & 01.33 .44 & 28.47 & 2412 \\
\hline 01.35.49 & 28.66 & 01.36.34 & 28.72 & & & & & 2412 \\
\hline 04.00.16 & 29.03 & & & & & & & - 2412 \\
\hline 22.32.18 & 29.03 & 22.34.40 & 29.16 & 22.34.54 & 29.28 & 22.36.59 & 29.38 & 2414 \\
\hline 22.37.25 & 29.52 & 22.38.55 & 29.76 & 22.39.31 & 29.82 & & & 2414 \\
\hline
\end{tabular}

\section*{7．SALINTT－TEQPRDATRE－DERTH（BTT）DATS SET}

\section*{}

Hytech STD Models 9006 and 0040 built by the pissertorermen Corporen








 ment aboard each of the five fixeci bhipe is gitrat in tobia \(7 \cdots i\) ．

Table 7－1．－－STD sensor characterisitic
\begin{tabular}{|c|c|c|c|c|}
\hline －Ship & STD nodel NO． & Sonsor ingut &  &  \\
\hline \multirow[t]{4}{*}{Oceanographer} & \multirow[t]{4}{*}{9006} & tencerature & -2 －0 4350 & 24080 \\
\hline & & salinity & 28 to \(38^{\circ} / 00\) & 0 60 b0， 60 \\
\hline & & depth 1 & 0 00 300 a & \(\because: 0 ~ 200 ~ u ~\) \\
\hline & & denth \(\because\) & 0 O 2 y ¢00 H & \(030 \times 00\) \\
\hline \multirow[t]{4}{*}{Discoverer} & \multirow[t]{4}{*}{0006} & temperature & \(-2=435^{\circ} 0\) & \(-560+55^{2} 0\) \\
\hline & & salictey &  & 28 \(20.33^{\prime \prime} 0\) \\
\hline & & Segte 7 & 0 is 200 & \(\because \therefore \square\) \\
\hline & & apotil & \％\(\because \because\) &  \\
\hline \multirow[t]{3}{*}{Rockaway} & \multirow[t]{3}{*}{9006} & tamerecrie & －2 \(20 \because 0\) & \\
\hline & & Betintay & 30 to \(60 / 0\) & \\
\hline & & Geptb？ & C 20 is 50 a & \\
\hline \multirow[t]{3}{*}{Rainier} & \multirow[t]{3}{*}{9040} & temperwtute & \(-250-39^{\circ} 0\) &  \\
\hline & & saliatty & \(30 \mathrm{SO} 40{ }^{6} 100\) & \(20 \pm 04000\) \\
\hline & & depat 2 & 0 －\(\because\) ¢00 & 0 0 0.000 m \\
\hline \multirow[t]{3}{*}{Mt．Mitchell} & \multirow[t]{3}{*}{9040} & tampmatum & － 20.900 & \(\cdots \because 80\) \\
\hline & & anjouty & 6） 20 dion & Ote soto \\
\hline & & Meati 2 &  & \(\therefore 6,600 \mathrm{~m}\) \\
\hline
\end{tabular}

\subsection*{7.2 Observation Procedures}

Uniform procedures for STD data collection were established to ensure consistent results and reliable intercomparison of data obtained from the five ships. Performance checks of every STD sounding were made by comparing salinity and temperature STD surface measurements with simultaneous bucket samples. Two Nansen bottles were attached to the STD lowering cable, allowing for comparisons that were used in applying calibration corrections during later data processing.

Routine STD casts from the surface to 1,000 m were scheduled for the Discoverér, Oceanographer, and Rockaway at 0100, 0300, 0600, 0900, 1200, 1500, 1800, and 2100 GMT; during Period IV, however, the first sounding from the Discoverer was made at 0000 rather than 0100. Soundings from the Mt. Mitchell and Rainier were scheduled at 0100, 0600,1200 , and 1800 GMT. All schedules were adhered to within \(\pm 30 \mathrm{~min}\). The sensor package was soaked at the surface for 5 min , lowered at a rate of approximately \(20 \mathrm{~m} / \mathrm{min}\) to 100 m , and then allowed to descend at 40 to \(50 \mathrm{~m} / \mathrm{min}\). The depths were determined from the STD strip-chart recorder on deck. Data were recorded during descent only.

During and following periods of significant precipitation, rainy day casts were taken to determine the influence of rain in the upper 15 m of the ocean. The procedure began whenever precipitation greater than 2 n mi across, as confimed by radar, was approaching the ship. The STD package was allowed to soak for 5 min at the surface ( \(11 / 2\) to 3 m ), then lowered at a rate not exceeding \(10 \mathrm{~m} / \mathrm{min}\) to 15 m , allowed to soak for 5 min at 15 m , and raised to the surface to soak for another 5 min . This procedure was repeated as long as the rain persisted and was discontinued not sooner than 3 hr after the rain had stopped. Rainy day soundings were interrupted for scheduled 1,000-m casts, and were resumed after the latter had been completed. Salinity, temperature, and depth were recorded continuously during the rainy day cast.

On board the Oceanographer, a special program was conducted by the Woods Hole Oceanographic Institution to determine velocity profiles in the ocean mixed layer. In support of this special study, a sequence of surface region STD casts were taken during BOMEX Period II, from May 25 to 28, May 30 to June 2 , and on June 7 and 8 , which improved the time resolution of surface region data available for these dates. The STD sensor was allowed to soak at the surface for 5 min , then lowered at a rate not exceeding \(20 \mathrm{~m} / \mathrm{min}\) to a depth of approximately 60 m . Salinity, temperature, and depth were recorded during both descent and ascent.

As a check on the STD system calibration in the field, two-bottle Nansen casts were taken dally at 2100 GMT on the Rockaway and at 0100 and 1200 GMT on the other four ships, except for the Discoverer during Period IV, when the cases were scheduled for 0000 and 1200 GMT. The Nansen bottles were attached to the STD cable 10 m and 15 m above the sensor package. At \(1,000 \mathrm{~m}\), the upper bottle was tripped after a l2-min soak. During retrieval, the lower bottle was allowed to soak at the surface for 5 min, then tripped. The bottle thermometers were read to within \(\pm 0.01^{\circ} \mathrm{C}\), and salinities were determined within
\(\pm 0.003^{\circ} / 00\) on successive readings of a calibrated salinometer. Values were manually recorded on an STD Observation Form. STD temperatures and salinities of the corresponding depths were recorded on the same form to within \(\pm 0.01^{\circ} \mathrm{C}\) and \(\pm 0.01 \%\), respectively. The Nansen values were compared with the \(1,00 \overline{0}-m\) and surface STD values of the same cast. Temperature and salinity calibration corrections were computed from the differences between the Nansen and STD measurements.

\subsection*{7.3 Data Processing}

\subsection*{7.3.1 Digital Reduction and Editing}

After the field operations, the SCARD analog tapes were digitized at the NASA Mississippi Test Facility (MTF), Bay St. Louis, Miss., which has a data acquisition system designed for acquiring large quantities of data during static test firing of various rocket stages. This 200 -channel system is connected to a Beckman 410 computer and includes a number of counters that can develop a period average measurement of a signal, a fact of particular importance in STD digitizing, since it offers the possibility of measuring more precisely the frequency of the signal on the tape and of making the measurement reflect the average value of the frequency during the measuring interval.

The clock frequency used with the counters in initial experiments at MTF was 100 kHz ( \(10-\mu \mathrm{s}\) period), giving a precision of interval measurement of 1 part in 4,000, a precision insufficient for adequate rendition of STD data. Some improvement was effected by raising the clock frequency to 250 kHz , the maximum value supported by the acquisition system. With 120 -ms counting intervals, this results in a precision of 1 part in 30,000 . The digitized signals also contained much more scatter than could be accounted for by quantizing alone, and it soon became apparent that a variation in measured frequency of about 1 part in 3,000 was being introduced by tape flutter. A partial solution to this problem consisted of measuring the frequency of the reference signal from the tape, as well as the salinity, temperature, and pressure signals. Since the ideal frequency ( 3125.0 Hz ) of the control track signal was known, it was possible to develop a corrected measure for any signal by use of
\[
F_{\text {corrected }}=F_{\text {measured }} \frac{3125.0}{F_{\text {control track }}},
\]
where \(F\) is the frequency for salinity, temperature, or pressure, in hertz.
The magnetic tapes produced at MTF were further reduced and edited at NOAA's Center for Experiment Design and Data Analysis by a two-step process, with the basic aim of obtaining continuous time series of data for each sounding that could be used in subsequent analyses. Every effort was made to avoid changing the values of data points, and editing was therefore restricted to





Conversion trou frequency to ocesnographic quantities was effected during the first phase of the wo-step digital reduction process by use of the transfer equation
\[
X=(F-Z) \quad X Y+C
\]
 the Ereguency (Hz) iron the dsic tape; 2 is the bias, or zero frequency ( Hz ); Mis the slope (units or \(x\) per He) in che linear transform; and \(C\) is the
 C for tompeacure, zabity, aui pressure for each ship and time period, Yalias of \(C\) an given in bota the manorected fomm as supplied by the manufecturer and in corrcctad foarn. lhe calibiation corrections and their application are discuseed in iurther detail delow.

Temperture anc prosume were smoothed by means of a double ruming mean low-pass filter chat has characteristics by which the response of both che pressure and the teaperarure sensor, including the effects of ship motion couid be preserved, but quantizing noise oliminated. fhe time control track originaliy recorded on SCARD was ueed to minimize the influence of variations ia tape drive spoed.

Seconi, in ordei to oindia a alem mine series of salinity, pressure, and tine, at a censity oi \(\}\) sps, cotrections vare applied both to the header information mat the data. The goograpioc position of ach cast was extracted
 neader for that cast. horever, before and ariter each bOMEX Observation Period, STD sounding vere ofren made while the ships were en route to and from their stetions. GEographic positions of these casts were not entered on the Ship operabors pom, and the positions were remavigated based on ships' 10go. Thes ranarigated positions are mown in table 7-5. In addition, any
 in anaywing a paricubw womaina weuj suma to the neader infomation.
 reveaied by the primood produes during ine first phase of the reduction
 nated ow, tore faquenciy, molaced by machine-interpolated values. These procedurab vere bed only whan e small numer of points were involved; if more extensive correarions were necessary, explanatory comments were inserted into the neadec informacior,

The proximity of the STD unit to the air-sea interface during the soaking period can be determined by inspecting the salinity and temperature data for values lying within certain ranges and by examining the pressure data for oscillations corresponding to the roll and pitch of the ship. In some 10 percent of the soundings, pressure values were either excessively high or low. All pressure data for these particular soundings were shifted to make the pressure during the soaking period read between 1 and 2 decibars.

\subsection*{7.3.2 Calibration Corrections}

As noted earlier, surface and \(1,000-m\) STD and two-bottle Nansen casts were taken for calibration purposes. The mean differences for each sensor were computed based on comparisons of these casts. The mean differences and the standard deviations of differences for both the surface, \(1,000-m\), and combined comparisons for each BOMEX Observation Period are shown in tables 7-6, 7-7, 7-8, and 7-9. The calibration corrections for salinity and temperature shown in tables 7-2 and 7-3 constitute the mean differences between the Nansen and STD surface and \(1,000-m\) measurements. The calibration corrections for pressure in table \(7-4\) were not obtained from Nansen-STD comparisons, but, as described earlier, by shifting unreasonable values to make pressure during the soaking period read between 1 and 2 decibars. Note that the uncorrected \(C\) was used in preparing the time-series data. It is recommended that users of these data apply the appropriate \(C\) corrections as shown in tables 7-2, 7-3, and 7-4. The corrections were, however, incorporated into the depth-sorted data set, discussed in the next section.

\subsection*{7.3.3 Depth Profiling and Editing}

Following the production of the time-series data, each STD sounding was sorted by depth. As noted earlier, the calibration corrections given in tables \(7-2,7-3\), and \(7-4\) were not applied to the time-series data. In preparing the depth profiles, however, these corrections were incorporated. Also, because of the different time constants of the temperature and salinity sensors, salinity spiking occurs in regions of large temperature change. In depth-profiling, compensation was effected by extracting from the salinity a value of conductivity based on the recorded temperature, obtaining a lagcorrected temperature, and calculating a new salinity.

The conductivity \(G\) was computed from salinity \(S\) without regard to pressure effects by means of the equation (Mosetti, F., "A New Formula for the Connection of Sea Water Conductivity With Salinity and Temperature," Bollettino di Geofisica Teorica ed Applicata, Vol. VIII, No. 31, 1966, pp. 213-217)
\[
G=\left(\alpha+\beta T^{k}\right) S^{h}
\]
and the corrected temperature \(\theta\) was obtained by assuming a simple lag constant for the temperature and solving
\[
\frac{d \theta}{d t}=\frac{1}{\tau}(T-\theta),
\]
where \(T\) is the recorded temperature, \(\tau\) is a time constant of 250 ms , considered a reasonable value (N.L. Brown 1970, private communication), and \(\alpha, \beta\), \(h\), and \(k\) are suitably chosen constants. The corrected salinity \(S_{c}\) is then
where \(S\) is the original, uncorrected salinity.
This technique effectively reduces the salinity spiking that occurs as the sensor moves through layers of strong temperature gradients, but leaves data in low gradient regions virtually untouched.

After compensation for lag, the time-series data were sorted by depth into 1,000 -point arrays for each sounding. This was done by determining for each integer decibar level of pressure a salinity and temperature by averaging together all salinity and temperature values between \(1 / 2\) decibar above and \(1 / 2\) decibar below the integer level. Only data of monotonically increasing depth were used. Since the data were originally obtained with the sensors moving at about \(40 \mathrm{~m} / \mathrm{min}\) and were later digitized at 8 sps , the data value at each integer level decibar is the average of approximately 12 data points on the time-series magnetic tapes.

In calculating sigma-t, the saifity-chlorinity relationship given in International Oceanographic Tables (National Institute of Oceanography of Great Britain and UTESCO, 1966, p. 8 ff.) and the temperature-density relationship as analyzed by the U.S. Navy Hydrographic Office (LaFond, E.C., Processing Oceanographic Data, H.O. Pub. No. 614, U.S. Navy Hydrographic Office, Washington, D.C., 1951, p. 14) were used.

Occasional questionable or bad single values, or group of values, were encountered in about 5 percent of all the STD soundings. These were overlooked in preparing the time-series data, but detected during depth sorting due to improved display techniques. A spurious value in excess of \(\pm 0.2^{\circ} \mathrm{C}\) and \(\pm 0.2 \%\) from the local mean was manually replaced by a value interpolated between adjacent values. Regions of bad data were manually replaced by zeros. In both cases, this editing procedure is referenced in the cast header.

Table 7-2.--Temperature sensor calibration constants
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Ship & \begin{tabular}{l}
STD \\
Model No.
\end{tabular} & BOMEX Observation Period & \[
\left(\frac{\mathrm{Z}}{\mathrm{H} z}\right)
\] & \(\left({ }^{\circ} \mathrm{C} / \mathrm{Hz}\right)\) & uncorrected ( \({ }^{\circ} \mathrm{C}\) ) & Calibration correction ( \({ }^{\circ} \mathrm{C}\) ) & \[
\begin{gathered}
C \\
\text { corrected } \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] \\
\hline Discoverer & 9006 & I & 2,127 & 0.01790 & -2.00 & -0.03 & -1.97 \\
\hline " & " & II & " & " & " & 0.03 & -1.97 \\
\hline " & " & III & " & " & " & 0.07 & -1.93 \\
\hline " & " & IV & " & " & " & 0.03 & -1.97 \\
\hline Mt. Mitchell & 9040 & I & 2,127 & 0.01790 & -2.00 & -0.51 & -2.51 \\
\hline & " & II & " & " & " & -0.56 & -2.56 \\
\hline 11 & " & III & " & " & " & -0.50 & -2.50 \\
\hline " & " & IV & " & " & " & -0.56 & -2.56 \\
\hline Oceanographer & 9006 & I & 2,127 & 0.01795 & -2.00 & 0.01 & -1.99 \\
\hline 1 & " & II & " & " & " & 0.0 & -2.00 \\
\hline " & " & III & " & " & " & -0.01 & -1.99 \\
\hline " & " & IV & " & " & " & -0.01 (-0.02)* & -2.01 (-2.02)* \\
\hline Rainier & 9040 & I & 2,127 & 0.01790 & -2.00 & 0* & -2.00 \\
\hline " & " & II & " & " & " & 0.02 & -1.98 \\
\hline " & " & III & " & " & " & 0.02 & -1.98 \\
\hline " & " & IV & " & " & " & 0.12 & -1.88 \\
\hline Rockaway & 9006 & I & 2,127 & 0.01790 & -2.10 & -0.01 & -2.11 \\
\hline 11 & " & II & " & " & -2.00 & -0.04 & -2.04 \\
\hline " & " & III & " & " & " & -0.07 (-0.03)* & -2.07 (-2.03)* \\
\hline " & " & IV & " & " & 11 & 0 † & -2.00 \\
\hline
\end{tabular}

\footnotetext{
* Value in parenthesis was recalculated after final processing of the STD data. This value should be applied to the depth-sorted data. Note that no corrections were applied to the time-series data.
\(\dagger\) Correction omitted due to insufficient shipboard documentation.
}

Table 7-3.--Salinity sensor calibration constants
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Ship &  & BOMEX Observation Period & \[
\begin{gathered}
Z \\
(\mathrm{~Hz})
\end{gathered}
\] & \[
(\%)
\] & C uncorrected ( \(\%\) ) & Calibration correction ( \(/ 0\) ) & \[
\begin{gathered}
\text { C } \\
\text { corrected } \\
(\% / 0)
\end{gathered}
\] \\
\hline Discoverer & 9006 & I & 4,995 & 0.003430 & 28.00 & 0.08 & 28.08 \\
\hline 1 & " & II & 11 & " & " & 0.01 & 28.01 \\
\hline " & " & III & " & " & " & 0.01 & 28.01 \\
\hline " & " & IV & " & 11 & i & 0.05 & 28.05 \\
\hline \multirow[t]{4}{*}{Mt. Mitchell \({ }_{\text {" }}^{\text {" }}\)} & \multirow[t]{2}{*}{\[
\begin{gathered}
9040 \\
11
\end{gathered}
\]} & I & \multirow[t]{2}{*}{\[
\begin{gathered}
4,995 \\
11
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
0.003430 \\
11
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
30.00
\]} & -0.03 & 29.97 \\
\hline & & II & & & & -0.04 & 29.96 \\
\hline & " & III & " & " & 11 & -0.01 & 29.99 \\
\hline & " & IV & " & " & " & -0.01 & 30.01 \\
\hline \multirow[t]{5}{*}{Oceanographer} & \multirow[t]{5}{*}{9006} & I & \multirow[t]{3}{*}{} & & & & \\
\hline & & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Until May } 8 \\
& 1200 \text { GMT } \\
& \text { After May } 8 \\
& 1200 \text { GMT }
\end{aligned}
\]} & & & & & \\
\hline & & & & 0.003445 & 28.00 & 0.35 & 28.35 \\
\hline & & & & & & & \\
\hline & & & " & " & " & 0.52 & 28.52 \\
\hline " & " & II & " & \multirow[t]{3}{*}{\[
\begin{gathered}
0.003430 \\
\text { " }
\end{gathered}
\]} & " & & 28.45 \\
\hline \multirow[t]{2}{*}{"} & " & III & " & & \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{0.02 (0.03)*} & \multirow[t]{2}{*}{28.02 (28.03)*} \\
\hline & " & IV & & & & & \\
\hline & & Until July 18 & & & & & \\
\hline & & 1200 GMT & " & " & " & 0.05 & 28.05 \\
\hline & & \[
\text { After July } 18
\]
\[
1200 \text { GMT }
\] & " & " & " & 0.74 & 28.74 \\
\hline \multirow[t]{2}{*}{\(\frac{\text { Rainier }}{11}\)} & \multirow[t]{2}{*}{\[
9040
\]} & \multirow[t]{2}{*}{II} & \multirow[t]{2}{*}{\[
4,995
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
0.003430 \\
11
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
30.00 \\
11
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 0 \dagger \\
& 0.02
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 30.00 \\
& 30.02
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline " & " & III & " & " & " & 0.02 (0.07)* & \(30.02(30.07) *\) \\
\hline " & " & IV & " & " & " & 0.03 & 30.03 \\
\hline
\end{tabular}

Jable 7-3.---Salinity sensor calibration constants (continued)


Table 7-4.--Pressure sensor calibration constants
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Ship & \begin{tabular}{l}
STD \\
Model \\
No.
\end{tabular} & BOMEX Observation Period & \[
\stackrel{z}{(\mathrm{~Hz})}
\] & \[
\begin{gathered}
\mathrm{M} \\
\text { (decibars } / \mathrm{Hz} \text { ) }
\end{gathered}
\] & ```
    C
uncorrected
    (decibars)
``` & Calibration correction (dectbars) & ```
    C
corrected
(decibars)
``` \\
\hline Discoverer & 9006 & I & 9,712 & 2.553 & 0 & 0 & 0 \\
\hline 11 & " & II & 9,704 & 1.268 & " & " & 1 \\
\hline 11 & " & III & 11 & " & " & " & 11 \\
\hline " & " & IV & " & " & " & " & " \\
\hline Mt. Mitchell & 9040 & I & 9,712 & 1.915 & 0 & 0 & 0 \\
\hline II & 11 & II & " & " & " & " & 1 \\
\hline " & " & III & 11 & " & 11 & " & 11 \\
\hline " & " & IV & 1 & 11 & " & " & " \\
\hline Oceanographer & 9006 & I & 9,712 & 1.282 & 0 & 0 & 0 \\
\hline " & 1 & II & 1 & 1.279 & 1 & " & 1 \\
\hline " & " & III & " & " & " & " & 1 \\
\hline " & " & IV & 11 & " & " & " & 1 \\
\hline Rainier & 9040 & I & 9,712 & 1.915 & 0 & 0 & 0 \\
\hline 1 & " & II & " & " & " & " & " \\
\hline " & " & III & " & " & " & " & " \\
\hline " & 11 & IV & " & " & 11 & " & 1 \\
\hline Rockaway & 9006 & I & 9,705 & 0.951 & 0 & 0 & 0 \\
\hline " & " & II & " & " & " & " & " \\
\hline \multirow[t]{3}{*}{"} & \multirow[t]{3}{*}{"} & III & & & & & \\
\hline & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Before June 25, } \\
& 1500 \text { GMT } 9.712
\end{aligned}
\]}} & & & & \\
\hline & & & & " & " & 6.67* & 6.67* \\
\hline
\end{tabular}

Table 7-4.--Pressure sensor calibration constants (continued)

*Erroneous use of \(Z=9,712 \mathrm{~Hz}\), instead of 9,705 , produced a depth error of -6.67 . Correction should be applied to the depth-sorted data. Note that no corrections were applied to the timeseries deta.

Table 7-5.--Renavigated geographic positions of off-station casts
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Ship & Date & \[
\begin{gathered}
\text { Julian } \\
\text { day }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Time } \\
& \text { (GMT) }
\end{aligned}
\] & \multicolumn{3}{|l|}{Latitude deg. min.} & \multicolumn{3}{|l|}{Longitude deg. min.} \\
\hline Discoverer & May 23 & 143 & 0756 & 13 & 34 & N & 056 & & \\
\hline " & & " & 1755 & 13 & 33 & N & 054 & & W \\
\hline Mt. Mitchell & May 14 & 134 & 1754 & 12 & 49 & N & 058 & & W \\
\hline & June 10 & 161 & 1018 & 12 & 49 & N & 058 & & W \\
\hline " & " & " & 1305 & 12 & 49 & N & 058 & & W \\
\hline " & " & " & 1615 & 12 & 49 & N & 059 & & W \\
\hline " & " & " & 1757 & 12 & 49 & N & 059 & & W \\
\hline " & July 10 & 191 & 0601 & 12 & 29 & N & 058 & & W \\
\hline " & & " & 1258 & 11 & 29 & N & 057 & & W \\
\hline " & " & " & 1717 & 11 & 02 & N & 057 & 03 & W \\
\hline " & " & " & 1923 & 10 & 48 & N & 056 & & W \\
\hline " & July 16 & 197 & 1416 & 10 & 28 & N & 056 & 27 & W \\
\hline " & July 28 & 209 & 1728 & 11 & 16 & N & 056 & 39 & \\
\hline " & & " & 2050 & 11 & 47 & N & 056 & 45 & W \\
\hline " & " & " & 2149 & 11 & 48 & N & 056 & & \\
\hline " & July 29 & 210 & 0055 & 12 & 15 & N & 056 & 51 & \\
\hline " & & " & 0626 & 13 & 12 & N & 057 & 02 & W \\
\hline Oceanographer & May 15 & 135 & 1004 & 16 & 51 & N & 055 & & \\
\hline & & " & 1558 & 16 & 04 & N & 056 & & \\
\hline " & June 10 & 161 & 0803 & 17 & 35 & N & 054 & & W \\
\hline Rainfer & July 16 & 197 & 0111 & 17 & 30 & N & 054 & & \\
\hline " & & " & 0611 & 17 & 28 & N & 054 & & \\
\hline " & " & " & 1209 & 17 & 11 & N & 054 & & \\
\hline " & " & " & 1800 & 17 & 29 & N & 053 & & \\
\hline Rockaway & May 15 & 135 & 2029 & 14 & 59 & N & 058 & & \\
\hline & May 16 & 136 & 0024 & 14 & 59 & N & 059 & & \\
\hline " & & " & 0317 & 14 & 21 & N & 059 & & \\
\hline " & " & " & 0639 & 13 & 41 & N & 059 & & \\
\hline " & May 30 & 150 & 0303 & 14 & 59 & N & 056 & 37 & \\
\hline " & June 10 & 161 & 2122 & 15 & 00 & N & 059 & 12 & \\
\hline " & June 11 & 162 & 0033 & 14 & 35 & N & 059 & & \\
\hline " & June 19 & 170 & 2143 & 14 & 05 & N & 059 & 08 & W \\
\hline " & June 20 & 171 & 0124 & 14 & 31 & N & 059 & & \\
\hline " & , & " & 0517 & 15 & 06 & N & 058 & & \\
\hline " & " & " & 1004 & 15 & 05 & N & 058 & 15 & \\
\hline " & July 9 & 190 & 2304 & 13 & 59 & N & 059 & & \\
\hline " & July 10 & 191 & 0240 & 14 & 34 & N & 059 & 14 & \\
\hline " & , & " & 0558 & 15 & 05 & N & 059 & 15 & \\
\hline " & " & " & 1151 & 14 & 53 & N & 058 & & \\
\hline
\end{tabular}

Table 7-6.--Nansen-STD comparisons, BOMEX Observation Period I, showing the amount by which the Nansen measurements are higher than the STD measurements
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Ship} & \multirow[t]{2}{*}{\begin{tabular}{l}
Comparison level \\
(decibars)
\end{tabular}} & \multicolumn{3}{|c|}{Temperature} \\
\hline & & Mean difference ( \({ }^{\circ} \mathrm{C}\) ) & \begin{tabular}{l}
Stand. dev.* of diff. \\
( \({ }^{\circ} \mathrm{C}\) )
\end{tabular} & No. of comparisons \\
\hline Discoverer & 0 & +0.05 & 0.07 & 8 \\
\hline " & 1,000 & +0.01 & 0.09 & 6 \\
\hline " & 0 and 1,000 & +0.03 & 0.08 & 14 \\
\hline Mt. Mitchell & 0 & -0.60 & 0.06 & 10 \\
\hline " & 1,000 & -0.44 & 0.13 & 14 \\
\hline " & 0 and 1,000 & -0.51 & 0.14 & 24 \\
\hline Oceanographer & & & & \\
\hline " & 0 & +0.03 & 0.01 & 17 \\
\hline " & 1,000 & 0.00 & 0.02 & 19 \\
\hline " & 0 and 1,000 & +0.01 & 0.02 & 36 \\
\hline " & 0 & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Above temperature comparison applies throughout Period I}} \\
\hline " & 1,000 & & & \\
\hline " & 0 and 1,000 & & & \\
\hline Rainier & \multicolumn{4}{|l|}{(Insufficient Nansen-STD comparisons to determine corrections)} \\
\hline Rockaway & 0 & -0.07 & 0.08 & 8 \\
\hline " & Intermediate ( I\()^{\dagger}\) & + +0.02 & 0.13 & 10 \\
\hline " & 1,000 & 0.00 & 0.06 & 10 \\
\hline " & 0 and \(I\) and 1,000 & -0.01 & 0.10 & 28 \\
\hline
\end{tabular}
*Unbiased standard deviation, \(\sigma^{2}=\frac{\Sigma(X-\bar{X})}{n-1}\) :
\(\dagger\) Intermediate comparison made, when possible, between 500 and 700 decibars.

Table 7-6.--Nansen-STD comparisons, BOMEX Observation Period I, showing the amount by which the Nansen measurements are higher than the STD measurements (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Ship} & \multirow[t]{2}{*}{\begin{tabular}{l}
Comparison level \\
(decibars)
\end{tabular}} & \multicolumn{3}{|c|}{Salinity} \\
\hline & & Mean
difference
\((\% / 00)\) & \[
\begin{aligned}
& \text { Stand. dev.* } \\
& \text { of diff. } \\
& (0 / 00)
\end{aligned}
\] & No. of comparisons \\
\hline Discoverer & 0 & +0.10 & 0.10 & 7 \\
\hline " & 1,000 & +0.07 & 0.02 & 5 \\
\hline " & 0 and 1,000 & +0.08 & 0.08 & 12 \\
\hline Mt. Mitchell & 0 & -0.03 & 0.05 & 17 \\
\hline " & 1,000 & -0.03 & 0.04 & 15 \\
\hline " & 0 and 1,000 & -0.03 & 0.04 & 32 \\
\hline Oceanographer & \multicolumn{4}{|c|}{(Until May 8, 1200 GMT)} \\
\hline " & 0 & +0.36 & 0.02 & 10 \\
\hline " & 1,000 & +0.33 & 0.02 & 10 \\
\hline " & 0 and 1,000 & +0.35 & 0.02 & 20 \\
\hline & \multicolumn{4}{|c|}{(After May 8, 1200 GMTO} \\
\hline " & 0 & +0.54 & 0.01 & 7 \\
\hline " & 1,000 & +0.51 & 0.04 & 8 \\
\hline " & 0 and 1,000 & +0.52 & 0.03 & 15 \\
\hline Rainier & \multicolumn{4}{|l|}{(Insufficient Nansen-STD comparisons to determine corrections)} \\
\hline Rockaway & 0 & +0.43 & 0.03 & 9 \\
\hline " & Intermediate ( I\()^{\dagger}\) & +0.43 & 0.04 & 10 \\
\hline " & 1,000 & +0.44 & 0.03 & 10 \\
\hline " & 0 and \(I\) and 1,000 & +0.43 & 0.04 & 29 \\
\hline
\end{tabular}
* Unbiased standard deviation, \(\sigma^{2}=\frac{\Sigma(X-\bar{X})}{n-1}\).
+ Intermediate comparison made, when possible, between 500 and 700 decibars.

Table 7-7.--Nansen-STD comparisons, BOMEX Observation Period II, showing the amount by which the Nansen measurements are higher than the STD measurements
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Ship} & \multirow[t]{2}{*}{\begin{tabular}{l}
Comparison level \\
(decibars)
\end{tabular}} & \multicolumn{3}{|c|}{Temperature} \\
\hline & & Mean difference ( \({ }^{\circ}\) ) & Stand. dev.* of diff. ( \({ }^{\circ} \mathrm{C}\) ) & No. of comparisons \\
\hline Discoverer & 0 & +0.02 & 0.05 & 23 \\
\hline " & 1,000 & +0.04 & 0.06 & 16 \\
\hline ' & 0 and 1,000 & +0.03 & 0.06 & 39 \\
\hline Mt. Mitchell & 0 & -0.60 & 0.06 & 24 \\
\hline " & 1,000 & -0.51 & 0.06 & 21 \\
\hline " & 0 and 1,000 & -0.56 & 0.07 & 45 \\
\hline Oceanographer & 0 & +0.02 & 0.04 & 26 \\
\hline " & 1,000 & -0.01 & 0.02 & 27 \\
\hline " & 0 and 1,000 & +0.01 & 0.03 & 53 \\
\hline Rainier & 0 & 0 & 0.06 & 20 \\
\hline " & 1,000 & +0.03 & 0.09 & 19 \\
\hline " & 0 and 1,000 & +0.02 & 0.08 & 39 \\
\hline Rockaway & 0 & -0.04 & 0.01 & 8 \\
\hline " & Intermediate (I) \({ }^{\dagger}\) & -0.12 & 0.14 & 4 \\
\hline " & 1,000 & +0.02 & 0.04 & 7 \\
\hline " & 0 and \(I\) ard 1,000 & -0.04 & 0.05 & 19 \\
\hline
\end{tabular}
*Unbiased standard deviation, \(\sigma^{2}=\frac{\sum(X-\bar{X})}{n-1}\).
+Intermediate Nansen-STD comparison made, when possible, between 500 and 700 decibars.

Table 7-7.--Nansen-STD comparisons, BOMEX Observation Period II, showing the amount by which the Nansen measurements are higher than the STD measurements (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Ship} & \multirow[b]{2}{*}{\begin{tabular}{l}
Comparison level \\
(decibars)
\end{tabular}} & \multicolumn{3}{|c|}{Salinity} \\
\hline & & \[
\begin{gathered}
\text { Mean } \\
\text { difference } \\
(\% / 00)
\end{gathered}
\] & \[
\begin{gathered}
\text { Stand. dev.* } \\
\text { of diff. } \\
(\% / 00)
\end{gathered}
\] & No. of comparisons \\
\hline Discoverer & 0 & +0.03 & 0.05 & 20 \\
\hline " & 1,000 & -0.01 & 0.05 & 19 \\
\hline " & 0 and 1,000 & +0.01 & 0.05 & 39 \\
\hline Mt. Mitchell & 0 & -0.04 & 0.04 & 23 \\
\hline " & 1,000 & -0.03 & 0.02 & 22 \\
\hline " & 0 and 1,000 & -0.04 & 0.03 & 45 \\
\hline Oceanographer & 0 & +0.44 & 0.09 & 23 \\
\hline " & 1,000 & +0.45 & 0.08 & 25 \\
\hline " & 0 and 1,000 & +0.45 & 0.08 & 48 \\
\hline Rainier & 0 & 0 & 0.07 & 23 \\
\hline " & 1,000 & +0.03 & 0.05 & 19 \\
\hline " & 0 and 1,000 & +0.02 & 0.06 & 42 \\
\hline Rockaway & 0 & -0.04 & 0.04 & 7 \\
\hline " & Intermediate ( \(\mathrm{I}^{+}\) & 0 & 0.05 & 7 \\
\hline " & 1,000 & -0.04 & 0.03 & 7 \\
\hline " & 0 and \(I\) and 1,000 & -0.03 & 0.04 & 21 \\
\hline
\end{tabular}
* Unbiased standard deviation, \(\sigma^{2}=\frac{\Sigma(X-\bar{X})}{n-1}\).
\(\dagger\) Intermediate Nansen-STD comparison made, when possible, between 500 and 700 decibars.

Table 7-8.--ivansen-STD comparisons, BOHEX Observation Period ITI, showing the amount by which the Nansen measurements are higher than the STD measurements
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Ship} & \multirow[t]{2}{*}{\begin{tabular}{l}
Comparison level \\
(decibars)
\end{tabular}} & \multicolumn{3}{|c|}{Temperature} \\
\hline & & Mean
difference
\(\left({ }^{\circ} \mathrm{C}\right)\) & \[
\begin{aligned}
& \text { Stand. dev.* } \\
& \text { of diff. } \\
& \left({ }^{0} \mathrm{C}\right)
\end{aligned}
\] & No. of comparisons \\
\hline Discoverer & 0 & +0.05 & 0.03 & 18 \\
\hline " & 1,000 & +0.09 & 0.08 & 12 \\
\hline " & 0 and 1,000 & +0.07 & 0.08 & 30 \\
\hline Mt. Mitchell & 0 & -0.61 & 0.03 & 21 \\
\hline " & 1,000 & -0.39 & 0.13 & 17 \\
\hline " & 0 and 1,000 & -0.50 & 0.14 & 38 \\
\hline Oceanographer & 0 & +0.02 & 0.02 & 15 \\
\hline " & 1,000 & 0 & 0.03 & 15 \\
\hline " & 0 and 1,000 & +0.01 & 0.03 & 30 \\
\hline Rainier & 0 & +0.02 & 0.05 & 14 \\
\hline " & 1,000 & +0.01 & 0.07 & 13 \\
\hline \({ }^{\prime \prime}\) & 0 and 1,000 & +0.03 (+0.02) & \({ }^{+} 0.06\) & 27 \\
\hline Rockaway & 0 & -0.03 & 0.03 & 8 \\
\hline " & 1,000 & -0.03 & 0.09 & 9 \\
\hline 11 & 0 and 1,000 & -0.07 (-0.03) & \({ }^{\dagger} 0.07\) & 17 \\
\hline \multicolumn{5}{|l|}{夫Unbiased standard deviation, \(\sigma^{2}=\frac{\sum(X-\bar{X})}{n-1}\).} \\
\hline \multicolumn{5}{|l|}{```
\daggerValue in parenthesis was recalculated after final processing of the STD
    data. This value should be applied to the depth-sorted data. Note that no
    corrections were applied to the time series data.
```} \\
\hline
\end{tabular}

Table 7-9.--Nansen-STD comparisons, BOMEX Observation Period IV, showing the amount by which the Nansen measurements are higher than the STD measurements (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Ship} & \multirow[t]{2}{*}{\begin{tabular}{l}
Comparison level \\
(decibars)
\end{tabular}} & \multicolumn{3}{|c|}{Salinity} \\
\hline & & Mean difference ( \(\%\) oo ) & \[
\begin{aligned}
& \text { Stand. dev.* } \\
& \text { of diff. } \\
& (\% / 00)
\end{aligned}
\] & No. of comparisons \\
\hline Discoverer & 0 & 0.02 & 0.04 & 16 \\
\hline " & 1,000 & 0.07 & 0.06 & 19 \\
\hline " & 0 and 1,000 & 0.05 & 0.05 & 35 \\
\hline Mt. Mitchell & 0 & 0.0 & 0.03 & 27 \\
\hline " & 1,000 & -0.02 & 0.03 & 25 \\
\hline " & 0 and 1,000. & -0.01 & 0.03 & 52 \\
\hline Oceanographer & & Until & 1y 18, 1200 G & \\
\hline " & 0 & +0.17t+ & 0.19 & 9 \\
\hline " & 1,000 & \(\div 0.05\) & 0.03 & 7 \\
\hline " & 0 and 1,000 & After & 1y 18, 1200 G & \\
\hline " & 0 & +0.39tt & 0.22 & 16 \\
\hline " & 1,000 & +0.74 & 0.06 & 15 \\
\hline Rainier & 0 & 0.0 & 0.08 & 20 \\
\hline " & 1,000 & 0.06 & 0.03 & 16 \\
\hline " & 0 and 1,000 & 0.03 & 0.07 & 37 \\
\hline Rockaway & \multicolumn{4}{|l|}{Comparison omitted; insufficient shipboard documentation} \\
\hline
\end{tabular}
\(\therefore\) Unoiased standard deviation, \(\sigma^{2}=\frac{\Sigma(x-\bar{X})}{n-1}\).
\(\dagger\) Value in parenthesis was recalculated after final processing of the STD data. This value should be applied to the depth-sorted data. Note that no corrections w-re applied to the time series data.
†tComparison not used; excessive deviation.

\subsection*{7.4 Archive Format and Data Inventory}

\subsection*{7.4.1 Time-Series Magnetic Tape Data}
```

Tape length - 2,400 ft
Control characters
Tape width - 1/2 in
Number of tracks - seven
Recording density - 556 BPI
Recording label - unlabeled
Physical block length - 1,600

```

Control characters
Inter-record gap - \(3 / 4\) in
End-of-file mark - physical
Character code - BCD
Parity - even
Length of byte - 6 bits/byte bytes



The first record in each file contains information concerning that particular sounding. The following records contain time-series STD data recorded during that sounding. File organization is repeated as necessary, with one file per STD sounding. A double end-of-file mark is written after the last file on the tape.

The header record is intended to fully describe the data contained witnin within that file. Each header record contains:

Description of data records.
Ship name.
Date and time of sounding.
Geographic location of sounding.
Instrument model and serial number.
Transfer equation for sensors.
Transfer constants for sensors.
Pertinent comments about the sounding.
The header record consists of 20 BCD card images with 80 characters per card image. The format of the header record is described in table 7-10.

The data records also consist of 20 BCD card images per record, with 80 characters per card image. Records are repeated as necessary with 100 STD
data scans per record; an average STD soundings lasting about 20 min would fill approximately 100 records. If a cast ends at depth that is not a multiple of 100 decibars, the remainder of that record is zero filled.

Data are arranged in each card image as 5 triples per 80 characters, having the Fortran format (F6.2, 2F5.3). Each triple contains pressure (decibars), salinity (ppt), and temperature ( \({ }^{\circ} \mathrm{C}\) ). Time determination is order dependent; the first triple is assumed to be at 0 s of the hour and minute given in the header record. Successive triples are 0.120 s apart, i.e., the first card image contains data from 0 to 0.60 s , the second card image contains data from 0.72 to 1.20 s , etc.

A summary of the time-series data is given in table 7-11.
Table 7-10.--Data field position description
\begin{tabular}{|c|c|c|c|c|}
\hline Card image & \[
\begin{aligned}
& \text { Field } \\
& \text { No. }
\end{aligned}
\] & Character position & Fortran field & Description \\
\hline \multirow[t]{21}{*}{1} & 001 & 001 & 1H & Carriage control 'I' \\
\hline & 002 & 002-011 & 10H & 'bOMEX STD' \\
\hline & 003 & 012-025 & 14H & Ship name \\
\hline & 004 & 026-029 & 4H & 'YEAR' \\
\hline & 005 & 030-034 & 15 & Year '1969' \\
\hline & 006 & 035-038 & 4H & 'DAY' \\
\hline & 007 & 039-042 & 4H & Julian day of year \\
\hline & 008 & 043-047 & 5H & 'TIME' \\
\hline & 009 & 048-050 & I3 & Hour of start of cast \\
\hline & 010 & 051 & 1 x & Blank \\
\hline & 011 & 052-053 & 12 & innute of start of cast \\
\hline & 012 & 054-062 & 9 H & GMT Lat.' \\
\hline & 013 & 063-064 & I2 & Latitude degrees \\
\hline & 014 & 065 & 1 x & Blank \\
\hline & 015 & 066-067 & 12 & Latitude minutes \\
\hline & 016 & 068 & 1H & Latitude direction ' N ' \\
\hline & 017 & 069-073 & 5H & 'LON.' \\
\hline & 018 & 074-076 & 13 & Longitude degrees \\
\hline & 019 & 077 & 1 x & Blank \\
\hline & 020 & 078-079 & I2 & Longitude minutes \\
\hline & 021 & 080 & 1H & Longitude direction 'W' \\
\hline
\end{tabular}

Table 7-10.--Data field position description (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Card \\
image
\end{tabular} & Field No. & Character position & Fortran field & Description \\
\hline \multirow[t]{2}{*}{4} & 001 & 001 & 1H & Carriage control 'blank' \\
\hline & 002 & 002-080 & 79H & Description of data format \\
\hline \multirow[t]{6}{*}{5} & 001 & 001 & 1H & Carriage control ' \({ }^{\prime}\) ' \\
\hline & 002 & 002-031 & 30H & Text \\
\hline & 003 & 032-035 & I4 & STD model number \\
\hline & 004 & 036-043 & 8H & Frame serial number \\
\hline & 005 & 044-047 & 14 & STD serial number \\
\hline & 006 & 048-080 & 33H & Frequency conversion equation \\
\hline \multirow[t]{11}{*}{6-8} & 001 & 001 & 1H & Carriage control 'blank' \\
\hline & 002 & 002-012 & 12H & Sensor: 'SALINITY', TEMPERATURE', or 'PRESSURE2' \\
\hline & 003 & 013-017 & 5H & 'SNs= \\
\hline & 004 & 018-021 & 14 & Sensor serial number \\
\hline & 005 & 022-025 & 4H & ' \(2=\) ' \\
\hline & 006 & 026-034 & F9.0 & Zero frequency \\
\hline & 007 & 035-036 & 2 H & 'S=' \\
\hline & 008 & 037-046 & F10.3 & Slope \\
\hline & 009 & 047-048 & 2H & ' \(\mathrm{C}=1\) \\
\hline & 010 & 049-058 & F10.3 & Y-intercept \\
\hline & 011 & 059-080 & 22H & Units: PPT, \({ }^{\circ} \mathrm{C}\), or 'DECLBARS' \\
\hline \multirow[t]{2}{*}{9-13} & 001 & 001 & 1H & Carriage control ' 0 ' \\
\hline & 002 & 002-080 & 79H & Comment pertinent to data in file \\
\hline 14-20 & & 001-080 & 80H & Blank \\
\hline \multirow[t]{2}{*}{2} & 001 & 001 & 1H & Carriage control '0' \\
\hline & 002 & 002-080 & 79H & Description of data format \\
\hline \multirow[t]{2}{*}{3} & 001 & 001 & 1H & Carriage control '0' \\
\hline & 002 & 002-080 & 79H & Description of data format \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Magretic tape No.} & \multirow[b]{2}{*}{Ship} & \multirow[t]{2}{*}{BOMEX Observation Period} & \multicolumn{4}{|c|}{First sounding} & \multicolumn{4}{|c|}{Last sounding} & \multirow[t]{2}{*}{No. of files (one cast per file)} \\
\hline & & & \[
\begin{aligned}
& \text { Julian } \\
& \text { day }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Date } \\
& \text { (1969 }
\end{aligned}
\] & & \[
\begin{gathered}
\text { Time } \\
\text { (hr:min) }
\end{gathered}
\] & \[
\begin{gathered}
\text { Julian } \\
\text { day }
\end{gathered}
\] & & & \[
\begin{gathered}
\text { Time } \\
\text { (hr:min) }
\end{gathered}
\] & \\
\hline 89298 & Oceanographer & I & 123 & May & 3 & 0122 & 126 & May & 6 & 2100 & 34 \\
\hline B9300 & & I & 127 & May & 7 & 0059 & 131 & May & 11 & 2104 & 30 \\
\hline B9302 & " & I & 132 & May & 12 & 0055 & 135 & May & 15 & 1558 & 30 \\
\hline B9276 & Oceanographer & II & 143 & May & 23 & 1602 & 146 & May & 26 & 2303 & 33 \\
\hline в9278 & & II & 147 & May & 27 & 0058 & 148 & May & 28 & 1351 & 23 \\
\hline B9280 & " & II & 148 & May & 28 & 1528 & 151 & May & 31 & 2302 & 32 \\
\hline & & & & & & & & & & & (вее в9304, end of table) \\
\hline B9282 & " & II & 152 & June & 1 & 0119 & 155 & June & 4 & 1203 & 36 \\
\hline B9284 & " & II & 155 & June & 4 & 1451 & 158 & June & 7 & 2108 & 22 \\
\hline B9286 & " & II & 159 & June & 8 & 0055 & 161 & June & 10 & 0803 & 24 \\
\hline B9224 & Oceanographer & III & 171 & June & 20 & 1022 & 175 & June & 24 & 2106 & 28 \\
\hline B9226 & & III & 176 & June & 25 & 0053 & 181 & June & 30 & 0910 & 36 \\
\hline B9206 & Oceanographex & Iv & 192 & July & 11 & 1011 & 198 & July & 17 & 2111 & \[
\begin{aligned}
& 37 \\
& \text { (see B9304, } \\
& \text { end of table) }
\end{aligned}
\] \\
\hline B9208 & " & IV & 199 & July & 18 & 0056 & 202 & July & 21 & 2223 & 33 \\
\hline B9210 & " & IV & 203 & July & 22 & 0057 & 206 & July & 25 & 2123 & 26 \\
\hline B9212 & " & IV & 207 & July & 26 & 0056 & 210 & July & 29 & 0316 & 26 \\
\hline 89274 & Ral:Ier & I & 121 & May & 1 & 1212 & 134 & May & 14 & 0132 & 11 \\
\hline B9270 & Rainier & II & 144 & May & 24 & 0102 & 148 & May & 28 & 1818 & 23 \\
\hline B9272 & & II & 149 & May & 29 & 1833 & 161 & June & 10 & 0603 & 41 \\
\hline B9222 & Rainier & III & 172 & June & 21 & 0118 & 183 & July & 2 & 0121 & 40 \\
\hline
\end{tabular}

Table 7-11.--Summary inventory of STD time-series data (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Magnetic tape No.} & \multirow[b]{2}{*}{Ship} & \multirow[t]{2}{*}{bomex Observation Period} & \multicolumn{3}{|c|}{First sounding} & \multicolumn{3}{|c|}{Last sounding} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { No. of } \\
& \text { files } \\
& \text { (one cast } \\
& \text { per file) }
\end{aligned}
\]} \\
\hline & & & \[
\begin{aligned}
& \text { Julian } \\
& \text { day }
\end{aligned}
\] & \[
\begin{gathered}
\text { Date } \\
\text { (1969) }
\end{gathered}
\] & \[
\begin{gathered}
\text { Time } \\
(\mathrm{hr}: \min )
\end{gathered}
\] & \[
\begin{aligned}
& \text { Julian } \\
& \text { day }
\end{aligned}
\] & \[
\begin{gathered}
\text { Date } \\
\text { (1969) }
\end{gathered}
\] & \[
\begin{gathered}
\text { Time } \\
(h r: m i n)
\end{gathered}
\] & \\
\hline B9230 & Rainier & IV & 192 & July 11 & 1205 & 196 & July 15 & 1940 & 19 \\
\hline B9246 & & rv & 197 & July 16 & 0111 & 203 & July 22 & 1208 & 23 \\
\hline B9234 & " & IV & 204 & July 23 & 0109 & 209 & Jưly 28 & 1802 & 22 \\
\hline B9288 & Mt. Mitchell & 1 & 123 & May 3 & 0057 & 129 & May 9 & 1803 & 19 \\
\hline B9290 & & I & 130 & May 10 & 0105 & 135 & May 15 & 1000 & 23 \\
\hline & & & & & & & & & (see B9034, end of table) \\
\hline B9260 & Mt. Mitchell & II & 143 & May 23 & 1216 & 148 & May 28 & 1802 & 22 \\
\hline B9262 & & II & 150 & May 30 & 0049 & 161 & June 10 & 1757 & 41 \\
\hline B9228 & Mt. Mitchell & III & 171 & June 20 & 0130 & 184 & July 3 & 0212 & 48 \\
\hline B9244 & Mt. Mitchell & IV & 191 & July 10 & 0601 & 197 & July 16 & 1416 & 20 \\
\hline B9238 & & IV & 198 & July 17 & 0058 & 205 & July 24 & 0608 & 29 \\
\hline B9240 & " & IV & 205 & July 24 & 1409 & 210 & July 29 & 0626 & 26 \\
\hline B9218 & Discoverer & I & 127 & May 7 & 0109 & 130 & May 10 & 2055 & 24 \\
\hline B9232 & & I & 131 & May 11 & 0059 & 134 & May 14 & 1159 & 28 \\
\hline B9264 & Discoverer & II & 143 & May 23 & 0756 & 148 & May 28 & 2057 & 18 \\
\hline B9266 & & II & 150 & May 30 & 0059 & 155 & June 4 & 2112 & 42 \\
\hline B9268 & " & II & 157 & June 6 & 0057 & 161 & June 10 & 2220 & 39 \\
\hline B9214 & Discoverer & III & 172 & June 21 & 0100 & 177 & June 26 & 2102 & 44 \\
\hline B9216 & & III & 178 & June 27 & 0059 & 183 & July 2 & 1156 & 43 \\
\hline B9200 & Discoverer & IV & 192 & July 11 & 0558 & 198 & July 17 & 2100 & 45 \\
\hline B9202 & & IV & 199 & July 18 & 0000 & 204 & July 23 & 2100 & 48 \\
\hline B9204 & " & IV & 205 & July 24 & 0000 & 208 & July 27 & 1520 & 18 \\
\hline
\end{tabular}

Table 7-11.--Summary inventory of STD time-series data (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Magnetic tape No.} & \multirow[b]{2}{*}{Ship} & \multirow[t]{2}{*}{bomex Observation Period} & \multicolumn{4}{|c|}{First sounding} & \multicolumn{4}{|c|}{Last sounding.} & \multirow[t]{2}{*}{No. of files (one cast per file)} \\
\hline & & & Julian day & \[
\begin{aligned}
& \text { Date } \\
& \text { (1969 }
\end{aligned}
\] & & \[
\begin{aligned}
& \text { Time } \\
& (h r: m i n)
\end{aligned}
\] & Julian day & \[
\begin{aligned}
& \text { Date } \\
& \text { (1969) }
\end{aligned}
\] & & \[
\begin{aligned}
& \text { Time } \\
& \text { (hr:min) }
\end{aligned}
\] & \\
\hline B9292 & Rockaway & I & 121 & May & 1 & 0309 & 126 & May & 6 & 2058 & 34 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{B} 9294 \\
& \mathrm{B9296}
\end{aligned}
\]} & & 1 & 127 & May & 7 & 0057 & 131 & May & 11 & 1812 & 34 \\
\hline & " & I & 132 & May & 12 & 0038 & 136 & May & 16 & 0639 & 28 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{B9252} \\
& \mathrm{B9254}
\end{aligned}
\]} & Rockaway & II & 144 & May & 24 & 0942 & 148 & May & 28 & 2102 & 37 \\
\hline & & II & 150 & May & 30 & 0104 & 155 & June & 4 & 1801 & 33 \\
\hline & & & & & & & & & & & (see B9304, end of table) \\
\hline B9256 & " & II & 157 & June & 6 & 0101 & 162 & June & 11 & 0033 & 40 \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{B} 9242 \\
& \mathrm{B9220}
\end{aligned}
\]} & Rockaway & III & 170 & June & 19 & 2143 & 176 & June & 25 & 1225 & 40 \\
\hline & & III & 177 & June & 26 & 0304 & 183 & July & 2 & 1228 & 36 \\
\hline & & & & & & & & & & & (see B9258, end of table) \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { B92488 } \\
& \text { B9250 } \\
& \text { B9236 }
\end{aligned}
\]} & Rockaway & IV & 190 & July & 9 & 2304 & 196 & July & & 1213 & 37 \\
\hline & & IV & 198 & July & & 0114 & 204 & July & 23 & 1552 & 50 \\
\hline & " & IV & 204 & July & 23 & 1552 & 209 & July & 28 & 2028 & 38 \\
\hline \multicolumn{12}{|c|}{M1scellaneous casts} \\
\hline B9258 & Rockaway & III & 176 & June & 25 & 1503 & 177 & June & 26 & 0105 & 01-04 \\
\hline B9258 & " & III & 180 & June & 29 & 1519 & 181 & June & 30 & 1201 & 05-08 \\
\hline B9304 & " & II & 155 & June & 4 & 2136 & & (single & cast) & & 01 \\
\hline " & " & III & 176 & June & 25 & 2101 & 177 & June & 26 & 0059 & 02-03 \\
\hline " & " & IV & 195 & July & 14 & 0133 & 195 & July & 14 & 0305 & 04-05 \\
\hline \multirow[t]{2}{*}{\[
89304
\]} & Oceanographer & II & 151 & May & 31 & 1056 & 151 & May & 31 & 1352 & 06-07 \\
\hline & & IV & 195 & July & & 1452 & & (aingle & cast) & & \\
\hline 89304 & Mt. Mitchell & 1 & 134 & May & 14 & 0114 & & (single & cast) & & 09 \\
\hline
\end{tabular}

\subsection*{7.4.2 Depth-Sorted Magnetic Tape and Microfilm Data}

Tape length - 2,400.ft Control characters
Tape width - 1/2 in
Number of tracks - seven
Recording density - 800 BPI
Recording method -NRZI
Recording label - unlabeled

Inter-record gap - 3/4 in
End-of-file mark - physical
Character code - BCD
Parity - even
Physical block length - 1,600 bytes
Length of byte - 6 bits/byte
\begin{tabular}{|lll|}
\hline \multicolumn{3}{|c|}{ File 1 } \\
\hline Header \(\cdot\) Data & Data \\
Record & Record & Record \\
\hline
\end{tabular}

\begin{tabular}{|lll|l|}
\hline \multicolumn{3}{|c|}{ File 2 } & \begin{tabular}{|ll|}
\hline \multicolumn{1}{|c|}{2} & \(E\) \\
\hline Header & Data \\
Record & Record \\
\hline
\end{tabular}\(\}\) Record \\
\hline
\end{tabular}
\begin{tabular}{|llll|}
\hline & & File 3 \\
Header & Data & Data & Data \\
Record & Record & Record & Record \\
\hline
\end{tabular}
\begin{tabular}{|ll|c|c|}
\hline \multicolumn{2}{|c|}{ File } & E & E \\
\hline Data & Data & 0 & 0 \\
Record & Record & F & F \\
\hline
\end{tabular}

The first record in each file contains information concerning that particular sounding. Up to 10 records thereafter contain STD data in mits of 100 decibars of data per record. File organization is repeated as necessary, with one file per STD sounding.. A double end-of-file mark is written after the last file on the tape. Each header record contains:

> Description of data records.
> Ship name.
> Date and time of sounding.
> Geographic location of sounding.
> Instrument model and serial number.
> Transfer equation for sensors.
> Transfer constants for sensors.
> Pertinent comments about the sounding.

The header record consists of 20 BCD card images with 80 characters per card image. The format of the header record is described in table 7-12. The data records also consist of 20 BCD card images per record, with 80 characters per card image. Records are repeated as necessary with 100 decibars of data per record. If a cast ends at a depth that is not a multiple of 100 decibars, the remainder of that record is zero filled.

Data are arranged in each card image as 5 triples per 80 characters, Fortran format (5 (1X,3F5.3)). Each triple contains salinity (ppt), temperature ( \({ }^{\circ} \mathrm{C}\) ), and sigma-t. The pressure determination is order dependent; the first triple is at 1 decibar. Each successive triple is 1 decibar deeper; 1.e., the first card image contains data from depths of 1.00 to 5.00 decibars, the second card image contains data from depths of 6.00 to 10.00 decibars, etc.

A summary inventory of the depth-sorted data is given in table 7-13. This table also lists the microfilm reels containing two plots for each sounding of temperature, salinity, and calculated sigma-t: a 0- to 200-decibar plot allowing for fine resolution of the surface layers, and a 0 - to \(1,000-\mathrm{decibar}\) plot for inspection of the entire sounding.

Table 7-12.--Data field position description
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Card \\
image
\end{tabular} & Field No. & Character position & Fortran field & Description \\
\hline \multirow[t]{2}{*}{1} & 001 & 001 & 1H & Carriage control 'l' \\
\hline & 002 & 002-080 & 79H & Description of data format \\
\hline \multirow[t]{2}{*}{2} & 001 & 001 & 1H & Carriage control 'blank' \\
\hline & 002 & 002-080 & 79H & Description of data format \\
\hline 3 & 001 & 001 & 1H & Carriage control 'blank' \\
\hline \multirow[t]{5}{*}{.} & 002 & 002-026 & 25H & Text \\
\hline & 003 & 027-030 & 14 & First index of valid point \\
\hline & 004 & 031-039 & 9 H & Text \\
\hline & 005 & 040-043 & 14 & Last index of valid point \\
\hline & 006 & 044-080 & 37H & Text \\
\hline \multirow[t]{2}{*}{4} & 001 & 001 & 1H & Carriage control ' 0 '. \\
\hline & 002 & 002-080 & 79H & Description of data format \\
\hline \multirow[t]{17}{*}{5} & 001 & 001 & 1H & Carriage control '0' \\
\hline & 002 & 002-011 & 10H & 'BOMEX STD' \\
\hline & 003 & 012-023 & 14H & Ship name \\
\hline & 004 & 026-029 & 4H & 'YEAR' \\
\hline & 005 & 030-034 & I5 & Year '1969' \\
\hline & 006 & 035-038 & 4H & 'DAY' \\
\hline & 007 & 039-042 & 4H & Julian day of year \\
\hline & 008 & 043-047 & 5H & 'TIME' \\
\hline & 009 & 048-050 & I3 & Hour of start of cast \\
\hline & 010 & 051 & 1 X & Blank \\
\hline & 011 & 052-053 & 12 & Minute of start of cast \\
\hline & 012 & 054-062 & 9H. & 'GMT LAT.' \\
\hline & 013 & 063-064 & I2 & Latitude degrees \\
\hline & 014 & 065 & 1X & B1ank \\
\hline & 015 & 066-067 & I2 & Latitude minutes \\
\hline & 016 & 068 & 1H & Latitude direction ' N ' \\
\hline & 017 & 069-073 & 5H & 'LON.' \\
\hline
\end{tabular}

Table 7-12.--Data field position description (continued)


\subsection*{7.5 Notes for Users}

Users of the time-series STD data should apply the calibration corrections given in tables \(7-2,7-3\), and \(7-4\) in the preceding section. In the time-series data, the geographic positions of the off-station casts are indicated by asterisks. In these cases, the renavigated positions given in table 7-5 in the preceding section should be used. Attention is also called to the following errors in the time-series data:

Discoverer July \(23 \quad\) Julian day \(204 \quad 1500\) GMT
Cast records 2 to 33 contain STD data from 0 to 205 decibars: records 34 to 41 contain spurious data. The data contained in records 42 to 125 overhap the spurious data, repeating values beginning at 113 decibars and continuing past 205 decibars to 1,000 decibars. In reading this cast, allowance should be made for this overlap of data.

Mt. Mitche11 May 30 Julian day \(150 \quad 0049\) GMT
In the header for this cast, the ship name Discoverer was erroneously inserted.

Mt. Mitche11 July 19 Julian day \(200 \quad 0616\) GMT
Cast records 9 to 17 contain spurious data and should not be used. Data record 8 ends at 2 decibars; data record 18 begins at 56 decibars.

Rainier May \(2 \quad\) Julian day \(122 \quad 0102\) GMT
The salinity sensor malfunctioned throughout this cast. Salinity should not be used.

Rainier May \(2 \quad\) Julian day \(122 \quad 0555\) GMT
The salinity sensor malfunctioned throughout this cast. Salinity should not be used.

Rainier May 2 Julian day \(122 \quad 1214\) GMT
The salinity sensor malfunctioned throughout this cast. Salinity should not be used.

Rainier July \(19 \quad\) Julian day \(200 \quad 0108\) GMI
Cast records 56 and 57 contain spurious data and should not be used. Data record 55 ends at 168 decibars; data record 58 begins at 190 decibars.

Table 7-13.--Summary inventory of STD depth-sorted data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Magnetic tape No.} & \multirow[b]{2}{*}{Microfilm reel No.} & \multirow[b]{2}{*}{Ship} & \multirow[t]{2}{*}{\begin{tabular}{l}
BOMEX \\
Observation Period
\end{tabular}} & \multicolumn{4}{|c|}{First sounding} & \multicolumn{4}{|c|}{Last sounding} & \multirow[b]{2}{*}{File position position} \\
\hline & & & & Julian day & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Day } \\
& (1969)
\end{aligned}
\]} & \[
\begin{gathered}
\text { Time } \\
(\mathrm{hr}: \mathrm{min})
\end{gathered}
\] & Julian day & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Date } \\
& (1969)
\end{aligned}
\]} & \[
\begin{aligned}
& \text { Time } \\
& (h r: m i n)
\end{aligned}
\] & \\
\hline B9102 & STD-1 & Discoverer & I & 127 & May & 7 & 0109 & 134 & May & 14 & 1159 & 001-052 \\
\hline " & " & Mt. Mitchell & I & 123 & May & 3 & 0057 & 135 & May & 15 & 1000 & 053-095 \\
\hline " & " & Oceanographer & I & 123 & May & 3 & 0122 & 135 & May & 15 & 1558 & 096-187 \\
\hline " & " & Rainier & I & 121 & May & 1 & 1212 & 134 & May & 14 & 0132 & 188-198 \\
\hline " & " & Rockaway & I & 121 & May & 1 & 0309 & 136 & May & 16 & 0639 & 199-293 \\
\hline B9112 & STD-2 & Discoverer & II & 143 & May & 23 & 0736 & 161 & June & 10 & 2220 & 0-98 \\
\hline " & " & Mt. Mitchell & II & 143 & May & 23 & 1216 & 161 & June & & 1757 & 99-161 \\
\hline " & " & Oceanographer & II & 143 & May & 23 & 1612 & 161 & June & & 0803 & 162-331 \\
\hline " & " & Rainier & II & 144 & May & 24 & 0102 & 161 & June & 10 & 0603 & 332-392 \\
\hline " & " & Rockaway & II & 144 & May & 24 & 0942 & 162 & June & 11 & 0033 & 39 3-503 \\
\hline B9103 & STD-3 & Discoverer & IIF & 172 & June & 21 & 0100 & 183 & July & 2 & 1156 & 001-078 \\
\hline " & " & Mt. Mitchell & III & 171 & June & 20 & 0130 & 183 & July & 2 & 1203 & 079-122 \\
\hline " & " & Oceanographer & III & 171 & June & 20 & 1022 & 181 & June & & 0910 & 123-184 \\
\hline " & " & Rainier & III & 172 & June & 21 & 0118 & 183 & July & 2 & 0121 & 185-221 \\
\hline " & " & Rockaway & III & 172 & June & 21 & 0057 & 183 & July & 2 & 1228 & 222-301 \\
\hline B9104 & STD-4 & Discoverer & IV & 192 & July & 11 & 0058 & 208 & July & & 1520 & 001-111 \\
\hline " & " & Mt. Mitchell & IV & 191 & July & 10 & 0601 & 210 & July & & 0626 & 112-185 \\
\hline " & " & Oceanographer & IV & 192 & July & 11 & 1011 & 210 & July & & 0316 & 186-307 \\
\hline " & " & Rainier & IV & 192 & July & 11 & 1205 & 209 & July & & 1802 & 308-371 \\
\hline " & 1 & Rockaway & IV & 190 & July & 9 & 2304 & 209 & July & & 2028 & 372-497 \\
\hline
\end{tabular}

Calibration corrections and renavigated geographic positions are incorporated in the depth-sorted data. However, attention is called to the few instances where new calibration corrections (recalculated after final data processing) should be applied to the depth-sorted data, as noted in tables \(7-2,7-3\), and 7-4 in the preceding section.

For those interested in the STD rainy day soundings, table 7-14 lists these soundings. Similarly, for the convenience of users having an interest in the surface-region soundings taken aboard the Oceanographer as part of an investigation by the Woods Hole Oceanographic Institution (WHOI), these soundings are listed in table 7-15. For the appropriate magnetic tape or microfilm reel on which these two types of soundings are contained, see tables 7-11 and 7-13.

Table 7-14.--Rainy day soundings
\begin{tabular}{|c|c|c|c|}
\hline Ship & \[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\] & Juli an day & \begin{tabular}{l}
Time \\
(GMT)
\end{tabular} \\
\hline Discoverer & June 8 & 159 & 2039 \\
\hline " & June 8 & 159 & 2200 \\
\hline " & June 25 & 176 & 0406 \\
\hline " & June 28 & 179 & 2139 \\
\hline " & June 29 & 180 & 0231 \\
\hline " & July 2 & 183 & 0011 \\
\hline " & July 2 & 183 & 0159 \\
\hline " & July 2 & 183 & 0425 \\
\hline " & July 2 & 183 & 1004 \\
\hline Rainier & May 1 & 121 & 2217 \\
\hline " & May 3 & 123 & 0959 \\
\hline " & May 10 & 130 & 1309 \\
\hline " & May 11 & 131 & 0048 \\
\hline " & May 14 & 134 & 0132 \\
\hline " & May 25 & 145 & 1025 \\
\hline " & May 27 & 147 & 0241 \\
\hline " & May 27 & 147 & 0834 \\
\hline " & June 30 & 181 & 1155 \\
\hline " & July 15 & 196 & 1940 \\
\hline " & July 27 & 208 & 1041 \\
\hline Rockaway & May 24 & 144 & 1505 \\
\hline I' & June 10 & 161 & 0456 \\
\hline " & June 10 & 161 & 0643 \\
\hline
\end{tabular}
\begin{tabular}{clrll}
\hline Ship & \begin{tabular}{l} 
Date \\
(1969)
\end{tabular} & \begin{tabular}{c} 
Julian \\
day
\end{tabular} & \begin{tabular}{l} 
Time \\
(GMT)
\end{tabular} \\
\hline Oceanographer & May & 5 & 125 & 0158 \\
" & May & 5 & 125 & 0337 \\
" & May & 9 & 129 & 1847 \\
" & May 12 & 132 & 1657 \\
" & May 12 & 132 & 1750 \\
" & May 12 & 132 & 1837 \\
" & May 25 & 145 & 0244 \\
" & May 26 & 146 & 0517 \\
" & May 26 & 146 & 0636 \\
" & May 26 & 146 & 1016 \\
" & May 26 & 146 & 1250 \\
" & May 26 & 146 & 1521 \\
" & May 26 & 146 & 1826 \\
" & June 2 & 153 & 0248 \\
" & July 12 & 193 & 1006 \\
" & July 12 & 193 & 1137 \\
" & July 13 & 194 & 1251 \\
" & July 18 & 199 & 1618 \\
" & July 18 & 199 & 1844 \\
" & July 19 & 200 & 1849 \\
& July 21 & 202 & 2223
\end{tabular}

Table 7-15.--WHOI surface-region STD soundings - Oceanographer
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Date } \\
(1969) \\
\hline
\end{gathered}
\] & Julian day & \[
\begin{aligned}
& \text { Time } \\
& \text { (GMT) }
\end{aligned}
\] & \[
\begin{gathered}
\text { Date } \\
(1969) \\
\hline
\end{gathered}
\] & Julian day & \[
\begin{aligned}
& \text { Time } \\
& \text { (GMT) }
\end{aligned}
\] \\
\hline May 25 & 145 & 1353 & \multirow[t]{2}{*}{\[
\text { May }_{\text {" }} 31
\]} & 151 & 0455 \\
\hline & " & 1658 & & " & 1710 \\
\hline " & " & 1957 & " & " & 1953 \\
\hline " & " & 2256 & " & " & 2302 \\
\hline \multirow[t]{2}{*}{May \({ }_{\text {" }}{ }^{\text {a }}\)} & 146 & 0459 & \multirow[t]{2}{*}{June 1} & \multirow[t]{2}{*}{152} & 0448 \\
\hline & " & 1955 & & & 0819 \\
\hline \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{2303} & " & " & 1055 \\
\hline & & & " & " & 1351 \\
\hline \multirow[t]{2}{*}{May 27} & 147 & 0155 & " & " & 1656 \\
\hline & " & 0453 & " & " & 1954 \\
\hline " & " & 0755 & " & " & 2304 \\
\hline " & " & 1056 & & & \\
\hline " & " & 1658 & \multirow[t]{2}{*}{June 2} & 153 & \multirow[t]{2}{*}{0153} \\
\hline \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{2314} & & & \\
\hline & & & June 7 & 158 & 0339 \\
\hline May 28 & 148 & 0155 & " & " & 0407 \\
\hline & " & 0503 & " & " & 0428 \\
\hline " & " & 0755 & " & " & 0445 \\
\hline " & " & 1057 & " & " & 0505 \\
\hline " & " & 1351 & \multirow[t]{2}{*}{"} & " & 0527 \\
\hline " & " & 1656 & & " & 0544 \\
\hline " & " & 2002 & \multirow[b]{2}{*}{June 8} & & \\
\hline \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{2256} & & \multirow[t]{2}{*}{\[
\begin{gathered}
159 \\
\hline 1
\end{gathered}
\]} & 0331 \\
\hline & & & " & & 0355 \\
\hline \multirow[t]{2}{*}{\[
\text { May ." }^{30}
\]} & \multirow[t]{2}{*}{150} & 0152 & " & & 0415 \\
\hline & & 0454 & " & " & 0436 \\
\hline " & " & 0750 & \multirow[t]{2}{*}{"} & \multirow[t]{2}{*}{"} & 0515 \\
\hline " & " & 1053 & & & \multirow[t]{2}{*}{0536} \\
\hline " & " & 1329 & " & " & \\
\hline " & " & 1702 & & & \\
\hline " & " & 1957 & & & \\
\hline " & " & 2302 & & & \\
\hline
\end{tabular}
7.6 Supplementary Material Available From the Archive

Microfilm reel No.
STD-5
STD-6

STD-7
STD-8

\section*{Description}

STD program documentation; depth-sorted STD cast inventory; time-series STD cast inventory.
Salinometer log sheets; dead reckoning abstracts; navigation sheets.
Rainier STD frequency plots generated at MTF. Discoverer STD frequency plots generated at MTF.

Microfilm reel No.
STD-9
STD-10

STD-11

STD-12

STD-13

STD-14

STD-15

STD-16

STD-17
STD-18

STD-19

STD-20

STD-21

STD-22

DOC-3

DOC-4

DOC-7

Description
Mt. Mitchell STD frequency plots generated at MTF. Oceanographer STD frequency plots generated at MTF (reel 1).
Oceanographer STD frequency plots generated at MTF (reel 2).

Rockaway STD frequency plots generated at MTF (reel 1).

Rockaway STD frequency plots generated at MTF (reel 2).
Rockaway STD frequency plots generated at MIF (reel 3).
Rockaway STD frequency plots generated at MTF (reel 4).

Rockaway STD frequency plots generated at MTF (reel 5).
STD strip charts, all ships, Period I.
STD strip charts, Oceanographer, Rainier, and Mt. Mitchell, Period II.
STD strip charts, Discoverer and Rockaway, Period II; Oceanographer, Mt. Mitchell, and Rainier, Period III.
STD strip charts, Discoverer and Rockaway, Period III; Oceanographer, Period IV.
STD strip charts, Rainier, Mt. Mitchell, Discoverer, and Rockaway, Period IV.
Nansen cast reduction sheets, Rockaway; STD R/S (rainy day) recording form, Oceanographer, Rainier, Discoverer, and Mt. Mitchell; oceanographic log sheets, Rainier, Mt. Mitchell, and Discoverer.
Reproduction of the original NAVOCEANO CTEM SeaSurface Log used on all ships for manual recording of sea-surface temperature based on bucked thermometer readings; also contains the Discoverer Weather Radar Log and the Surface-Pressure--Marine Mícrobarograms.
Reproduction of the Radio Transmission Log used on all ships for transmission of STD data to Barbados twice daily.

Card 3 - STD Observation Form; also on this reel are Card 2 - BLIP Calibration Form, and Card 4 Ship Operations Form.
```

Magnetic tape No.
B9622
Documents
(BO-1-1A-4995) R-066-2
(BO-1-5B-4995) R-066-4
(BO-1-5A-4995) R-06625

```

Magnetic tape No. B9622

Documents
(BO-1-1A-4995) R-066-2
(BO-1-5B-4995) R-066-4
(BO-1-5A-4995) R-06625

\section*{Description}

STD Observation Form data; one of four data files on this tape; the other files contain marine meteorological observations, ship operations data, and radiometersonde data.

Title
BOMEX Software System, Program Documentation for SCARD Digitize STD, General Electric, June 1971.

BOMEX Software System, Program Documentation for Rawinsonde/STD Plot, General Electric, July 1971.

BOMEX Software System, Program Documentation for BLIP/STD Plot. General Electric, July 1971.

\subsection*{7.7 Material in Temporary Storage}
```

Hard-copy material, consisting of original manual logs, strip charts, and the like, has been placed in temporary storage for a period of 3 years. Inquiries concerning this material should be addressed to the Center for Experiment Design and Data Analysis, EDS, NOAA, Washington, D. C. 20235.

```

\section*{8. SURFACE RADAR DATA SET}

Surface weather radar data were collected from two observation stations: (1) the island of Barbados west of the BOMEX array, and (2) aboard the NOAA ship Discoverer, located at the southeast corner of the BOMEX fixed-ship array.

\subsection*{8.1 Equipment and Observation Procedures}

\subsection*{8.1.1 Island Radar}

The U.S. Army Atmospheric Sciences Laboratory (ASL), Electronics Command (ECOM), Fort Monmouth, New Jersey, as directed by the Army Materiel Command, provided a weather radar team on Barbados to obtain quantitative estimates of precipitation and storm characteristics for mission planning and time-lapse photography of the off-center scope to study the origin, development, movement, size, and intensity of tropical weather disturbances within the range of the radar. An AN/MPS-34 van-mounted weather radar, two U.S. Army power generators, Model 4070, and auxiliary equipment were used, located on Hackleton's Cliff near the east coast of the island approximately 65 mi from the perimeter of the BOMEX square and 96 mi from the Mt. Mitchell, which was positioned at the southwest corner of the BOMEX fixed-ship array. The antenna elevation at approximately 950 ft above mean sea level extended the radar horizon. With the antenna elevation angle at approximately zero degree, it was possible to detect many targets at ranges up to 200 nmi or greater.

Characteristics of the AN/MPS radar are listed in table 8-1. Only long-pulse operation was used.

Fifty-eight \(100-\mathrm{ft}\) rolls of \(35-\mathrm{mm}\) film containing photographs of the radar plan-position indicator (PPI) scope were obtained. A gain-step system to reduce receiver gain was used to acquire quantitative information about storm intensities. This system provided for five gain steps, calibrated to yield increments of 19 dB for step 1 ; 8 dB for step 2, step 3, and step 4; and 6 dB for step 5. Gain-step increments were checked for each new roll of \(35-\mathrm{mm}\) film and were recalibrated if any step had drifted by more than 2 dB , and the observed gain settings were recorded in an equipment log book. The procedure for calibrating both gain step and film provided a photographic record of minimum detectable signal on the film for the gain settings.

The radar film is documented in "Weather Radar Investigations on the BOMEX," a report by Michael D. Hudlow, who served as Project Scientist for the weather radar team. The report contains a quality review of each reel, describes operational and calibration procedures, and results of gain-step and film calibration, automatic camera settings for each mode of operation, and provides other significant information for film interpretation. Listed

Table 8-1.-Characteristics of the AN/MPS radar (long pulse)
\begin{tabular}{ll}
\hline \multicolumn{1}{c}{ Characteristic } & Probable value \\
\hline Transmitted power (peak) & 180 kW \\
Wavelength & 3.2 cm \\
Antenna shape & Parabolic \\
Horizontal beam width & \(1^{\circ}\) \\
Vertical beam width & \(1^{0}\) \\
Antenna gain & 26,300 (dimensionless) \\
Antenna rotation rate & 5 rpm \\
Minimum detectable signal & -105 dBm \\
Linear receiver & 17 to 20 dB \\
Dynamic range (receiver) & 186 pps \\
Linear receiver & 5 x \(10^{-6} \mathrm{~s}\) \\
Pulse repetition frequency & Not used \\
Sulse width & Statute miles \\
Range units & \\
\hline
\end{tabular}
as Research and Development Technical Report ECOM-3329, the document should be ordered by users from Federal agencies from:

Defense Documentation Center
ATTN:. UNC-TCA
Cameron Station (Bldg. 5)
Alexandria, Virginia 22314,
and by users from non-Government groups from:
National Technical Information Service
U.S. Department of Commerce

Sills Bldg., 5285 Port Royal Road Springfield, Virginia 22151

\subsection*{8.1.2 Discoverer Radar}

Weather radar data were obtained aboard the Discoverer from the southeast corner of the BOMEX fixed-ship array by a Selenia radar, Model METEOR 200 RMT-2S, whenever this radar was not being used for rawinsonde balloon tracking. Characteristics of the Selenia radar are given in table 8-2.

During weather radar surveillance, \(35-m m\) photographs were taken of the PPI on a VD-2 repeater displaying maximum ranges up to 200 nmi . The photographs were taken every 12 sweeps for l-sweep exposures (12 s). In
addition, every 30 min, usually, an attenuation-elevation sequence was taken, for which the camera mounted on the VD-2 repeater was set to take one frame every other sweep (rotation of the radar antenna). With the tilt angle held at \(0^{\circ}\), the receiver gain was attenuated in calibrated steps. The first step was 15 dB ; the remaining steps were 6 dB . Following the gain sequence, the antenna was tilted in 1 or \(2^{\circ}\) steps at normal receiver gain until all echoes had disappeared. At the conclusion of the altitude sequence the antenna was returned to \(0 \%\).

A Weather Radar Log was kept aboard the Discoverer for manual recording of daily weather radar operations. Each page is labeled with date, data ID code, and page number. A new page was usually begun at the start of each GMT . day.

Table 8-2.--Discoverer Selenia radar characteristics
\begin{tabular}{ll}
\hline \multicolumn{1}{c}{ Characteristics } & Nominal value \\
\hline Transmitted power & 175 kW (peak) \\
Wavelength & 3.2 cm \\
Antenna shape/diameter & Parabolic/l.4 m \\
Horizontal beam width & \(1.25^{\circ}\) \\
Vertical beam width & \(1.25^{\circ}\) \\
Antenna rotation rate & 5 rpm \\
Minimum detectable signal & -97 dBm \\
Pulse repetition rate & \(240 \pm 10 \% \mathrm{pps}\) \\
Pulse width & \(3 \times 106 \mathrm{~s}\) \\
Range units & Nautical miles \\
Sensitivity time control & On \\
\hline
\end{tabular}

\subsection*{8.2 Digitizing of Radar Composites}

The photographic data at base tilt angle obtained by the island and Discoverer radars during BOMEX Periods II and III were digitized using a pencil follower coordinate digitizer (Model \(P F-10 C\) ), which records \(x\) and \(y\) coordinates of radar echoes onto \(71 / 2-\) in magnetic tape. Being the region of interest for the BOMEX array, the Discoverer radar data for the northwest quadrant only were digitized.

The following criteria were used in selecting PPI photographs for digitization:
(1) When cloud cover of any size appears beyond 35 mi on the first photo after the normal, then photo selection should proceed at
the rate of one (1) gain sequence every 20 min when available. This constitutes an "active period."
(2) When no data are beyond 35 mi on the first photo after the normal, selection should proceed at the rate of one (1) photo sequence every hour.
(3) Checks should also be made for:
(a) the absence of, or improper, range markers,
(b) deviation of the antenna angle from zero (noted on the data block),
(c) too much noise, and
(d) an illegible clock or data block.

Every photograph in a gain-step sequence with any radar echoes was digitized. Also, one blank photo at the end of a sequence was required, so that the maximum power returned could be determined. In the absence of a blank photo at the end of a sequence, a "fictitious" or "dummy" photo was used, which consists of a duplicate coding of the last photo available in a gain-step sequence, except for photo number, power level, gain-step number, gain-step indicator, and digitization of echoes. For example:

Normal - has data.
First gain-step attenuation - has data.
Second gain-step attenuation - has data, but is the last photo available in the sequence

Fictitious photo - third gain-step attenuation coded as prescribed above.
The power levels for the island radar were taken from the Army radar log contained in "Weather Radar Investigations on the BOMEX," the report referred to in the preceding section. Starting on \(p .70\) in that document, the 35 -mm radar film is itemized by rolls. Whenever a new roll of film was started, calibrations were made to determine the power levels. For the Discoverer radar, power levels were based on the minimum detectable signal (MDS) and the specified attenuation steps. Final determination of the power levels for both radars was made by intercomparisons of the island radar vs. the island rain-gage network and the island vs. the Discoverer radars. These levels are listed with the gain-step sequences for both radars in the digitized data set.

Manual digitizing of the gain-sequenced PPI photographs was restricted to a nominal spatial resolution of 4 statute mi. The exact scale factor is listed in the header information of each gain-step sequence. After each 35-mm PPI oscilloscope photograph in a given gain-step attenuation sequence had been digitized, the individual photographs were edited and checked for correct header information and proper data content. The photos within a gainstep sequence were then superimposed by means of a CDC-6600 computer, which aligned the fiducial line and displayed the digitized radar echoes relative to the radar origin, retaining only the highest gain-step observed at any \(x-y\) grid point within the radar \(y\) umbrella.

\section*{8．3 Archive Format and Data Inventory}

\section*{8．3．1 Island Radar Photographs}

Photographs of the radar plan PPI scope obtained by the island radar are archived on both registered and unregistered \(35-\mathrm{mm}\) microfilm．An inven－ tory of these data is given in table 8－3．

\section*{8．3．2 Discoverer Radar Photographs}

The Discoverer radar photographs are archived on both registered and unregistered \(35-\mathrm{mm}\) microfilm．All dates，and beginning and ending times are as read from the original radar film．In some instances，these entries may not be correct，but such anomalies can usually be corrected by referring to the Discoverer Weather Radar Log．

On each roll of film the following code is included：
＂STC＂means Sensitivity Time Control（STC）is on．
Gain attenuation：
\begin{tabular}{lr|r|r|r|r|r|r|r|r|r|r} 
dB & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30 & 33 \\
Light & 3,4 & 1,2 & \(1,2,3\) & 1,3 & 1 & 1,4 & 2 & 2,3 & 3 & 2,4 & 4
\end{tabular}

If light \(⿰ ⿰ 三 丨 ⿰ 丨 三 5\) is on，add 33 dB ．
The normal attenuation sequence begins with 15 dB and increases in 6－dB steps until all echoes disappear．

Elevation：Lights \(1,2,3\) ，and 4 are on if elevation is not zero．The normal elevation sequence consists of \(1^{\circ}\) steps from \(0^{\circ}\) until all echoes dis－ appear．Before 2230 GMT，June 20， 1969 （Frame \＃9562）， \(2^{\circ}\) elevation steps were used．

An inventory of the Discoverer radar photographs is given in table 8－4．

\section*{8．3．3 Discoverer Weather Radar Log}

The Weather Radar Log is archived as microfilm copies of the original handwritten logs，which are arranged in chronological order for BOMEX Obser－ vation Periods II，III，and IV；there are no log sheets for Period I．Entries are：
（1）Camera on or off with indication of photograph frequency．
（2）Start to finish of attenuation－elevation sequence．
（3）Change of photograph frequency．
（4）Winding and setting of data chamber clock．
（5）Calibration sequences．
（6）Magazine changes．
(7) Start or stop of precipitation on station.
(8) Hourly synopsis of activity observed.
(9) Error or changes in normal operations procedure.
(10) Any other item the operator thought was significant to the project

The Discoverer Weather Radar Log is contained on microfilm reel No. DOC-3. This reel also contains the BOMEX Surface Pressure-Marine Microbarograms (sec. 3) and the NAVOCEANO CTEM Sea-Surface Temperature Log (sec. 6).

Table 8-3.--Island AN/MPS-34 radar data inventory
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Microfilm reel No.} & \multicolumn{3}{|r|}{Date and time of first frame} & \multicolumn{3}{|r|}{Date and time of last frame} \\
\hline & & 69 & Local hr:min & & 69 & Local hr:min \\
\hline 1 & May & 3 & 0100 & May & 6 & 1540 \\
\hline 2 & & 6 & 1825 & & 9 & 2318 \\
\hline 3 & & 9 & 2330 & & 13 & 0000 \\
\hline 4 & & 13 & 0013 & & 13 & 2007 \\
\hline 5 & & 13 & 2203 & & 15 & 1940 \\
\hline 6 & & 15 & 2000 & & 23 & 0116 \\
\hline 7 & & 23 & 0245 & & 23 & 0518 \\
\hline 8 & & 24 & 0705 & & 24 & 2207 \\
\hline 9 & & 25 & 0000 & & 26 & 0108 \\
\hline 10 & & 26 & 0309 & & 26 & 2210 \\
\hline 11 & & 26 & 2330 & & 28. & 1450 \\
\hline 12 & & 29 & 0100 & & 30 & 1405 \\
\hline 13 & & 30 & 1450 & & 31 & 1104 \\
\hline 14 & & 31 & 1240 & June & 1 & 1510 \\
\hline 15 & June & 1 & 1530 & & 2 & 0300 \\
\hline 16 & & 2 & 0405 & & 2 & 1745 \\
\hline 17 & & 2 & 2112 & & 3 & 0450 \\
\hline 18 & & 3 & 0705 & & 3 & 1618 \\
\hline 19 & & 3 & 1730 & & 4 & 0350 \\
\hline 20 & & 4 & 0525 & & 4 & 2035 \\
\hline 21 & & 4 & 2115 & & 6 & 1048 \\
\hline 22 & & 6 & 1120 & & 7 & 0020 \\
\hline 23 & & 7 & 0155 & & 7 & 1548 \\
\hline 24 & & 7 & 1725 & & 8 & 1047 \\
\hline 25 & & 8 & 1123 & & 9 & 0712 \\
\hline
\end{tabular}

Table 8-3.--Island AN/MPS-34 radar data inventory (continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Microfilm reel No.} & \multicolumn{3}{|r|}{Date and time of first frame} & \multicolumn{3}{|r|}{Date and time of last frame} \\
\hline & & 1969 & Local hr:min & & 1969 & Local hr:min \\
\hline 26 & June & 9 & 0830 & June & 10 & 0500 \\
\hline 27 & & 10 & 0637 & & 10 & 1535 \\
\hline 28 & & 10 & 1550 & & 19 & 0651 \\
\hline 29 & & 19 & , 0720 & & 20 & 1407 \\
\hline 30 & & 20 & 1430 & & 21 & 0520 \\
\hline 31 & & 21 & 0610 & & 21 & 2225 \\
\hline 32 & & 21 & 2358 & & 23 & 1237 \\
\hline 33 & & 23 & 1255 & & 25 & 0825 \\
\hline 34 & & 25 & 0844 & & 26 & 0920 \\
\hline 35 & & 26 & 1008 & & 27 & 1425 \\
\hline 36 & & 27 & 1435 & & 28 & 0855 \\
\hline 37 & & 28 & 0915 & & 29 & 0800 \\
\hline 38 & & 29 & 0815 & & 29 & 2135 \\
\hline 39 & & 29 & 2203 & July & 1 & 0008 \\
\hline 40 & July & 1 & 0026 & & 1 & 2030 \\
\hline 41 & & 8 & 1100 & & 9 & 1700 \\
\hline 42 & & 9 & 1724 & & 10 & 1000 \\
\hline 43 & & 10 & 1215 & & 11 & 1440 \\
\hline 44 & & 12 & 0002 & & 12 & 2305 \\
\hline 45 & & 12 & 2319 & & 13 & 1257 \\
\hline 46 & & 13 & 2242 & & 14 & 1005 \\
\hline 47 & & 15 & 0005 & & 16 & 0723 \\
\hline 48 & & 16 & 1735 & & 17 & 1808 \\
\hline 49 & & 17 & 1820 & & 18 & 1257 \\
\hline 50 & & 18 & 1315 & & 19 & 0555 \\
\hline 51 & & 19 & 0645 & & 20 & 1800 \\
\hline 52 & & 20 & 1825 & & 21 & 2204 \\
\hline 53 & & 21 & 2235 & & 22 & 2155 \\
\hline 54 & & 22 & 2215 & & 24 & 0900 \\
\hline 55 & & 24 & 0918 & & 25 & 1455 \\
\hline 56 & & 25 & 1527 & & 26 & 0704 \\
\hline 57 & & 26 & 0730 & & 26 & 2255 \\
\hline 58 & & 26 & 2334 & & 27 & 1159 \\
\hline
\end{tabular}

Table 8-4.-Discoverer radar data inventory
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Microfilm reel No.} & \multicolumn{3}{|r|}{Date and time of first frame} & \multicolumn{3}{|r|}{Date and time of last frame} \\
\hline & & 1969 & \begin{tabular}{l}
GMT \\
hr:min
\end{tabular} & & 969 & \[
\begin{gathered}
\text { GMT } \\
\mathrm{hr}: \mathrm{min}
\end{gathered}
\] \\
\hline 59 & May & 24 & 0000 & May & 27 & 2154 \\
\hline 60 & & 27 & 2200 & & 29 & 1101 \\
\hline 61 & & 29 & 1630 & June & 1 & 1625 \\
\hline 62 & June & 1 & 1645 & & 4 & 2300 \\
\hline 63 & & 4 & 2309 & & 20 & 2315 \\
\hline 64 & & 20 & 2320 & & 24 & 0542 \\
\hline 65 & & 25 & 2143 & & 27 & 1557 \\
\hline 66 & & 27 & 1557 & & 29 & 0357 \\
\hline 67 & & 29 & 0409 & July & 2 & 0433 \\
\hline 68 & July & 2 & 0435 & & 13 & 1257 \\
\hline 69 & & 13 & 0303 & & 16 & 0105 \\
\hline 70 & & 16 & 0114 & & 17 & 1415 \\
\hline 71 & & 17 & 1417 & & 30 & 1643 \\
\hline 72 & & 20 & 1651 & & 23 & 1449 \\
\hline 73 & & 23 & 14.50 & & 25 & 1616 \\
\hline 74 & & 25 & \[
1650
\] & & 27 & 1716 \\
\hline 75 & & 27 & 1722 & & 28 & 2049 \\
\hline
\end{tabular}

\subsection*{8.3.4 Digitized Radar Composites}

The digitized and superimposed radar composites are stored on magnetic tape and microfilm. Header information on both tape and microfilm consists of the following:

Photo number from gain step 1.
Photo number from last gain step in a sequence.
Julian day, 1969.
Time of first photo (HHMMSS). (Local time.)
Time of last photo (HHMMSS). (Local time.)
Last photo sequence code. (Real \(=1\), dummy \(=2\).)
Gain steps 1 through 6 . (Recorded in -dBm.)
Antenna tilt in degrees.

Latitude deviation from "on station " in statute miles. (- = south; \(+=\) north.)
Longitude deviation from "on station " in statute miles. (- = west; + = east.)

Ground clutter range in statute miles.
Fiducial angle in degrees.
Fiducial distance in statute miles.
Radar No. (Island \(=1\); Discoverer \(=2\).)
Scale factor times 100 in statute miles.
STC ( \(0=\) off; \(1=o n\). )
Number of composite points.
Reserved.
Percent of accuracy.
The display of the radar echo data consists of digits 1 through 6 on a rectangular \(x-y\) grid at a spatial resolution indicated by the scale factor. The interpretation of the digits is as follows:
\(1=\) Normal photo
2 = First gain-step attenuation photo
-
-
6 = Fifth gain-step attenuation photo

The accurate superposition of the digitized radar data is limited by such factors as (1) the finite resolution of the digitizing procedure, (2) human error during manual digitizing, and (3) large elapsed time differences between the first and last photos in a gain-step attenuation sequence and resulting drift in radar echo position. The effects of human error were held to a minimum by comparing the digitized data with the original PPI oscilloscope photographs and, when necessary, rechecking and redigitizing. Any remaining problems in superpositioning were flagged in the compositing software by a logic algorithm that requires higher level gain-step attenuation data at any \(x\)-y grid point to have been preceded by all lower level gain-step attenuation data at the same \(x-y\) point. When these criteria were not met, an error was counted, which is reflected in the header information as the percent accuracy count. Because of the above limitations in the digitized gain-step composites, it is recommended that these data be used in conjunction with the original \(35-\mathrm{mm}\) photographic data.

The magnetic tape format for the island radar (radar No. 1) and the Discoverer radar (radar No. 2) is as follows:

An end of file separates the header records from the data files. Each photo is a composite, and there is an end of file after each photo with a double end of file at end of data. The file for each photo is constructed as follows:

Physical record 1 contains 30 right-justified 10 -character \(B C D\) words. Each word can be decoded via an IIO format.

Word 1. Photo number from gain step 1.
2. Photo number from last gain step in a sequence.
3. Julian date.
4. Time of first photo (HHMMSS).
5. Time of last photo (HHMMSS).
6. Last photo sequence code. (Real equals 1, dummy equals 2.)

7-12. Gain steps 1 through 6. (Recorded in -dBm.)
13. Antenna tilt in degrees.
14. Latitude.
15. Longitude.
16. Ground clutter range.
17. Fiducial angle.
18. Fiducial distance.
19. Radar No.
20. Scale factor times 100.
21. \(S T C, 0=o f f, 1=o n\).
22. Number of composite points.
23. Reserved.
24. Percent of accuracy.

Physical records 2 and 3 contain the \(x\) and \(y\) coordinates. The \(x\) is packed in the upper half of each word. The \(y\) is in the lower half. Each \(x\) and \(y\) can be decoded using a 215 format. The number of points available may be obtained from word 22 of physical record No. 1.

Physical records \(4-5\) are the gain step value associated with each \(x-y\) pair. These values represent the highest gain step that was recorded and/or accepted.

Records 2-5 are filled to the end with dummy values of 99999. They are 500 words long and are in BCD. \(A\) word \(=60\) bits.

Table 8-5 shows the numbers of the magnetic tapes and microfilm reels containing the digitized radar composites. A complete inventory of the digitized radar composites is given in table 8-6.

Table 8-5.--Digitized surface radar composites
\begin{tabular}{cccc}
\hline \begin{tabular}{c} 
Magnetic \\
tape No.
\end{tabular} & \begin{tabular}{c} 
Microfilm \\
reel No.
\end{tabular} & Radar & \begin{tabular}{c} 
BOMEX Observation \\
Period
\end{tabular} \\
B8176 & RAD-1 & Island & II \\
B8179 & RAD-2 & Discoverer & II \\
B8867 & RAD-3 & Island & III \\
\hline
\end{tabular}

\subsection*{8.4 Material in Temporary Storage}

Hard-copy material, consisting of original manual logs and the like, have been put into temporary storage for a 3-yr period. Inquiries concerning this material should be addressed to the Center for Experiment Design and Data Analysis (CEDDA), EDS, NOAA, Page Bldg. 2, Washington, D.C. 20235.

Table 8-6. - Inventory of digitized radar composites
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 151 & last & J. & Start & END & Last & & gain & STEP & Pow & Ers & & ant. & Lat & Lon & GNO & Fio & FID & ranar & scale & & omp. & rotal & 010 \\
\hline PIC & PIC & date & time & time & \[
\begin{aligned}
& \text { PIC } \\
& \text { CODE }
\end{aligned}
\] & 1 & 2 & 3 & 4 & 5 & 6 & tILT & & & CLTR & ang & nist. & No & \(\times 100\) & & PTS. & GS PTS. & acc. \\
\hline 3000 & 3004 & 150 & 123602 & 124832 & 2 & 82 & 64 & 58 & 48 & 40 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 406 & 0 & 36 & 45 & 95 \\
\hline 3005 & 3008 & 150 & 145014 & 145052 & 1 & 82 & 64 & 57 & 4 A & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 26 & 36 & 88 \\
\hline 3011 & 3013 & 150 & 151001 & 151126 & 2 & 82 & 64 & 57 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 399 & 0 & 31 & 36 & 80 \\
\hline 3014 & 3017 & 150 & 153149 & 15354 Q & 2 & 82 & 64 & 57 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 32. & 41 & 65 \\
\hline 3018 & 3021 & 150 & 155534 & 155722 & 2 & 82 & 64 & 57 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 418 & 0 & 29 & 35 & 48 \\
\hline 3025 & 3027 & 150 & 164324 & 164914 & 1 & 82 & 64 & 57 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 407 & 0 & 18 & 22 & 90 \\
\hline 3028 & 3030 & 150 & 165855 & 170245 & 1 & 82 & 64 & 57 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 414 & 0 & 9 & 10 & 89 \\
\hline 3031 & 3032 & 150 & 175806 & 175932 & 1 & 82 & 64 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 416 & 0 & 2 & 2 & 100 \\
\hline 3033 & 3034 & 150 & 185655 & 185655 & 2 & 82 & 64 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 410 & 0 & 4 & 4 & 100 \\
\hline 3035 & 3036 & 150 & 195652 & 195652 & 2 & 82 & 64 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 422 & 0 & 20 & 20 & 100 \\
\hline 3037 & 3040 & 150 & 210514 & 210639 & 2 & 82 & 64 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 405 & 0 & 32 & 43 & 88 \\
\hline 3041 & 3044 & 150 & 215930 & 215959 & 2 & 82 & 64 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 406 & 0 & 55 & 63 & 88 \\
\hline 3045 & 3048 & 150 & 233553 & 233616 & 2 & 82 & 64 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 410. & 0 & 87 & 124 & 81 \\
\hline 3049 & 3053 & 151 & 653 & 1106 & 1 & 82 & 64 & 56 & 4 A & 40 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 410 & 0 & 85 & 115 & 79 \\
\hline 3054 & 3057 & 151 & 2505 & 2741 & 2 & 82 & 64 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 410 & 0 & 69 & 82 & 67 \\
\hline 3058 & 3063 & 151 & 4435 & 5008 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 409 & 0 & 73 & 86 & 69 \\
\hline 3064 & 3069 & 151 & 10759 & 11336 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 413 & 0 & 92 & 113 & 76 \\
\hline 3070 & 3075 & 151 & 13026 & 13757 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 96 & 118 & 80 \\
\hline 3076 & 3081 & 151 & 15450 & 20049 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 99 & 131 & 59 \\
\hline 3082 & 3087 & 151 & 21816 & 22446 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 94. & 133 & 65 \\
\hline 3088 & 3093 & 151 & 24143 & 24712 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 92 & 139 & 61 \\
\hline 3094 & 3099 & 151 & 31000 & 31531 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 37 & 70 & 300 & 1 & 411 & 0 & 104 & 169 & 12 \\
\hline 3100 & 3105 & 151 & 33127. & 33853 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & . 77 & 118 & 55 \\
\hline 3106 & 3111 & 151 & 35549 & 40122 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 110 & 160 & 65 \\
\hline 3112 & 3117 & 151 & 41816 & 42546 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 94 & 132 & 56 \\
\hline 3118 & 3123 & 151 & 44242 & 44844 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 406 & 0 & 103 & 161 & 73 \\
\hline
\end{tabular}

Table 8-6. --Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(15 T\) & last & J. & StART & ND & LASt & & GAIN & STEP & & WERS & & ANT. & & LON & GND & F10 & F10 & ranar & SCale & & COMP. & total & , \\
\hline PIC & PIC & Date & time & TIME & PIC CODE & & & & 4 & 5 & 6 & TILT & & & Clit & ang & Dist. & No & \(\times 100\) & & PTS. & GS PTS. & ACC. \\
\hline 3124 & 3129 & 151 & 51353 & 52026 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 406 & 0 & 45 & 69 & 47 \\
\hline 3130 & 3135 & 151 & 53620 & 54348 & 1 & 82 & 24 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 106 & 148 & 60 \\
\hline 3136 & 3141 & 151 & 55943 & 60512 & 1 & 82 & 24 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 39 & 70 & 300 & 1 & 412 & 0 & 76 & 117 & 49 \\
\hline 3142 & 3145 & 151 & 61518 & 61953 & 2 & 82 & 64 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 410 & 0 & 91 & 137 & 81 \\
\hline 3146 & 3151 & 151 & 64451 & 65222 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 410 & 0 & 89 & 130 & 59 \\
\hline 3152 & 3157 & 151 & 70714 & 71446 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 405 & 0 & 90 & 150 & 69 \\
\hline 3158 & 3163 & 151 & 72352 & 72925 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 410 & 0 & 92 & 147 & 72 \\
\hline 3164 & 3165 & 151 & 74048 & 74048 & 2 & 82 & 64 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 407 & ', & 95 & 95 & 100 \\
\hline 3166 & 3169 & 151 & 74957 & 75234 & 2 & 82 & 64 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 414: & 0 & 121 & 147 & 80 \\
\hline 3170 & 3173 & 151 & 80830 & 81207 & 2 & 82 & 64 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 411 & 0 & 91 & 119 & 84 \\
\hline 3174 & 3177 & 151 & 82803 & 83141 & 2 & 82 & 64 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 409 & 0 & 87 & 106 & 88 \\
\hline 3178 & 3181 & 151 & 84837 & 85014 & 2 & 82 & 64 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 410 & 0 & 84 & 107 & 81 \\
\hline 3182 & 3183 & 151 & 90829 & 90829 & 2 & 82 & 64 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 409 & 0 & 74 & 74 & 100 \\
\hline 3184 & 3189 & 151 & 93258 & 93922 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 414 & 0 & 91 & 110 & 76 \\
\hline 3190 & 3195 & 151 & 95527 & 100252 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 411 & \(0 \cdot\) & 79 & 93 & 69 \\
\hline 3196 & 3201 & 151 & 101956 & 102528 & 1 & 82 & 24 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 409 & 0 & 85 & 115 & 75 \\
\hline 3202 & 3207 & 151 & 104327 & 104900 & 1 & 82 & 24 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 406 & 0 & 59 & 88 & 76 \\
\hline 3208 & 3213 & 151 & 110745 & 110936 & 2 & 82 & 24 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 407 & 0 & 79 & 101 & 78 \\
\hline 3214 & 3219 & 151 & 124025 & 124540 & 1 & 82 & 67 & 56 & 50 & 42 & 36 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 402 & 0 & 77 & 102 & 86 \\
\hline 3220 & 3225 & 151 & 130656 & 131112 & 1 & 82 & 27 & 56 & 50 & 42 & 36 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 410 & 0 & 62 & 76 & 81 \\
\hline 3226 & 3231 & 151 & 133400 & 133819 & 1 & 82 & 27 & 56 & 50 & 42 & 36 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 410 & 0 & 69 & 84 & 71 \\
\hline 3232 & 3235 & 151 & 135436 & 135619 & 2 & 82 & 67 & 56 & 50 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 398 & 0 & 57 & 76 & 90 \\
\hline 3236 & 3239 & 151 & 141552 & 141734 & 2 & 82 & 27 & 56 & 50 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 404 & 0 & 50 & 65 & 84 \\
\hline 3240 & 3243 & 151 & 143748 & 143930 & 2 & 82 & 27 & 56 & 50 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 405 & 0 & 59 & 81 & 83 \\
\hline 3244 & 3247 & 151 & 150008 & 150250 & 2 & 82 & 67 & 56 & 50 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 403 & 0 & 61 & 81 & 80 \\
\hline 3248 & 3251 & 151 & 152037 & 152317 & 2 & 82 & 67 & 56 & 50 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 393 & 0 & 49 & 64 & 76 \\
\hline
\end{tabular}

Table 8-6.--Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 151 \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & J. & START TIME & \[
\begin{aligned}
& \text { END } \\
& \text { TIME }
\end{aligned}
\] & \begin{tabular}{l}
LAST \\
PIC \\
CODE
\end{tabular} & \[
1^{G}
\] & \[
\begin{array}{r}
\text { GAIN } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & & & 6 & \[
\begin{aligned}
& \text { ANT. } \\
& \text { TILT }
\end{aligned}
\] & & LON & \[
\begin{aligned}
& \text { GND } \\
& \text { CLTR }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FIO } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { DIST. }
\end{aligned}
\] & RADAR
no & \[
\begin{gathered}
\text { SCALE } \\
\text { xIDO }
\end{gathered}
\] & stc & \[
\begin{gathered}
\text { COMP. } \\
\text { PTS. }
\end{gathered}
\] & TOTAL GS PTS. & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 3252 & 3255 & 151 & 160820 & 160844 & 2 & 82 & 67 & 56 & 50 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 402 & 0 & 42 & 54 & 87 \\
\hline 3256 & 3259 & 151 & 164728 & 164755 & 2 & 82 & 67 & 56 & 50 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 23 & 31 & 87 \\
\hline 3260 & 3263 & 151 & 171800 & 171825 & 2 & 82 & 67 & 56 & 50 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 405 & 0 & 29 & 36 & 88 \\
\hline 3264 & 3267 & 151 & 175945 & 180008 & 2 & 82 & 67 & 56 & 50 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 403 & 0 & 40 & 53 & 88 \\
\hline 3268 & 3271 & 151 & 183040 & 183106 & 2 & 82 & 67 & 56 & 50 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 403 & 0 & 48 & 59 & 91 \\
\hline 3272 & 3275 & 151 & 190010 & 190035 & 2 & 82 & 67 & 56 & 50 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 403 & 0 & 43 & 56 & 96 \\
\hline 3276 & 3277 & 151 & 193745 & 193745 & 2 & 82 & 67 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 43 & 43 & 100 \\
\hline 3278 & 3279 & 151 & 220623 & 220623 & 2 & 02 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 29 & 29 & 100 \\
\hline 3280 & 3281 & 151 & 223900 & 223907 & 1 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 21 & 21 & 100 \\
\hline 3282 & 3283 & 151 & 230615 & 230625 & 1 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 31 & 31 & 100 \\
\hline 3284 & 3287 & 151 & 232845 & 232900 & 2 & 82 & 62 & 54 & 46 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 404 & 0 & 34 & 34 & 82 \\
\hline 3288 & 3290 & 152 & 0 & 22 & 1 & 82 & 62 & 54 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 404 & 0 & 29 & 30 & 100 \\
\hline 3291 & 3292 & 152 & 3100 & 3100 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 403 & 0 & 23 & 23 & 100 \\
\hline 3293 & 3294 & 152 & 10000 & 10000 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 33 & 33 & 100 \\
\hline 3295 & 3296 & 152 & 13100 & 13100 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 404 & 0 & 25 & 25 & 100 \\
\hline 3297 & 3298 & 152 & 20000 & 20000 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 25 & 25 & 100 \\
\hline 3299 & 3301 & 152 & 22700 & 22900 & 1 & 82 & 62 & 54 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 403 & 0 & 30 & 30 & 86 \\
\hline 3302 & 3305 & 152 & 30000 & 30200 & 2 & 82 & 62 & 54 & 46 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 404 & 0 & 33 & 35 & 68 \\
\hline 3306 & 3309 & 152 & 33100 & 33300 & 2 & 82 & 62 & 54 & 46 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 23 & 25 & 71 \\
\hline 3310 & 3313 & 152 & 40300 & 40500 & 2 & 82 & 62 & 54 & 46 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 404 & 0 & 26 & 28 & 67 \\
\hline 3314 & 3317 & 152 & 42900 & 43200 & 2 & 82 & 62 & 54 & 46 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 404 & 0 & 32 & 32 & 84 \\
\hline 3318 & 3319 & 152 & 50100 & 50200 & 1 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 35 & 35 & 97 \\
\hline 3320 & 3321 & 152 & 53300 & 53300 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 404 & 0 & 25 & 25 & 100 \\
\hline 3322 & 3323 & 152 & 60000 & 60000 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 404 & 0 & 21 & 21 & 100 \\
\hline 3324 & 3325 & 152 & 63200 & 63200 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 12 & 12 & 100 \\
\hline 3326 & 3327 & 152 & 70200 & 70200 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 404 & 0 & 20 & 20 & 100 \\
\hline
\end{tabular}

Table 8-6. --Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { IST } \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & date & \begin{tabular}{l}
START \\
TIME
\end{tabular} & \[
\begin{gathered}
\text { END } \\
\text { TIME }
\end{gathered}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC } \\
& \text { CODE }
\end{aligned}
\] & \({ }_{1}^{\text {G }}\) & \[
\begin{gathered}
\text { GAIN } \\
2
\end{gathered}
\] & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & \[
\underset{4}{\mathrm{POWE}}
\] & & 6 & \[
\begin{aligned}
& \text { ANT. } \\
& \text { TILT }
\end{aligned}
\] & & LON & \[
\begin{aligned}
& \text { GLDD } \\
& \text { CLTR }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FiNG } \\
& \text { An }
\end{aligned}
\] & \[
\begin{gathered}
\text { FID } \\
\text { DIST. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { RADAR } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SCALE } \\
& \times 100
\end{aligned}
\] & & \[
\begin{gathered}
\text { COMP. } \\
\text { PTS. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { TOTAL } \\
& \text { GS PTS. }
\end{aligned}
\] & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 3328 & 3329 & 152 & 73000 & 73000 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & - 17 & 17 & 100 \\
\hline 3330 & 3331 & 152 & 80300 & 80300 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 16 & 16 & 100 \\
\hline 3332 & 3333 & 152 & 83000 & 83000 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 3 & 3 & 100 \\
\hline 3334 & 3334 & 152 & 90000 & 90000 & 1 & 82. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 0 & 1 & 100 \\
\hline 3335 & 3336 & 152 & 93100 & 93100 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 402 & 0 & 5 & 5 & 100 \\
\hline 3337 & 3338 & 152 & 100200 & 100200 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 10 & 10 & 100 \\
\hline 3339 & 3340 & 152 & 103200 & 103200 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 404 & 0 & 10 & 10 & 100 \\
\hline 3341 & \(334 ?\) & 152 & 110400 & 110400 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 3 & 3 & 100 \\
\hline 3343 & 3344 & 152 & 113000 & 113000 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 3 & 3 & 100 \\
\hline 3345 & 3345 & 152 & 120500 & 120500 & 1 & 82 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 1 & 1 & 100 \\
\hline 3346 & 3347 & 152 & 123200 & 123200 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 402 & 0 & 3 & 3 & 100 \\
\hline 3348 & 3349 & 152 & 130200 & 130200 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 8 & 8 & 100 \\
\hline 3350 & 3351 & 152 & 132800 & 132800 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 3 & 3 & 100 \\
\hline 3352 & 3353 & 152 & 140000 & 140000 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 4 & 4 & 100 \\
\hline 3354 & 3355 & 152 & 143000 & 143000 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 13 & 13 & 100 \\
\hline 3356 & 3357 & 152 & 150000 & 150000 & 2 & 82 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 404 & 0 & 7 & 7 & 100 \\
\hline 3358 & 3359 & 152 & 153640 & 153640 & 2 & 80 & 55 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 15 & 15 & 100 \\
\hline 3360 & 3361 & 152 & 160045 & 160045 & 2 & 80 & 55 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 27 & 27 & 100 \\
\hline 3362 & 3363 & 152 & 163120 & 163120 & 2 & 80 & 55 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 22 & 22 & 100 \\
\hline 3364 & 3367 & 152 & 170355 & 170420 & 2 & 80 & 55 & 46 & 39 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 26 & 28 & 85 \\
\hline 3368 & 3369 & 152 & 173250 & 173250 & 2 & 80 & 55 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 42 & 42 & 100 \\
\hline 3370 & 3371 & 152 & 180425 & 180425 & 2 & 80 & 55 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 69 & 69 & 100 \\
\hline 3372 & 3375 & 152 & 184412 & 184538 & 2 & 80 & 55 & 46 & 39 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 81 & 93 & 83 \\
\hline 3376 & 3379 & 152 & 192836 & 192903 & 2 & 80 & 55 & 46 & 39 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 84 & 100 & 90 \\
\hline 3380 & 3383 & 152 & 195740 & 195825 & 2 & 80 & 55 & 46 & 39 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & \[
403
\] & 0 & 71 & 78 & 89 \\
\hline 3384 & 3387 & 152 & 203120 & 203144 & 2 & 80 & 55 & 46 & 39 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 88 & 102 & 91 \\
\hline
\end{tabular}

\section*{Table 8-6.--Inventory of digitized radar composites (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { IST } \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & Jote & \[
\begin{aligned}
& \text { START } \\
& \text { E TIME }
\end{aligned}
\] & \[
\begin{aligned}
& \text { END } \\
& \text { TIME }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC } \\
& \text { CODE }
\end{aligned}
\] & \[
\mathbf{1}^{\mathbf{G}}
\] & \[
\begin{array}{r}
\text { GAIM } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & \[
\begin{gathered}
\text { POWE } \\
4
\end{gathered}
\] & & 6 & \[
\begin{aligned}
& \text { ANT. } \\
& \text { TILT }
\end{aligned}
\] & & LON & \[
\begin{array}{r}
\text { GND } \\
\text { CLTR }
\end{array}
\] & \[
\begin{aligned}
& \text { FIO } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{gathered}
\text { FID } \\
\text { DIST. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { RADAR } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & STC & \[
\begin{aligned}
& \text { COMP. } \\
& \text { PTS. }
\end{aligned}
\] & total GS PIS. & \(0 / 0\) ACC. \\
\hline 3388 & 3391 & 152 & 210305 & 210330 & 2 & 80 & 55 & 46 & 39 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 114 & 133 & 87 \\
\hline 3392 & 3395 & 152 & 212920 & 213206 & 2 & 80 & 55 & 46 & 39 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 117 & 136 & 88 \\
\hline 3396 & 3399 & 152 & 220029 & 220215 & 2 & 80 & 55 & 46 & 39 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 102 & 120 & 89 \\
\hline 3400 & 3403 & 152 & 223043 & 223330 & 2 & 80 & 55 & 46 & 39 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 132 & 154 & 90 \\
\hline 3404 & 3407 & 152 & 230022 & 230148 & 2 & 80 & 55 & 46 & 39 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 132 & 164 & 87 \\
\hline 3408 & 3411 & 152 & 233058 & 233122 & 2 & 80 & 55 & 46 & 39 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 404 & 0 & 145 & 186 & 87 \\
\hline 3412 & 3415 & 153 & 11332 & 11357 & 2 & 80 & 55 & 46 & 39 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 400 & 0 & 155 & 179 & 84 \\
\hline 3416 & 3419 & 153 & 14935 & 15210 & 1 & 80 & 55 & 46 & 39 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 402 & 0 & 142 & 159 & 91 \\
\hline 3420 & 3424 & 153 & 22935 & 23255 & 1 & 80 & 55 & 46 & 39 & 32 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 397 & 0 & 186 & 221 & 88 \\
\hline 3425 & 3429 & 153 & 25930 & 30450 & 1 & 80 & 55 & 46 & 39 & 32 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 397 & 0 & 142 & 165 & 92 \\
\hline 3430 & 3435 & 153 & 40800 & 40850 & 2 & 80 & 61 & 53 & 43 & 38 & 32 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 386 & 0 & 120 & 155 & 90 \\
\hline 3436 & 3441 & 153 & 44000 & 44430 & 2 & 80 & 61 & 53 & 43 & 38 & 32 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 394 & 0 & 116 & 166 & 89 \\
\hline 3442 & 3447 & 153 & 51010 & 51425 & 2 & 80 & 61 & 53 & 43 & 38 & 32 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 395 & 0 & 93 & 131 & 77 \\
\hline 3448 & 3453 & 153 & 54010 & 54425 & 2 & 80 & 61 & 53 & 43 & 38 & 32 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 399 & 0 & 86 & 128 & 81 \\
\hline 3454 & 3458 & 153 & 61505 & 61920 & 1 & 80 & 61 & 53 & 43 & 38 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 395 & 0 & 79 & 106 & 77 \\
\hline 3459 & 3463 & 153 & 64500 & 64920 & 1 & 80 & 61 & 53 & 43 & 38 & 0 & 0. & 0 & 0 & 30 & 70 & 300 & 1 & 396 & 0 & 90 & 132 & 89 \\
\hline 3464 & 3468 & 53 & 71500 & 71830 & 2 & 80 & 61 & 53 & 43 & 38 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 389 & 0 & 85 & 117 & 74 \\
\hline 3469 & 3473 & 153 & 74555 & 74825 & 2 & 80 & 61 & 53 & 43 & 38 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 389 & 0 & 51 & 82 & 87 \\
\hline 3474 & 3478 & 153 & 81555 & 81920 & 1 & 80 & 61 & 53 & 43 & 38 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 397 & 0 & 55 & 80 & 73 \\
\hline 3479 & 3484 & 153 & 84505 & 84925 & 2 & 80 & 61 & 53 & 43 & 38 & 32 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 396 & 0 & 53 & 79 & 70 \\
\hline 3485 & 3488 & 153 & 91500 & 91740 & 2 & 80 & 61 & 53 & 43 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 396 & 0 & 30 & 37 & 72 \\
\hline 3489 & 3490 & 153 & 94550 & 94550 & 2 & 80 & 61 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 397 & 0 & 20 & 20 & 100 \\
\hline 3491 & 3495 & 153 & 101545 & 101625 & 2 & 80 & 61 & 53 & 43 & 38 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 396 & 0 & 13 & 16 & 75 \\
\hline 3496 & 349A & 153 & 110009 & 110130 & 2 & 80 & 61 & 53 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 397 & 0 & 11 & 14 & 100 \\
\hline 3499 & 3500 & 153 & 114821 & 114912 & 1 & 80 & 61 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 396 & 0 & 8 & 8 & 100 \\
\hline 3501 & 3502 & 153 & 121713 & 121805 & 1 & 80 & 61 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 396 & 0 & 10 & 10 & 100 \\
\hline
\end{tabular}

Table 8-6. --Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { 1ST } \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & J.e & \begin{tabular}{l}
START \\
TIME
\end{tabular} & \[
\begin{aligned}
& \text { ENO } \\
& \text { TIME }
\end{aligned}
\] & LAST PIC CODE & \(1^{\text {G }}\) & \[
\begin{array}{r}
\text { GAIN } \\
2
\end{array}
\] & \[
\begin{gathered}
5 \text { TEP } \\
3
\end{gathered}
\] & \[
\underset{4}{\text { POW }}
\] & & 6 & \[
\begin{aligned}
& \text { ANT. } \\
& \text { TILT }
\end{aligned}
\] & & LON & \[
\begin{aligned}
& \text { GND } \\
& \text { CLTR }
\end{aligned}
\] & Fid & \[
\begin{gathered}
\text { FID } \\
\text { DIST. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { RADAR } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & STC & \[
\begin{aligned}
& \text { COMP. } \\
& \text { PTS. }
\end{aligned}
\] & TOTAL GS PTS. & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 3503 & 3506 & 153 & 124843 & 125025 & 2 & 80 & 61 & 53 & 43 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 397 & 0 & 22 & 27 & 100 \\
\hline 3507 & 3509 & 153 & 133144 & 133427 & 1 & 80 & 61 & 53 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 395 & 0 & 32 & 34 & 88 \\
\hline 3510 & 3513 & 153 & 140005 & 140355 & 2 & 80 & 61 & 53 & 43 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 397 & 0 & 20 & 23 & 73 \\
\hline 3514 & 3515 & 153 & 143044 & 143044 & 2 & 80 & 61 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 397 & 0 & 14 & 14 & 100 \\
\hline 3516 & 3519 & 153 & 150546 & 150610 & 2 & 80 & 61 & 53 & 43 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 396 & 0 & 31 & 37 & 78 \\
\hline 3520 & 3523 & 153 & 152950 & 153015 & 2 & 80 & 61 & 53 & 43 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 396 & 0 & 12 & 15 & 79 \\
\hline 3524 & 3527 & 153 & 160525 & 160550 & 2 & 80 & 61 & 53 & 43 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 396 & 0 & 10 & 11 & 72 \\
\hline 3528 & 3529 & 153 & 163515 & 163515 & 2 & 80 & 61 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 396 & 0 & 15 & 15 & 100 \\
\hline 3530 & 3532 & 153 & 171045 & 171110 & 1 & 80 & 61 & 53 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 405 & 0 & 25 & 25 & 91 \\
\hline 3533 & 3537 & . 53 & 173910 & 174055 & 1 & 80 & 61 & 53 & 43 & 38 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 405 & 0 & 22 & 26 & 84 \\
\hline 3538 & 3541 & 153 & 213350 & 213530 & 2 & 80 & 62 & 54 & 46 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 406 & 0 & 65 & 72 & 83 \\
\hline 3542 & 3545 & 153 & 220540 & 220720 & 2 & 80 & 62 & 54 & 46 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 406 & 0 & 58 & 71 & 87 \\
\hline 3546 & 3549 & 153 & 223550 & 223730 & 2 & 80 & 62 & 54 & 46 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 406 & 0 & 61 & 69 & 95 \\
\hline 3550 & 3551 & 153 & 230530. & 230530 & 2 & 80 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 405 & 0 & 51 & 51 & 100 \\
\hline
\end{tabular}

Table 8-6.--Inven'tory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { IST } \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & Jóte & START TIME & \[
\begin{aligned}
& \text { END } \\
& \text { TIME }
\end{aligned}
\] & LAST PIC CODE & \[
1^{G A}
\] & \[
\begin{gathered}
\text { AIN } \\
2
\end{gathered}
\] & \[
\begin{gathered}
\text { STEP } \\
\hline
\end{gathered}
\] & \[
\underset{4}{\text { POME }}
\] & \[
\begin{array}{r}
\text { ERS } \\
5
\end{array}
\] & 6 & \[
\begin{gathered}
\text { ANT. } \\
\text { TILT }
\end{gathered}
\] & LAT & & & \[
\begin{aligned}
& \text { GND } \\
& \text { CLIT }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{gathered}
\text { Fid } \\
\text { oIST. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { RADAR } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & STC & \[
\begin{aligned}
& \text { COMP. } \\
& \text { PTS. }
\end{aligned}
\] & tOTAL GS PTS. & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 3552 & 3553 & 153 & 234320 & 234320 & 2 & 80 & 62 & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 30 & 70 & 300 & 1 & 405 & 0 & 66 & 66 & 100 \\
\hline 3554 & 3555 & 154 & 11855 & 11855 & 2 & 80 & 62 & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 30 & 70 & 300 & 1 & 407 & 0 & 80 & 80 & 100 \\
\hline 3556 & 3559 & 154 & 14845 & 15020 & 1 & 80 & 62 & 54 & 46 & 0 & 0 & 0 & & 0 & 0 & 30 & 70 & 300 & 1 & 400 & 0 & 96 & 407 & 92 \\
\hline 3560 & 3563 & 154 & 22030 & 22110 & 1 & 80 & 62 & 54 & 46 & 0 & 0 & 0 & & 0 & 0 & 30 & 70 & 300 & 1 & 399. & 0 & 89 & 107 & 90 \\
\hline 3564 & 3567 & 154 & 25055 & 25320 & 1 & 80 & 62 & 54 & 46 & 0 & 0 & 0. & & 0 & 0 & 30 & 70 & 300 & 1 & 407 & 0 & 94 & 111 & 84 \\
\hline 3568 & 3572 & 154 & 32050 & 32410 & 1 & 80 & 62 & 54 & 46 & 38 & 0 & 0 & & 0 & 0 & 30 & 70 & 300 & 1 & 406. & 0 & 133 & 161 & 90 \\
\hline 3573 & 3577 & 154 & 35045 & 35403 & 1 & 80 & 62 & 54 & 46 & 38 & 0 & 0 & & 0 & 0 & 30 & 70 & 300 & 1 & 400 & 0 & 138 & 171 & 84 \\
\hline 3578 & 3581 & 154 & 42050 & 42320 & 1 & 80 & 62 & 54 & 46 & 0 & 0 & 0 & & 0 & 0 & 30 & 70 & 300 & 1 & 400 & 0 & 109 & 136 & 84 \\
\hline 3582 & 3587 & 154 & 70655 & 70745 & 2 & 80 & 62 & 53 & 44 & 36 & 30 & 0 & & 0 & 0 & - 40 & 70 & 300 & 1 & 398 & 0 & 83 & 110 & 81 \\
\hline 3589 & 3594 & 154 & 73435 & 73755 & 2 & 80 & 62 & 53 & 44 & 36 & 30 & 0 & & 0 & 0 & - 30 & 70 & 300 & 1 & 399 & 0 & 129 & 141 & 74 \\
\hline 3595 & 3600 & 154 & 75940 & 80300 & 2 & 80 & 62 & 53 & 44 & 36 & 30 & 0 & & 0 & 0 & - 30 & 70 & 300 & 1 & 407 & 0 & 105 & 124 & 77 \\
\hline 3601 & 3606 & 154 & 82945 & 83310 & 2 & 80 & 82 & 53 & 44 & 36 & 30 & 0 & & 0 & 0 & - 30 & 70 & 300 & 1 & 407 & 0 & 79 & 91 & 79 \\
\hline
\end{tabular}

Table 8-6. --Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { 1ST } \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & \[
\underset{\text { DATE }}{\text { J. }}
\] & \[
\begin{aligned}
& \text { START } \\
& \text { E TIME }
\end{aligned}
\] & \[
\begin{gathered}
\text { END } \\
\text { TIME }
\end{gathered}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC } \\
& \text { COOE }
\end{aligned}
\] & 1 & GAIN & \[
\begin{gathered}
\text { STEP } \\
\mathbf{3}
\end{gathered}
\] & POW & & 6 & \begin{tabular}{l}
ANT. \\
TILT
\end{tabular} & Lat & LON & \[
\begin{gathered}
\text { GND } \\
\text { CLTR }
\end{gathered}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{gathered}
\text { FID } \\
\text { DIST. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { RADAR } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & stc & \[
\begin{aligned}
& \text { COMP. } \\
& \text { PTS. }
\end{aligned}
\] & \[
\begin{gathered}
\text { TOTAL } \\
\text { GS PTS. }
\end{gathered}
\] & \[
\begin{aligned}
& 0 / 0 \\
& A C C
\end{aligned}
\] \\
\hline 3607 & 3608 & 154 & 90045 & 90045 & 2 & 80 & 62 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 406 & 0 & 88 & 88 & 100 \\
\hline 3609 & 3614 & 154 & 93005 & 93325 & 2 & 80 & 62 & 53 & 44 & 36 & 30 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 408 & 0 & 76 & 87 & 67 \\
\hline 3615 & 3620 & 154 & 100120 & 100440 & 2 & 80 & 62 & 53 & 44 & 36 & 30 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 406 & 0 & 78 & 99 & 92 \\
\hline 3621 & 3626 & 154 & 103030 & 103350 & 2 & 80 & 62 & 53 & 44 & 36 & 30 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 406 & 0 & 75 & 91 & 76 \\
\hline 3627 & 3632 & 154 & 110040 & 110400 & 2 & 80 & 62 & 53 & 44 & 36 & 30 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 405 & 0 & 75 & 103 & 84 \\
\hline 3633 & 3638 & 154 & 113550 & 113910 & 2 & 80 & 62 & 53 & 44 & 36 & 30 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 404 & 0 & 66 & 91 & 73 \\
\hline 3639 & 3641 & 154 & 115550 & 115640 & 2 & 80 & 62 & 53 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 406 & 0 & 64 & 70 & 68 \\
\hline 3642 & 3646 & 154 & 123148 & 123510 & 1 & 80 & 62 & 53 & 44 & 36 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 407 & 0 & 75 & 105 & 71 \\
\hline 3647 & 3650 & 154 & 130515 & 130750 & 2 & 80 & 62 & 53 & 44 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 406 & 0 & . 62 & 88 & 90 \\
\hline 3651 & 3655 & 154 & 150145 & 150515 & 1 & 82 & 64 & 56 & 48 & 40 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 407 & 0 & 67 & 86 & 93 \\
\hline 3656 & 3659 & 154 & 153355 & 153630 & 1 & 80 & 64 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 400 & 0 & 62 & 67 & 83 \\
\hline 3660 & 3665 & 154 & 155955 & 160415 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 396 & 0 & 70 & 87 & 75 \\
\hline 3666 & 3669 & 154 & 173125 & 173515 & 1 & 82 & 64 & 56 & 4A & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 398 & 0 & 70 & 77 & 92 \\
\hline 3670 & 3673 & 154 & 180520 & 180655 & 2 & 82 & 64 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 399 & 0 & 84 & 101 & 87 \\
\hline 3674 & 3677 & 154 & 102932 & 183210 & 2 & 82 & 64 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 399 & 0 & 118 & 130 & 84 \\
\hline 3678 & 3680 & 154 & 190455 & 190630 & 1 & 82 & 64 & 56 & 0 & 0 - & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 98 & 116 & 90 \\
\hline 3681 & 3686 & 154 & 193020 & 193108 & 2 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 42 & 70 & 300 & 1 & 400 & 0 & 110 & 156 & 83 \\
\hline 3687 & 3691 & 154 & 200050 & 200140 & 1 & 82 & 64 & 56 & 48 & 40 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 398 & 0 & 122 & 159 & 89 \\
\hline 3692 & 3696 & 154 & 203020 & 203210 & 1 & 82 & 64 & 56 & 48 & 40 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 398 & 0 & 157 & 210 & 86 \\
\hline 3697 & 3701 & 154 & 205825 & 210015 & 1 & 82 & 64 & 56 & 48 & 40 & 0 & 0 & 0 & 0 & 28 & 70 & 300 & 1 & 399 & 0 & 134 & 174 & 77 \\
\hline 3702 & 3705 & 154 & 213043 & 213225 & 2 & 82 & 64 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 396 & 0 & 118 & 149 & 67 \\
\hline 3707 & 3712 & 154 & 220133 & 220235 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 396 & 0 & 115 & 175 & 69 \\
\hline 3713 & 3717 & 154 & 222920 & 223110 & 1 & 82 & 64 & 56 & 48 & 40 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 396 & 0 & 115 & 146 & 61 \\
\hline 3718 & 3723 & 154 & 230155 & 230300 & 1 & 82 & 64 & 56 & 48 & 40 & 34 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 397 & 0 & 78 & 113 & 69 \\
\hline 3724 & 3728 & 154 & 233410 & 233605 & 1 & 82 & 64 & 56 & 48 & 40. & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 396 & 0 & 111 & 137 & 86 \\
\hline 3729 & 3733 & 155 & 235920 & 10 & 1 & 82 & 64 & 56 & 48 & 40 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 394 & 0 & 59 & 71 & 77 \\
\hline
\end{tabular}

Table 8-6. --Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 151 \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & J. & \begin{tabular}{l}
START \\
TIME
\end{tabular} & \[
\begin{aligned}
& \text { ENO } \\
& \text { TIME }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC } \\
& \text { CODE }
\end{aligned}
\] & \[
i^{G}
\] & \[
\begin{array}{r}
\text { GAIN } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { STEP } \\
\hline
\end{gathered}
\] & \[
\underset{4}{\text { POWI }}
\] & & 6 & \[
\begin{aligned}
& \text { ANT. } \\
& \text { TILT }
\end{aligned}
\] & & LON & \[
\begin{array}{r}
\text { GNO } \\
\text { CLTR }
\end{array}
\] & \[
\begin{aligned}
& \text { FIO } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { DIST. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { RADAR } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & stc & COMP.
PTS. & \[
\begin{aligned}
& \text { TOTAL } \\
& \text { GS PTS. }
\end{aligned}
\] & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 3734 & 3737 & 155 & 3025 & 3110 & 2 & 82 & 64 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 398 & 0 & 84 & 98 & 85 \\
\hline 3738 & 3741 & 155 & 22820 & 22955 & 1 & 82 & 64 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1. & 399 & 0 & 125 & 153 & 85 \\
\hline 3742 & 3746 & 155 & 30220 & 30638 & 1 & 82 & 64 & 56 & 48 & 40 & 0 & 0 & 0 & 0 & - 35 & 70 & 300 & 1 & 401 & 0 & 177 & 216 & 79 \\
\hline 3747 & 3751 & 155 & 32850 & 32940 & 1 & 82 & 64 & 56 & 48 & 40 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1* & 401 & 0 & 150 & 202 & 82 \\
\hline 3752 & 3756 & 155 & 52735 & 53230 & 1 & 81 & 59 & 51 & 44 & 34 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 385 & 0 & 32 & 38 & 68 \\
\hline 3757 & 3760 & 155 & 61015 & 61515 & 1 & 81 & 59 & 51 & 44 & 0 & 0 & 0 & 0 & 0 & - 35 & 70 & 300 & 1 & 387 & 0 & 16 & 20 & 69 \\
\hline 3761 & 3764 & 155 & 65140 & 65445 & 1 & 81 & 59 & 51 & 40 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 393 & 0 & 21 & 27 & 85 \\
\hline 3765 & 3768 & 155 & 73110 & 73515 & 1 & 81 & 59 & 51 & 44 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 392 & 0 & 21 & 30 & 86 \\
\hline 3769 & 3771 & 155 & \[
80430
\] & 80615 & 1 & 81 & 59 & 51 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 394 & 0 & 15 & 19 & 94 \\
\hline 3772 & 3774 & 155 & 82750 & 83000 & 1 & 81 & 59 & 51 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 392 & 0 & 16 & 17 & 82 \\
\hline 3775 & 3777 & 155 & 90000 & 90300 & 1 & 81 & 59 & 51 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 391 & 0 & 13 & 16 & 93 \\
\hline 3778 & 3781 & 155 & 93340 & 93645 & 1 & 81 & 59 & 51 & 44 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 399 & 0 & 10 & 14 & 78 \\
\hline 3782 & 3785 & 155 & 100405 & 100505 & 1 & 81 & 59 & 51 & 44 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 399 & 0 & 13 & 16 & 81 \\
\hline 3786 & 3790 & 155 & 103020 & 103440 & 1 & 81 & 59. & 51 & 44 & 34 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & \(\cdots 1\) & 399 & 0 & 18 & 21 & 66 \\
\hline 3791 & 3792 & 155 & 122345 & 122345 & 2 & 81 & 59 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 396 & 0 & 26 & 26 & 100 \\
\hline 3793 & 3796 & 155 & 130105 & 130140 & 1 & 81 & 59 & 51 & 44 & 0 & 0 & 0 & 0 & 0 & - 35 & 70 & 300 & 1 & 395 & 0 & 29 & 37 & 94 \\
\hline 3797 & 3800 & 155 & 133030 & 133115 & 2 & 81 & 59 & 51 & 44 & 0 & 0 & 0 & 0 & 0 & - 35 & 70 & 300 & 1 & 393 & 0 & 40 & 48 & 83 \\
\hline 3801 & 3805 & 155 & 140025 & 140118 & 1 & 81 & 59 & 51 & 44 & 34 & 0 & 0 & 0 & 0 & - 35 & 70 & 300 & 1 & 400 & 0 & 39 & 43 & 86 \\
\hline 3806 & 3809 & 155 & 143050 & 143138 & 2 & 81 & 59 & 51 & 44 & 0 & 0 & 0 & 0 & 0 & - 35 & 70 & 300 & 1 & 400 & 0 & 35 & 42 & 88 \\
\hline 3810 & 3813 & 155 & 150250 & 150330 & 1 & 81 & 59 & 51 & 44 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 41 & 47 & 85 \\
\hline 3814 & 3817 & 155 & 153005 & 153143 & 1 & 81 & 59 & 51 & 44 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 399 & 0 & 45 & 56 & 82 \\
\hline 3818 & 3822 & 155 & 160235 & 160325 & 1 & 81 & 59 & 51 & 44 & 34 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 399 & 0 & 48 & 68 & 85 \\
\hline 3823 & 3827 & 155 & 163042 & 163130 & 1 & 81 & 59 & 51 & 44 & 34 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 399 & 0 & 52 & 72 & 80 \\
\hline 3828 & 3831 & 155 & 170220 & 170310 & 2 & 81 & 59 & 51 & 44 & 0 & 0 & 0 & 0 & 0 & - 35 & 70 & 300 & 1 & 400 & 0 & 35 & 45 & 68 \\
\hline 3832 & 3835 & 155 & 173455 & 173543 & \(2^{-}\) & 81 & 59 & 51 & 44 & 0 & 0 & 0 & 0 & 0 & - 35 & 70 & 300 & 1 & 401 & 0 & 66 & 87 & 82 \\
\hline 3836 & 3839 & 155 & 180555 & 180640 & 2 & 81 & 59 & 51 & 44 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 51 & 65 & 81 \\
\hline
\end{tabular}

Table 8-6. --Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 15 & LASt & J. & Start & END & Last & & gain & STEP & & & & ANT. & & LON & GND & F10 & 10 & ranar & Scale & STC & COMP. & total & /0 \\
\hline PIC & PIC & date & time & time & PIC CODE & 1 & 2 & 3 & 4 & 5 & 6 & TILI & & & CLTR & ang & nist. & No & \(\times 100\) & & PTS & gS PTS. & acc. \\
\hline 3840 & 3844 & 155 & 183325 & 183515 & 1 & 81 & 59 & 51 & 44 & 34 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 399 & 0 & 60 & 78 & 62 \\
\hline 3845 & 3850 & 155 & 190035 & 190120 & 2 & 81 & 59 & 51 & 44 & 34 & 30 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 405 & 0 & 68 & 107 & 77 \\
\hline 3851 & 3856 & 155 & 193155 & 193245 & 2 & 81 & 59 & 51 & 44 & 34 & 30 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 61 & 80 & 64 \\
\hline 3857 & 3862 & 155 & 200205 & 200300 & 2 & 81 & 59 & 51 & 44 & 34 & 30 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 48 & 75 & 86 \\
\hline 3863 & 3868 & 155 & 202910 & 203000 & 2 & 81 & 59 & 51 & 44 & 34 & 30 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 48 & 73 & 87 \\
\hline 3869 & 3872 & 155 & 212155 & 212435 & 2 & 83 & 63 & 55 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 410 & 0 & 35 & 45 & 82 \\
\hline 3873 & 3878 & 155 & 220520 & 220615 & 2 & 83 & 63 & 55 & 48 & 40 & 34 & 0 & 0 & - 0 & 35 & 70 & 300 & 1 & 407 & 0 & 26 & 33 & 84 \\
\hline 3879 & 3883 & 155 & 223000 & 223045 & 1 & 83 & 63 & 55 & 48 & 40 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 409 & 0 & 16 & 32 & 96 \\
\hline 3884 & 3886 & 155 & 225930 & 230015 & 1 & 83 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 409 & 0 & 18 & 21 & 95 \\
\hline 3887 & 3890 & 155 & 232930 & 233220 & 2 & 83 & 63 & 55 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 17 & 25 & 75 \\
\hline 3891 & 3894 & 156 & 1320 & 1530 & 2 & 83 & 63 & 55 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 36 & 48 & 72 \\
\hline 3895 & 3896 & 156 & 5020 & 5020 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 409 & 0 & 33 & 33 & 100 \\
\hline 3897 & 3898 & 156 & 12000 & 12000 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 409 & 0 & 38 & 38 & 100 \\
\hline 3899 & 3900 & 156 & 15200 & 15200 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 26 & 26 & 100 \\
\hline 3901 & 3902 & 156 & 22200 & 22200 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0. & 35 & 70 & 300 & 1 & 410 & 0 & 17 & 17 & 100 \\
\hline 3903 & 3904 & 156 & 25300 & 25300 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 409 & 0 & 26 & 26 & 100 \\
\hline 3905 & 3906 & 156 & 32400 & 32400 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 410 & 0 & 44 & 44 & 100 \\
\hline 3907 & 3908 & 156 & 35400 & 35400 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 49 & 49 & 100 \\
\hline 3909 & 3910 & 156 & 42500 & 42500 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 409 & 0 & 61 & 61 & 100 \\
\hline 3911 & 3912 & -156 & 45500 & 45500 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 407 & 0 & 58 & 58 & 100 \\
\hline 3913 & 3914 & 156 & 52500 & 52500 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 67 & 67 & 100 \\
\hline 3915 & 3916 & 156 & 55600 & 55600 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 409 & 0 & 77 & 77 & 100 \\
\hline 3917 & 3918 & 156 & 62600 & 62600 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 409 & 0 & 64 & 64 & 100 \\
\hline 3919 & 3920 & 156 & 65700 & 65700 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 409 & 0 & 30 & 30 & 100 \\
\hline 3921 & 3922 & 156 & 72800 & 72800 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 409 & 0 & 42 & 42 & 100 \\
\hline 3923 & 3924 & 156 & 75700 & 75700 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 410 & 0 & 31 & 31 & 100 \\
\hline
\end{tabular}

Table 8-6.--Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { IST } \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & DATE & \begin{tabular}{l}
START \\
TIME
\end{tabular} & \[
\begin{aligned}
& \text { END } \\
& \text { TIME }
\end{aligned}
\] & LAST PIC CODE & & \[
\begin{gathered}
\text { GAIN S } \\
2
\end{gathered}
\] & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & & \[
\begin{array}{r}
\text { WERS } \\
5
\end{array}
\] & & 6 & \begin{tabular}{l}
ANT. \\
TILT
\end{tabular} & & LON & \[
\begin{aligned}
& \text { GND } \\
& \text { CLTR }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{gathered}
\text { FID } \\
\text { DIST. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { RADAR } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & STC & \[
\begin{aligned}
& \text { COMP. } \\
& \text { PTS. }
\end{aligned}
\] & \[
\begin{gathered}
\text { TOTAL } \\
\text { GS PTS. }
\end{gathered}
\] & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 3925 & 3926 & 156 & 82900 & 82900 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 407 & 0 & 26 & 26 & 100 \\
\hline 3927 & 3928 & 156 & 90000 & 90000 & 2 & 83 & 63 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 399 & 0 & 16 & 16 & 100 \\
\hline 3929 & 3930 & 156 & 93100 & 93100 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 402 & 0 & 18 & 18 & 100 \\
\hline \(5=53\) & 5=54 & 378 & 322322 & 322322 & 4 & 25 & 85 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 57 & 92 & 522 & 3 & 623 & 2 & 53 & 53 & 322 \\
\hline 3933 & 3934 & 156 & 103100 & 103100 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 400 & 0 & 26 & 26 & 100 \\
\hline 3935 & 3936 & 156 & 110200 & 110200 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 400 & 0 & 23 & 23 & 100 \\
\hline 3937 & 3938 & 156 & 113300 & 113300 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 398 & 0 & 28 & 28 & 100 \\
\hline 3939 & 3940 & 156 & 120400 & 120400 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 400 & 0 & 21 & 21 & 100 \\
\hline 3941 & 3942 & 156 & 123500 & 123500 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 10 & - 10 & 100 \\
\hline 3943 & 3944 & 156 & 130600 & 130600 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 407 & 0 & 11 & - 11 & 100 \\
\hline 3945 & 3946 & 156 & 140700 & 140700 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 407 & 0 & 11 & 11 & 100 \\
\hline 3947 & 3948 & 156 & 150825 & 150825 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 7 & 7 & 100 \\
\hline 3949 & 3950 & 156 & 155546 & 155546 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 409 & 0 & 9 & 9 & 100 \\
\hline 3951 & 3952 & 156 & 165700 & 165700 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 13 & 13 & 100 \\
\hline 3953 & 3954 & 156 & 175848 & 175848 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 6 & 6 & 100 \\
\hline 3955 & 3956 & 156 & 191100 & 191100 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 407 & 0 & 14 & 14 & 100 \\
\hline 3957 & 3958 & 156 & 195800 & 195800 & 2 & 83 & \(63^{*}\) & - 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 22 & 22 & 100 \\
\hline 3959 & 3960 & 156 & 210005 & 210005 & 2 & 83 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 409 & 0 & 23 & 23 & 100 \\
\hline 3961 & 3964 & 156 & 213020 & 213043 & 2 & 83 & 63 & 55 & 4 A & 0 & 0 & 0 & 0 & 0 & 0 & - 35 & 70 & 300 & 1 & 407 & 0 & 19 & 24 & 91 \\
\hline 3965 & 3968 & 156 & 220405 & 220541 & 2 & 83 & 63 & 55 & 48 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 407 & 0 & 22 & 26 & 76: \\
\hline 3969 & 3972 & 156 & 223107 & 223444 & 2 & 83 & 63 & 55 & 48 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 409 & 0 & 16 & 18 & 88 \\
\hline 3973 & 3976 & 156 & 225925 & 230200 & 2 & 83 & 63 & 55 & 4 A & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 13 & 17 & 94 \\
\hline 3977 & 3980 & 156 & 233035 & 233314 & 2 & 83 & 63 & 55 & 48 & 0 & 0 & 0 & 0 & 0 & 0 & - 35 & 70 & 300 & 1 & 409 & 0 & 14 & 19 & 84 \\
\hline 3881 & 3984 & 157 & 100 & 330 & 2 & 83 & 63 & 55 & 4R & 0 & 0 & 0 & 0 & 0 & 0 & - 40 & 70 & 300 & 1 & 407 & 0 & 18 & 23 & 95 \\
\hline 3985 & 3988 & 157 & 10100 & 10335 & 2 & 83 & 63 & 55 & 48 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 23 & 27 & 92 \\
\hline 3989 & 3992 & 157 & 13200 & 13400 & 2 & 83 & 63 & 55 & 4A & 0 & 0 & 0 & 0 & 0 & 0 & - 35 & 70 & 300 & 1 & 404 & 0 & 16 & 19 & 89 \\
\hline
\end{tabular}

Table 8-6.--Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { 1ST } \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAFT } \\
& \text { PIC }
\end{aligned}
\] & J. & \begin{tabular}{l}
START \\
TIME
\end{tabular} & \[
\begin{aligned}
& \text { END } \\
& \text { TIME }
\end{aligned}
\] & LAST PIC CODE & \(1^{\text {G }}\) & \[
\begin{array}{r}
\text { GAIN } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & \[
\begin{gathered}
\text { POWE } \\
4
\end{gathered}
\] & & 6 & \[
\begin{aligned}
& \text { ANT. } \\
& \text { TILT }
\end{aligned}
\] & & LON & \[
\begin{aligned}
& \text { GND } \\
& \text { CLTR }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{gathered}
\text { FID } \\
\text { DIST. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { RADAR } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & STC & \[
\begin{aligned}
& \text { COMP. } \\
& \text { PTS. }
\end{aligned}
\] & total GS PTS. & \[
\begin{aligned}
& 0 / 0 \\
& A C C .
\end{aligned}
\] \\
\hline 4176 & 4179 & 158 & 85630 & 85815 & 2 & 81 & 59 & 51 & 43 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 399 & 0 & 34 & 43 & 65 \\
\hline 4181 & 4182 & 158 & 122705 & 122705 & 2 & 81 & 59 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 400 & 0 & 3 & 3 & 100 \\
\hline 4183 & 4185 & 158 & 125710 & 125950 & 1 & 81 & 59 & 51 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 398 & 0 & 16 & 16 & 87 \\
\hline 4186 & 4188 & 158 & 132815 & 133055 & 1 & 81 & 59 & 51 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 398 & 0 & 13 & 14 & 92 \\
\hline 4189 & 4190 & 158 & 140000 & 140237 & 1 & 81 & 59 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 399 & 0 & 20 & 20 & 100 \\
\hline 4191 & 4194 & 158 & 142819 & 143200 & 2 & 81 & 59 & 51 & 43 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 399 & 0 & 17 & 17 & 76 \\
\hline 4195 & 4198 & 158 & 150500 & 150545 & 2 & 81 & 59 & 51 & 43 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 399 & 0 & 18 & 20 & 75 \\
\hline 4199 & 4201 & 158 & 153000 & 153230 & 1 & 81 & 59 & 51 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 400 & 0 & 24 & 26 & 92 \\
\hline 4202 & 4205 & 158 & 172700 & 173000 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 400 & \({ }_{0}\) & 52 & 67 & 95 \\
\hline 4206 & 4209 & 158 & 180000 & 180445 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 397 & 0 & 64 & 79 & 82 \\
\hline 4210 & 4213 & 158 & 183015 & 183355 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & \(1^{-}\) & 396 & 0 & 77 & 95 & 72 \\
\hline 4214 & 4217 & 158 & 190241. & . 190524 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 397 & 0 & 69 & 94 & 76 \\
\hline 4218 & 4221 & 158 & 193000 & 193200 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 403 & 0 & 76 & 119 & 92 \\
\hline 4222 & 4225 & 158 & 200213 & 200500 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 404 & 0 & 72 & 92 & 77 \\
\hline 4226 & 4229 & 158 & 202900 & 203130 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 406 & 0 & 72 & 90 & 82 \\
\hline 4230 & 4233 & 158 & 210015 & 210138 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 66 & 83 & 91 \\
\hline 4234 & 4237 & 158 & 212848 & 213033 & 2 & 82 & 63 & 56 & 4A & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 406 & 0 & 38 & 47 & 59 \\
\hline 4238 & 4243 & 158 & 220428 & 220530 & 1 & 82 & 63 & 56 & 48 & 38 & 32 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 403 & 0 & 60 & 86 & 90 \\
\hline 4245 & 4248 & 158 & 222810 & 223055 & 2 & 82 & 63 & 56 & 4 A & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 68 & 85 & 94 \\
\hline 4249 & 4252 & 158 & 230040 & 230230 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 92 & 127 & 88 \\
\hline 4253 & 4256 & 158 & 232910 & 233150 & 2 & 82 & 63 & 56 & 49 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 86 & 128 & 86 \\
\hline 4257 & 4260 & 159 & 707 & 1050 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 404 & 0 & 73 & 83 & 84 \\
\hline 4261 & 4264 & 159 & 2900 & 3145 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 402 & 0 & 94 & 110 & 95 \\
\hline 4265 & 4268 & 159 & 10040 & 10325 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 404 & 0 & 80 & 86 & 93 \\
\hline 4269 & 4272 & 159 & 12848 & 13034 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 403 & 0 & 83 & 89 & 96 \\
\hline 4273 & 4276 & 159 & 15850 & 20042 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 404 & 0 & 86 & 95 & 88 \\
\hline
\end{tabular}

Table 8-6.--Inventory of digitized radar composites (continued)


Table 8-6.--Inventory of digitized radar composites (continued)


Table 8-6.--Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 1 S T \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & \[
\xrightarrow[\text { Jote }]{\text { J. }}
\] & \begin{tabular}{l}
START \\
TIME
\end{tabular} & \[
\begin{gathered}
\text { END } \\
\text { TIME }
\end{gathered}
\] & LAST PIC COOE & \[
i^{G}
\] & \[
\begin{array}{r}
\text { GAIN } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { STEP } \\
\hline
\end{gathered}
\] & \[
\underset{4}{\text { POWI }}
\] & & 6 & \[
\begin{aligned}
& \text { ANT. } \\
& \text { TILT }
\end{aligned}
\] & & LON & \[
\begin{aligned}
& \text { GND } \\
& \text { CLTR }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { OIST. }
\end{aligned}
\] & ratiar NO & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & STC & \[
\begin{aligned}
& \text { COMP. } \\
& \text { PTS. }
\end{aligned}
\] & TOTAL GS PTS. & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 4277 & 4280 & 159 & 23005 & 23350 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 404 & 0 & 92 & 99 & 88 \\
\hline 4281 & 4284 & 159 & 30009 & 30155 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 403 & 0 & 97 & 115 & 100 \\
\hline 4285 & 4288 & 159 & 33320 & 33505 & 2 & 82 & 63 & 56 & 4 R & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 404 & 0 & 86 & 113 & 91 \\
\hline 4289 & 4292 & 159 & 40225 & 40512 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 404 & 0 & 110 & 119 & 87 \\
\hline 4293 & 4296 & 159 & 43028 & 43415 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 93 & 107 & 89 \\
\hline 4297 & 4300 & 159 & 50032 & 50320 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 65 & 80 & 76 \\
\hline 4301 & 4304 & 159 & 52935 & 53120 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & \(0{ }^{\circ}\) & 0 & 0 & 30 & 70 & 300 & 1 & 402 & 0 & 104 & 128 & 91 \\
\hline 4306 & 4309 & 159 & 60248 & 60534 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 403 & 0 & 94 & 123 & 95 \\
\hline 4310 & 4313 & 159 & 63023 & 63315 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 114 & 144 & 90 \\
\hline 4314 & 4317 & 159 & 70034 & 70120 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 403 & 0 & 79 & 93 & 91 \\
\hline 4318 & 4321 & 159 & 72939 & 73125 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 403 & 0 & 118 & 124 & 92 \\
\hline 4322 & 4325 & 159 & 80100 & 80445 & 2 & 82 & 63 & 56 & 48 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 403 & 0 & 90 & 98 & 94 \\
\hline 4326 & 4327 & 159 & 83010 & 83010 & 2 & 82 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 403 & 0 & 99 & 99 & 100 \\
\hline 4328 & 4329 & 159 & 90022 & 90022 & 2 & 82 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 404 & 0 & 78 & 78 & 100 \\
\hline 4330 & 4331 & 159 & 93445 & 93445 & 2 & 82 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 404 & 0 & \(131{ }^{\circ}\) & 131 & 100 \\
\hline 4332 & 4335 & 159 & 112343 & 112615 & 1 & 86 & 66 & 60 & 51 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 403 & 0 & 183 & 217 & 97 \\
\hline 4336 & 4337 & 159 & 120015 & 120015 & 2 & 86 & 66 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 402 & 0 & 147 & 147 & 100 \\
\hline 4338 & 4342 & 159 & 134152 & 134242 & 1 & 86 & 66 & 60 & 51 & 43 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 404 & 0 & 221 & 294 & 92 \\
\hline 4343 & 4347 & 159 & 141542 & 141633 & 1 & 86 & 66 & 60 & 51 & 43 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 404 & 0 & 273 & 331 & 91 \\
\hline 4348 & 4351 & 159 & 144403 & 144540 & 2 & 86 & 66 & 60 & 51 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 407 & 0 & 182 & 202 & 94 \\
\hline 4352 & 4355 & 159 & 151610 & 151743 & 2 & 86 & 66 & 60 & 51 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 173 & 187 & 95 \\
\hline \(43 \% 0\) & 4358 & 159 & 154515 & 154856 & 1 & 86 & 66 & 60 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 159 & 162 & 97 \\
\hline 4359 & 436: & 159 & 162545 & 162825 & 2 & 86 & 66 & 60 & 51 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 409 & 0 & 78 & 80 & 100 \\
\hline 4363 & 4366 & 159 & 165810 & 170155 & 2 & 86 & 66 & 60 & 51 & 0 & 0 & 0 & , 0 & 0 & 30 & 70 & 300 & 1 & 407 & 0 & 48 & 50 & 97 \\
\hline 4367 & 4370 & 159 & 173035 & 173320 & 2 & 86 & 66 & 60 & 51 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 409 & 0 & 23 & 25 & 91 \\
\hline 4371 & 4374 & 159 & 175910 & 180255 & 2 & 86 & 66 & 60 & 51 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 408 & 0 & 24 & 25 & 75 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { IST } \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & DATE & \begin{tabular}{l}
START \\
TIME
\end{tabular} & \[
\begin{array}{r}
\text { END } \\
\text { TIME }
\end{array}
\] & \begin{tabular}{l}
LAST \\
PIC \\
COOE
\end{tabular} & \[
1_{1}^{G}
\] & \[
\begin{array}{r}
\text { GAIN } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & \[
\begin{gathered}
\text { POWE } \\
4
\end{gathered}
\] & & 6 & \[
\begin{aligned}
& \text { ANT. } \\
& \text { TILT }
\end{aligned}
\] & & LON & \[
\begin{array}{r}
\text { GND } \\
\text { CLTR }
\end{array}
\] & \[
F 10
\]
ANG & \[
\begin{gathered}
\text { FID } \\
\text { DIST. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { RADAR } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & STC & \[
\begin{aligned}
& \text { COMP. } \\
& \text { PTS. }
\end{aligned}
\] & TOTAL GS PTS. & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 4375 & 4378 & 159 & 211320 & 211345 & 2 & 90 & 72 & 64 & 56 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 408 & 0 & 23 & 24 & 70 \\
\hline 4379 & 4380 & 159 & 214810 & 214810 & 2 & 90 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 408 & 0 & 46 & 46 & 100 \\
\hline 4381 & 4384 & 159 & 222555 & 222.620 & 2 & 90 & 72 & 64 & 56 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 409 & 0 & 50 & 53 & 75 \\
\hline 4385 & 4388 & 159 & 225955 & 230230 & 2 & 90 & 72 & 64 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 63 & 73 & 87 \\
\hline 4389 & 4392 & 159 & 233005 & 233245 & 2 & 90 & 72 & 64 & 56 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 409 & 0 & 43 & 48 & 79 \\
\hline 4393 & 4396 & 160 & 1145 & 1420 & 2 & 90 & 72 & 64 & 56 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 408 & 0 & 29 & 33 & 90 \\
\hline 4397 & 4399 & 160 & 4455 & 4530 & 1 & 90 & 72 & 64 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 409 & 0 & 28 & 30 & 83 \\
\hline 4400 & 4403 & 160 & 11515 & 11750 & 2 & 90 & 72 & 64 & 56 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 32 & 37 & 89 \\
\hline 4404 & 4407 & 160 & 24413 & 24655 & 2 & 90 & 72 & 64 & 56 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 49 & 51 & 90 \\
\hline 4408 & 4411 & 160 & 31420 & 31611 & 2 & 90 & 72 & 64 & 56 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 407 & 0 & 78 & 85 & 92 \\
\hline 4412 & 4415 & 160 & 34520 & 34710 & 2 & 90 & 72 & 64 & 56 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 407 & 0 & 93 & 106 & 86 \\
\hline 4416 & 4419 & 160 & 41529 & 41717 & 2 & 90 & 72 & 64 & 56 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 408 & 0 & 86 & 96 & 88 \\
\hline 4420 & 4423 & 160 & 44444 & 44630 & 2 & 90 & 72 & 64 & 56 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 409 & 0 & 90 & 105 & 92 \\
\hline 4424 & 4427 & 160 & 51635 & 51820 & 2. & - 90 & 72 & 64 & 56 & 0 & 0 & 0 & 0 & 0 & \(30^{\circ}\) & 70 & 300 & 1 & 407 & 0 & 83 & 101 & 83 \\
\hline 4428 & 4431 & 160 & 54545 & 54733 & 2 & 90 & 72 & 64 & 56 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 404 & 0 & 75 & 87 & 86 \\
\hline 4432 & 4435 & 160 & 61555 & 61740 & 2 & 90 & 72 & 64 & 56 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 410 & 0 & 67 & 78 & 91 \\
\hline 4436 & 44.39 & 160 & 64503 & 64648 & 2 & 90 & 72 & 64 & 56 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 406 & 0 & 51 & 55 & 90 \\
\hline 4440 & 4441 & 160 & 83632 & 83632 & 2 & 88 & 69 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 412 & 0 & 20 & 20 & 100 \\
\hline 4442 & 4443 & 160 & 90010 & 90010 & 2 & 88 & 69 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 409 & 0 & 16 & 16 & 100 \\
\hline 4444 & 4445 & 160 & 92900 & 92900 & 2 & 88 & 69 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 409 & 0 & 10 & 10 & 100 \\
\hline 4446 & 4447 & 160 & 100000 & 100000 & 2 & 88 & 69 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 408 & 0 & 17 & 17 & 100 \\
\hline 4448 & 4449 & 160 & 102600 & 102600 & 2 & 88 & 69 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 406 & 0 & 14 & 14 & 100 \\
\hline 4450 & 4451 & 160 & 110000 & 110000 & 2 & 88 & 69 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 409 & 0 & 16 & 16 & 100 \\
\hline 4452 & 4453 & 160 & 113100 & 113100 & 2 & 88 & 69 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 410 & 0 & 18 & 18 & 100 \\
\hline 4454 & 4455 & 160 & 120000 & 120000 & 2 & 88 & 69 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 407 & 0 & 16 & 16 & 100 \\
\hline 4456 & 4459 & 160 & 125500 & 125531 & 2 & 88 & 69 & 61 & 53 & 0 & 0 & 0 & 0 & . 0 & 30 & 70 & 300 & 1 & 408 & 0 & 32 & 33 & 75 \\
\hline
\end{tabular}

Table 8-6.--Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 15 T \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { J. } \\
& \text { DATE }
\end{aligned}
\] & \begin{tabular}{l}
START \\
TIME
\end{tabular} & \[
\begin{aligned}
& \text { END } \\
& \text { TIME }
\end{aligned}
\] & LAST PIC CODE & & \[
\begin{array}{r}
G A I N \\
2
\end{array}
\] & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & & & 6 & \[
\begin{aligned}
& \text { ANT } \\
& \text { TILI }
\end{aligned}
\] & & LON & \[
\begin{array}{r}
\text { GND } \\
\text { CLTTR }
\end{array}
\] & \[
\begin{aligned}
& \text { FIO } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{gathered}
\text { FID } \\
\text { DIST. }
\end{gathered}
\] & ranar No & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & Stc & \[
\begin{aligned}
& \text { COMP. } \\
& \text { PTS. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { TOTAL } \\
& \text { GS PTS. }
\end{aligned}
\] & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 4460 & 4463 & 160 & 133500 & 133546 & 2 & 88 & 69 & 61 & 53 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 404 & 0 & 53 & 58 & 94 \\
\hline 4464 & 4467 & 160 & 140100 & 140300 & 2 & 88 & 69 & 61 & 53 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 403 & 0 & 57 & 62 & 98 \\
\hline 4468 & 4471 & 160 & 142900 & 143100 & 2 & 88 & 69 & 61 & 53 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 402 & 0 & 65 & 69 & 92 \\
\hline 4472 & 4474 & 160 & 150030 & 150055 & 1 & 88 & 69 & 61 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 403 & 0 & 40 & 46 & 89 \\
\hline 4475 & 4478 & 160 & 152900 & 153130 & 2 & 88 & 69 & 61 & 53 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 404 & 0 & 81 & 88 & 90 \\
\hline 4479 & 4482 & 160 & 155935 & 160325 & 2 & 88 & 69 & 61 & 53 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 402 & 0 & 85 & 95 & 90 \\
\hline 4483 & 4486 & 160 & 163030 & 163320 & 2 & 88 & 69 & 61 & 53 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 402 & 0 & 123 & 152 & 94 \\
\hline 4487 & 4490 & 160 & 170000 & 170350 & 2 & 88 & 69 & 61 & 53 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 402 & 0 & 138 & 171 & 95 \\
\hline 4491 & 4492 & 160 & 172925 & 172925 & 2 & 88 & 69 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 402 & 0 & 136 & 136 & 100 \\
\hline 4493 & 4496 & 160 & 175705 & 175955 & 2 & 88 & 69 & 61 & 53 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 103 & 110 & 72 \\
\hline 4497 & 4500 & 160 & 182950 & 183320 & 2 & 88 & 69 & 61 & 53 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 403 & 0 & 82 & 99 & 90 \\
\hline 4501 & 4504 & 160 & 185640 & 185930 & 2 & 88 & 69 & 61 & 53 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 406 & 0 & 106 & 118 & 87 \\
\hline 4505 & 4507 & 160 & 192650 & 192810 & 2 & 88 & 69 & 61 & 0 & 0 & 0 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 406 & 0 & 85 & 99 & 92 \\
\hline 4508 & 4513 & 161 & 62700 & 62800 & 1 & 89 & 71 & 63 & 54 & 44 & 39 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 414 & 0 & 496 & 660. & 91 \\
\hline 4515 & 4520 & 161 & 65921 & 70024 & 1 & 89 & 71 & 63 & 54 & 44 & 39 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 414 & 0 & 526 & 761 & 88 \\
\hline 4522 & 4527 & 161 & 72800 & 73224 & 2 & 89 & 71 & 63 & 54 & 44 & 39 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 414 & 0 & 575 & 805 & 87 \\
\hline 4528 & 4533 & 161 & 81525 & 81939 & 1 & 89 & 71 & 63 & 54 & 44 & 39 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 414 & 0 & 421 & 555 & 80 \\
\hline 4535 & 4540 & 161 & 85614 & 85705 & 2 & 89 & 71 & 63 & 54 & 44 & 39 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 414 & 0 & 309 & 400 & 84 \\
\hline 4541 & 4546 & 161 & 92706 & 93120 & 1 & 89 & 71 & 63 & 54 & 44 & 39 & 0 & 0 & 0 & 30 & 70 & 300 & \(\cdot 1\) & 414 & 0 & 320 & 392 & 85 \\
\hline 4548 & 4553 & 161 & 95950 & 100053 & 1 & 89 & 71 & 63 & 54 & 44 & 39 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 413 & 0 & 270 & 341 & 83 \\
\hline 4555 & 456" & 161 & 104203 & 104306 & 1 & 89 & 71 & 63 & 54 & 44 & 39 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 414 & 0 & 632 & 811 & 90 \\
\hline 4561 & 4566 & 161 & 110031. & 110133 & 1 & 89 & 71 & 63 & 54 & 44 & 39 & 0 & 0 & 0 & 25 & 70 & 300 & 1 & 414 & 0 & 758 & 077 & 95 \\
\hline 4567 & 4572 & 161 & 122032 & 122135 & 1 & 89 & 71 & 63 & 54 & 44 & 39 & 0 & 0 & 0 & 30 & 70 & 300 & 1 & 414 & 0 & 806 & 073 & 93 \\
\hline
\end{tabular}

Table 8-6. --Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 15 T \\
& P I C
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & JATE & \begin{tabular}{l}
START \\
TIME
\end{tabular} & \[
\begin{aligned}
& \text { ENO } \\
& \text { TIME }
\end{aligned}
\] & LAST PIC CODE & \[
1^{G}
\] & \[
\begin{array}{r}
\text { AIN } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & \[
\underset{4}{\text { POW }}
\] & RS & 6 & ANT.
TILT & & LON & \[
\begin{array}{r}
\text { GND } \\
\text { CETR }
\end{array}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{gathered}
\text { FiO } \\
\text { DIST. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { RADAR : } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & STC & COMP. PTS. & TOTAL GS PTS. & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 343 & 346 & 172 & 1543 & 1822 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 126 & 134 & 91 \\
\hline 347 & 350 & 172 & 1944 & 2224 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 106 & 112 & 90 \\
\hline 351 & 354 & 172 & 4345 & 4626 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 404 & 0 & 80 & 89 & 89 \\
\hline 355 & 358 & 172 & 10346 & 10625 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 406 & 0 & 99 & 104 & 82 \\
\hline 359 & 362 & 172 & 11946 & 12226 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 77 & 80 & 87 \\
\hline 363 & 366 & 172 & 14446 & 14726 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 90 & 92 & 83 \\
\hline 367 & 370 & 172 & 15946 & 20226 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 90 & 98 & 87 \\
\hline 371 & 374 & 172 & 21946 & 22226 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 404 & 0 & 92 & 104 & 78 \\
\hline 375 & 378 & 172 & 23945 & 24225 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 404 & 0 & 70 & 85 & 79 \\
\hline 379 & 382 & 172 & 25946 & 30226 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 52 & 58 & 67. \\
\hline 383 & 386 & 172 & 31944 & 32224 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 52 & 59 & 84 \\
\hline 387 & 390 . & 172 & 33943 & 34223 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 58 & 60 & 83 \\
\hline 391 & 394 & 172 & 35943 & 40223 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 59 & 62 & 90 \\
\hline 395 & 398 & 172 & 42222 & 42502 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & .40 & 70 & 300 & 1 & 405 & 0 & 105 & 110 & 94 \\
\hline 399 & 402 & 172 & 44222 & 44502 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 403 & 0 & 113 & 118 & 92 \\
\hline 403 & 406 & 172 & 50222 & 50502 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 404 & 0 & 154 & 166 & 89 \\
\hline 407 & 410 & 172 & 51424 & 51704 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 202 & 221 & 88 \\
\hline 411 & 414 & 172 & 60901 & 61142 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 211 & 223 & 91 \\
\hline 415 & 418 & 1.72 & 62902 & 63142 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 218 & 247 & 85 \\
\hline 419 & 422 & 172 & 63302 & 63542 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 220 & 255 & 83 \\
\hline 423 & 426 & 172 & 63702 & 63942 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 238 & 277 & 86 \\
\hline 427 & 430 & 172 & 70102 & 70342 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 232 & 275 & 89 \\
\hline 431 & 434 & 172 & 72104 & 72344 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 250 & 297 & 90 \\
\hline 435 & 438 & 172 & 73706 & 73946 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 406 & 0 & 253 & 284 & 88 \\
\hline 439 & 440 & 172 & 74106 & 74106 & 2 & 91 & 71 & 0 & 0 & 0 & 0 & 0 & - 0 & 0 & 40 & 70 & 300 & 1 & 404 & 0 & 242 & 242 & 99 \\
\hline 441 & 442 & 172 & 80509 & 80509 & 2 & 91 & 71 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 406 & 0 & 289 & 289 & 99 \\
\hline
\end{tabular}

Table 8-6. --Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1ST & LAST & J. & START & END & LAST & & GAIN & STEP & POME & ERS & & ANT. & LAT & LON & GND & F10 & F10 & Ranar & Scale & STC & COMP. & TOTAL & \(0 / 0\) \\
\hline PIC & PIC & DATE & TIME & TIME & \[
\begin{aligned}
& \text { PIC } \\
& \text { CODE }
\end{aligned}
\] & & 2 & 3 & 4 & 5 & 6 & TILT & & & CLTR & ANG & DIST. & NO & \$100 & & PTS. & GS PTS. & ACC. \\
\hline 443 & 446 & 172 & 82329 & 82515 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 334 & 368 & 91 \\
\hline 447 & 450 & 172 & 84011 & 84146 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 10 & 300 & 1 & 408 & 0 & 326 & 366 & 94 \\
\hline 451 & 454 & 172 & 84234 & 84412 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 340 & 383 & 91 \\
\hline 455 & 458 & 172 & 84458 & 84634 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 342 & 384 & 95 \\
\hline 459 & 462 & 172 & \(92504{ }^{\circ}\) & 92638 & 2 & 91 & 71. & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 348 & 413 & 90 \\
\hline 463 & 466 & 172 & 93849 & 93925 & 1 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 305 & 350 & 93 \\
\hline 467 & 470 & 172 & 95932 & 100107 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 313 & 353 & 90 \\
\hline 471 & 474 & 172 & 101829 & 102004 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 288 & 324 & 91 \\
\hline 475 & 478 & 172 & 103725 & 103901 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1. & 409 & 0 & 297 & 338 & 91 \\
\hline 479 & 482 & 172 & 103948 & 104125 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 299 & 347 & 91 \\
\hline 483 & 486 & 172 & 104213 & 104348 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410 & 0 & 312 & 351 & 85 \\
\hline 487 & 492 & 172 & 105953 & 110041 & 2 & 91 & 71 & 61 & 54 & 47 & 41 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 257 & 302 & 81 \\
\hline 493 & 496 & 172 & 111834 & 112010 & 2 & 91 & 71 & 61 & . 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 411 & 0 & 262 & 302 & 83 \\
\hline 497 & 500 & 172 & 115654 & 115828 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 237 & 304 & 90 \\
\hline 501 & 504 & 172 & 121735 & 122017 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 236 & 282 & 82 \\
\hline 505 & 508 & 172 & 130056 & 130437 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410 & 0 & 205 & 231 & 93 \\
\hline 509 & 512 & 172 & 131805 & 132045 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 183 & 205 & 86 \\
\hline 513 & 516 & 172 & 133955 & 134235 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 161 & 180 & 80 \\
\hline 517 & 520 & 172 & 140007 & 140250 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 177 & 208 & 83 \\
\hline 521 & 524 & 172 & 142020 & 142302 & 2 & -91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & - 0 & 40 & 70 & 300 & 1 & 408 & 0 & 126 & 137 & 72 \\
\hline 525 & 528 & 172 & 144032 & 144315 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 112 & 134 & 78 \\
\hline 529 & 532 & 172 & 145941 & 150221 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 113 & 140 & 82 \\
\hline 533 & 536 & 172 & 152748 & 152935 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 40.7 & 0 & 107 & 124 & 90 \\
\hline 537 & 540 & 172 & 161658 & 161724 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 406 & 0 & 89 & 103 & 66 \\
\hline 541 & 544 & \(17 ?\) & 163948 & 164230 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & - 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 77 & 90 & 78 \\
\hline 545 & 548 & 172 & 170654 & 171034 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 95 & 114 & 83 \\
\hline
\end{tabular}

Table 8-6. --Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { 1ST } \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & \[
\underset{\text { DATE }}{\text { J. }}
\] & \[
\begin{aligned}
& \text { START } \\
& \text { E TIME }
\end{aligned}
\] & \[
\begin{gathered}
\text { END } \\
\text { TIME }
\end{gathered}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC } \\
& \text { CODE }
\end{aligned}
\] & & \[
\begin{array}{r}
\text { GAIN } \\
1
\end{array}
\] & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & \[
{ }_{4}^{\text {POW }}
\] & & 6 & \[
\begin{aligned}
& \text { ANT. } \\
& \text { TILT }
\end{aligned}
\] & & & \[
\begin{aligned}
& \text { GND } \\
& \text { CLTR }
\end{aligned}
\] & \[
\begin{aligned}
& \text { PID } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{gathered}
\text { FID } \\
\text { DIST. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { RADAR } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & STC & COMP. & TOTAL GS PIS. & \[
0 / 0
\]
ACC. \\
\hline 549 & 552 & 172 & 181121 & 181303 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 410 & 0 & . 55 & 62 & 77 \\
\hline 553 & 556 & 172 & 183231 & 183517 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410 & 0 & 48 & 58 & 79 \\
\hline 557 & 560 & 172 & 190236 & 190422 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410 & 0 & 38 & 44 & 75 \\
\hline 561 & 564 & 172 & 200123 & 200249 & 2 & 91 & 71 & 61 & 54 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 31 & 33 & 87 \\
\hline 565 & 567 & 172 & 210311 & 210459 & 1 & 91 & 71 & 61 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 19 & 22 & 81 \\
\hline 568 & 569 & 172 & 220628 & 220628 & 2 & 91 & 71 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 16 & 16 & 93 \\
\hline 570 & 571 & 173 & 142 & 142 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 406 & 0 & 18 & 18 & 94 \\
\hline 572 & 573 & 173 & 10947 & 10947 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 406 & 0 & 29 & 29 & 96 \\
\hline 574 & 575 & 173 & 20030 & 20030 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 404 & 0 & 24 & 24 & 95 \\
\hline 576 & 577 & 173 & 30149 & 30149 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 22 & 22 & 95 \\
\hline 578 & 579 & 173 & 40051 & 40051 & 2 & 91 & 13 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & \(1-\) & 410 & 0 & 25 & 25 & 95 \\
\hline 580 & 581 & 173 & 50222 & 50222 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410 & 0 & 25 & 25 & 95 \\
\hline 582 & 583 & 173 & 60138 & 60138 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 46 & 46 & 97 \\
\hline 584 & 585 & 173 & 70000 & 70000 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410. & 0 & 42 & 42 & 97 \\
\hline 586 & 587 & 173 & 80000 & 80000 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 411 & 0 & 53 & 53 & 98 \\
\hline 588 & 589 & 173 & 90700 & 90700 & 2 & 91 & 13 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 403 & 0 & 52 & 52 & 98 \\
\hline 590 & 591 & 173 & 104003 & 104003 & 2 & 91 & 13 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 403 & 0 & 47 & 47 & 97 \\
\hline 592 & 595 & 173 & 114811 & 114835 & 2 & 91 & 13 & 64 & 57 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 429 & 0 & 39 & 55 & 69 \\
\hline 596 & 597 & 173 & 130120 & 130120 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 427 & 0 & 35 & 35 & 97 \\
\hline 598 & 602 & 173 & 130805 & 130843 & 2 & 91 & 73 & 64 & 57 & 49 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 411 & 0 & 41 & 60 & 75 \\
\hline 603 & 606 & 173 & 135826 & 135851 & 2 & 91 & 73 & 64 & 57 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410 & 0 & 59 & 75 & 74 \\
\hline 607 & 608 & 173 & 150125 & 150125 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410 & 0 & 60 & 60 & 98 \\
\hline 609 & 610 & 173 & 160443 & 160443 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410 & 0 & 41 & 41 & 97 \\
\hline 611 & 612 & 173 & 170022 & 170022 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 413 & 0 & 31 & 31 & 96 \\
\hline 613 & 614 & 173 & 180017 & 180017 & 2 & 91 & 173 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 16 & 16 & 93 \\
\hline 615 & 616 & 173 & 190308 & 190308 & 2 & 91 & 173 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 14 & 14 & 92 \\
\hline
\end{tabular}

Table 8-6.--Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { IST } \\
& \text { PIC }
\end{aligned}
\] & LAST
PIC & JATE & \[
\begin{aligned}
& \text { START } \\
& \text { E TIME }
\end{aligned}
\] & \[
\underset{\text { TIME }}{\text { ENO }}
\] & LAST PIC code & \(1^{\text {G }}\) & \[
\mathrm{GAIN}_{2}
\] & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & \[
{\underset{4}{\mathrm{POWE}}}^{\text {POWE }}
\] & & & 6 & ANT. TILT & & & \[
\begin{gathered}
\text { GND } \\
\text { CLTR }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Fid } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{gathered}
\text { FIO } \\
\text { DIST. }
\end{gathered}
\] & \[
\begin{gathered}
\text { Ranar } \\
\text { NO }
\end{gathered}
\] & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & STC & COMP. & \[
\begin{gathered}
\text { TOTAL } \\
\text { GS PTS. }
\end{gathered}
\] & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 617 & 618 & 173 & 200040 & 200040 & 2 & 91 & 73 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 408 & 0 & 24 & 24 & 95 \\
\hline 619 & 620 & 173 & 205912 & 205912 & 2 & 91 & 73 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 410 & 0 & 18 & 18 & 94 \\
\hline 621 & 622 & 173 & 220405 & 220405 & 2 & 91 & 73 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 28 & 28 & 96 \\
\hline 623 & 624 & 173 & 230239 & 230239 & 2 & 91 & 73 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 32 & 32 & 96 \\
\hline 625 & 626 & 174 & 1512 & 1512 & 2 & 91 & 73 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 52 & 52 & 94 \\
\hline 627 & 628 & 174 & 5906 & 5906 & 2 & 91 & 73 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 33 & 33 & 96 \\
\hline 629 & 632 & 174 & 12105 & 13203 & 2 & 91 & 73 & 64 & 57 & 0 & & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 402 & 0 & 54 & 60 & 71 \\
\hline 633 & 635 & 174 & 23503 & 23751 & 1 & 91 & 73 & 64 & 0 & 0 & & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 45 & 49 & 93 \\
\hline 636 & 638 & 174 & 33106 & 33357 & 1 & 91 & 73 & 64 & 0 & 0 & & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 413 & 0 & 55 & 59 & 93 \\
\hline 639 & 642 & 174 & 42717 & 43011 & 2 & 91 & 73 & 64 & 57 & 0 & & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410 & 0 & 61 & 70 & 88 \\
\hline 643 & 646 & 174 & 52758 & 53051 & 2 & 91 & 73 & 64 & 57 & 0 & & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 410 & 0 & 48 & 51 & 70 \\
\hline 647 & 650 & 174 & 81018 & 81958 & 2 & 91 & 73 & 64 & 57 & 0 & & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 411 & 0 & 18 & 21 & 90 \\
\hline 651 & 652 & 174 & 91407 & 91833 & 1 & 91 & 73 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 409 & 0 & 21 & 21 & 95 \\
\hline 653 & 654 & 174 & 105200 & 105721 & 1 & 91 & 73 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 19 & 19 & 94 \\
\hline 655 & 656 & 174 & 115800 & 115800 & 2 & 91 & 73 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410 & 0 & 32 & 32 & 96 \\
\hline 657 & 658 & 174. & 123645 & 123645 & 2 & 91 & 73 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410 & 0 & 41 & 41 & 97 \\
\hline 659 & 660 & 174 & 140009 & 140009 & 2 & 91 & 72 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410 & 0 & 40 & 40 & 97 \\
\hline 661 & 662 & 174 & 150516 & 150516 & 2 & 91 & 72 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 411 & 0 & 33 & 33 & 96 \\
\hline 663 & 664 & 174 & 160041 & 160041 & 2 & 91 & 72 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410 & 0 & 27 & 27 & 96 \\
\hline 665 & 666 & 174 & 170153 & 170153 & 2 & 91 & 72 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 27 & 27 & 96 \\
\hline 226 & 227 & 174 & 180257 & 180257 & 2 & 91 & 72 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 50 & 70 & 300 & 1 & 407 & 0 & 25 & 25 & 95 \\
\hline 228 & 229 & 174 & 190204 & 190204 & 2 & 91 & 72 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 50 & 70 & 300 & 1 & 409 & 0 & 28 & 28 & 96 \\
\hline 230 & 232 & 174 & 201948 & 202012 & 1 & 91 & 72 & 65 & 0 & 0 & & 0 & 0 & 0 & 0 & 50 & 70 & 300 & 1 & 414 & 0 & 21 & 22 & 81 \\
\hline 233 & 234 & 174 & 214126 & 214126 & 2 & 91 & 72 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 50 & 70 & 300 & 1 & 409 & 0 & 26 & 26 & 96 \\
\hline 235 & 236 & 174 & 221230 & 221230 & 2 & 91 & 72 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 50 & 70 & 300 & 1 & 413 & 0 & 28 & 28 & 96 \\
\hline 667 & 668 & 174 & 225815 & 225815 & 2 & 91 & 72 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 412 & 0 & 24 & 24 & 95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 151 \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & JATE & START
TIME & \[
\begin{gathered}
\text { END } \\
\text { tIME }
\end{gathered}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC } \\
& \text { CODE }
\end{aligned}
\] & & \[
\begin{array}{r}
\text { GAIN } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & \[
\begin{gathered}
\text { POWI } \\
4
\end{gathered}
\] & \[
\begin{array}{r}
\text { WERS } \\
5
\end{array}
\] & 6. & \begin{tabular}{l}
ANT. \\
TILT
\end{tabular} & & LON & \[
\begin{gathered}
\text { GND } \\
\text { CLTR }
\end{gathered}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { DIST. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { RADAR } \\
& \text { ND }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & STC & COMP. PTS. & \[
\begin{aligned}
& \text { TOTAL } \\
& \text { GS PIS. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 0/0 } \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 669 & 670 & 175 & 300 & 300 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 402 & 0 & 19 & 19 & 94 \\
\hline 237 & 238 & 175 & 10315 & 10315 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 50 & 70 & 300. & 1 & 409 & \(0 \cdot\) & 35 & 35 & 97 \\
\hline 239 & 240 & 175 & 20648 & 20648 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0. & 50 & 70 & 300 & 1 & 409 & 0 & 41 & 41 & 97 \\
\hline 241 & 242 & 175 & 30013 & 30013 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 50 & 70 & 300 & 1 & 410 & 0 & 35 & 35 & 97 \\
\hline 243 & 248 & 175 & 40042 & 40830 & 1 & 91 & 72 & 65 & 56 & 48 & 43 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 409 & 0 & 61 & 68 & 60 \\
\hline 249 & 253 & 175 & 50658 & 51224 & 1 & 91 & 72 & 65 & 56 & 48 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 67 & 78 & 73 \\
\hline 254 & 258 & 175 & 52317 & 52846 & 1 & 91 & 72 & 65 & 56 & 48 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410 & 0 & 65 & 84 & 71 \\
\hline 259 & 262 & 175 & 55657 & 55742 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410 & 0 & 62 & 78 & 71 \\
\hline 671 & 674 & 175 & 62028 & 62312 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 44 & 64 & 73 \\
\hline 675 & 678 & 175 & 64055 & 64340 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 404 & 0 & 41 & 49 & 55 \\
\hline 679 & 682 & 175 & 70227 & 70513 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 40 & 45 & 57 \\
\hline 683 & 686 & 175 & 12159 & 72443 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 406 & 0 & 48 & 61 & 70 \\
\hline 687 & 690 & 175 & 74225 & 74509 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 32 & 45 & 57 \\
\hline 691 & 694 & 175 & 80251 & 80535 & 2 & 91 & 72 & 65 & 56 & 0 & 0 & 0 & 0. & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 22 & 26 & 38 \\
\hline 695 & 696 & 175 & 90038 & 90038 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 21 & 21 & 95 \\
\hline 697 & 698 & 175 & 100046 & 100046 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 15 & 15 & 93 \\
\hline 699 & . 700 & 175 & 105800 & 105800 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 13 & 13 & 92 \\
\hline 701 & 702 & 175 & 120224 & 120224 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 16 & 17 & 76 \\
\hline 703 & 704 & 175 & 130500 & 130500 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 404 & 0 & 15 & 16 & 100 \\
\hline 705 & 706 & 175 & 135751 & 135751 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 403 & 0 & 13 & 13 & 92 \\
\hline 707 & 708 & 175 & 150021 & 150021 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 404 & 0 & \(28^{\prime}\) & 28 & 96 \\
\hline 709 & 710 & 175 & 155916 & 155916 & 2 & 91 & 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 403 & 0 & 22 & 22 & 95 \\
\hline 711 & 712 & 175 & 170431 & 170431 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 403 & 0 & 4 & 4 & 75 \\
\hline 713 & 714 & 175 & 180321 & 180321 & 2 & 91 & 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 13 & 13 & 84 \\
\hline 715 & 716 & 175 & 190211 & 190211 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 6 & 6 & 83 \\
\hline 717 & 718 & 175 & 200623 & 200623 & 2 & 91 & 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1. & 406 & 0 & 11 & 11 & 90 \\
\hline
\end{tabular}

Table 8-6.--Inventory of digitized radar composites (continued)


Table 8-6. --Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 151 & LAST & J. & START & & & & GAIN & STEP & & & & ANT. & & LON & GNO & F10 & F10 & RADAR & SCale & STC & COMP. & rotal & \(0 / 0\) \\
\hline PIC & PIC & DATE & TIME & TIME & \[
\begin{aligned}
& \text { PIC } \\
& \text { CODE }
\end{aligned}
\] & 1 & 2 & 3 & 4 & 5 & 6 & TILT & & & CLTR & ANG & DIST. & No & \(\times 100\) & & PTS. & GS PTS. & ACC. \\
\hline 271 & 274 & 176 & 200345 & 200410 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410 & 0 & 110 & 132 & 77 \\
\hline 275 & 278 & 176 & 210015 & 210041 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 408 & 0 & 118 & 146 & 76 \\
\hline 279 & 282 & 176 & 211830 & 212116 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 412 & 0 & 121 & 144 & 86 \\
\hline 283 & 286 & 176 & 213905 & 214150 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 120 & 139 & 75 \\
\hline 287 & 290 & 176 & 220220 & 220245 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 410 & 0 & 121 & 155 & 81 \\
\hline 772 & 775 & 176 & 222013 & 222258 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 406 & 0 & 100 & 126 & 73 \\
\hline 776 & 779 & 176 & 224047 & 224332 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 105 & 119 & 62 \\
\hline 780 & 783 & 176 & 230219 & 230304 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 406 & 0 & 102 & 134 & 76 \\
\hline 784 & 787 & 176 & 231745 & 232030 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 406 & 0 & 93 & 122 & 71 \\
\hline 788 & 791 & 176 & 234629 & 234914 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 406 & 0 & 106 & . 129 & 77 \\
\hline 792 & 795 & 177 & 259 & 546 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 135 & 162 & 69 \\
\hline 291 & 294 & 177 & 5744 & 5930 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 121 & 151 & 81 \\
\hline 295 & 298 & 177 & 12133 & 12419 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 409 & 0 & 126 & 159 & 64 \\
\hline 299 & 302 & 177 & 14213 & 14500 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & \(40^{\circ}\) & 70 & 300 & 1 & 409 & 0 & 122 & 151 & 62 \\
\hline 303 & 306 & 177 & 20255 & 20540 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 120 & 159 & 69 \\
\hline 307 & 310 & 177 & 30444 & 30730 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 114 & 148 & 68 \\
\hline 311 & 314 & 177 & 32118 & 32404 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 406 & 0 & 110 & 143 & 63 \\
\hline 315 & 318 & 177 & 34200 & 34447 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 89 & 110 & 69 \\
\hline 319 & 322 & 177 & 35835 & 40122 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 98 & 120 & 79 \\
\hline 323 & 326 & 177 & 41832 & 42118 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 86 & 114 & 64 \\
\hline 327 & 330 & 177 & 44415 & 44659 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 91 & 117 & 74 \\
\hline 331 & 334 & 177 & 50047 & 50334 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 404 & 0 & 63 & 79 & 56 \\
\hline 335 & 338 & 177 & 52134 & 52422 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 65 & 83 & 46 \\
\hline 339 & 342 & 177 & 54321 & 54507 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 65 & 86 & 75 \\
\hline 796 & 799 & 177 & 60142 & 60429 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 405 & 0 & 76 & 107 & 66 \\
\hline 800 & 803 & 177 & 62229 & 62516 & 2 & 91 & 71 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 406 & 0 & 67 & 95 & 64 \\
\hline
\end{tabular}

Table 8-6.--Inventory of digitized radar composites (continued)


Table 8-6. --Inventory of digitized radar composites (continued)


Table 8-6.--Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { 1ST } \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & DATE & \begin{tabular}{l}
START \\
TIME
\end{tabular} & \[
\begin{aligned}
& \text { END } \\
& \text { TIME }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC } \\
& \text { CODE }
\end{aligned}
\] & \(1^{\text {G }}\) & \[
\begin{array}{r}
\text { GAIN } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & & & 6 & \begin{tabular}{l}
ANT. \\
TILT
\end{tabular} & & LON & \[
\begin{aligned}
& \text { GND } \\
& \text { CLTR }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { ang }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { DIST. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { RAMAR } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & STC & \[
\begin{aligned}
& \text { COMP. } \\
& \text { PTS. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { TOTAL } \\
& \text { GS PTS. }
\end{aligned}
\] & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 1269 & 1272 & 179 & 11526 & 11806 & 2 & 91 & 72 & 63 & 57 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 406 & 0 & 115 & 161 & 79 \\
\hline 1273 & 1276 & 179 & 13935 & 14216 & 2 & 91 & 72 & 63 & 57 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 93 & 119 & 68 \\
\hline 1277 & 1280 & 179 & 20909 & 21152 & 2 & 91 & 72 & 63 & 57 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 406 & 0 & 69 & 86 & 67 \\
\hline 1281 & 1284 & 179 & 22114 & 22356 & 2 & 91 & 72 & 63 & 57 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 59 & 79 & 77 \\
\hline 1285 & 1288 & 179 & 24119 & 24406 & 2 & 91 & 72 & 63 & 57 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 404 & 0 & 55 & 69 & 57 \\
\hline 1289 & 1292 & 1.79 & 30136 & 30418 & 2 & 91 & 72 & 63 & 57 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 34 & 45 & 79 \\
\hline 1293 & 1296 & 179 & 32150 & 32430 & 2 & 91 & 72 & 63 & 57 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 407 & 0 & 29 & 34 & 85 \\
\hline 1297 & 1300 & 179 & 34200 & 34358 & 2 & 91 & 72 & 63 & 57 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 406 & 0 & 19 & 20 & 64 \\
\hline 1301 & 1304 & 179 & 40128 & 40412 & 2 & 91 & 72 & 63 & 57 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 407 & 0 & 19 & 23 & 86 \\
\hline 1305 & 1307 & 179 & 42145 & 42427 & 1 & 91 & 72 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 407 & 0 & 38 & 39 & 92 \\
\hline 1309 & 1311 & 179 & 44205 & 44447 & 1 & 91 & 12 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 31 & 33 & 93 \\
\hline 1313 & 1316 & 179 & 60304 & 60548 & 2 & 91 & 72 & 63 & 57 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 406 & 0 & 60 & 72 & 83 \\
\hline 1317 & 1320 & 179 & 61920 & 62204 & 2 & 91 & 72 & 63 & 57 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 408 & 0 & 66 & 85 & 85 \\
\hline 1321 & 1324 & 179 & 63943 & 64225 & 2 & 91 & 72 & 63 & 57 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 406 & 0 & 64 & 79 & 81 \\
\hline 1325 & 1328 & 179 & 70012 & 70257 & 2 & 91 & 72 & 63 & 57 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 405 & 0 & 52 & 63 & 77 \\
\hline 1329 & 1332 & 179 & 72044 & 72328 & 2 & 91 & 72 & 63 & 51 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 407 & 0 & 58 & 66 & 83 \\
\hline 1333 & 1336 & 179 & 73953 & 74237 & 2 & 91 & 72 & 63 & 57 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 406 & 0 & 38 & 42 & 71 \\
\hline 1337 & 1340 & 179 & 80025 & 80309 & 2 & 91 & 72 & 63 & 57 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 406 & 0 & 34 & 42 & 80 \\
\hline 1341 & 1343 & 179 & 82058 & 82342 & 1 & 91 & 72 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 405 & 0 & 25 & 27 & 85 \\
\hline 1344 & 1347 & 179 & 84130 & 84415 & 2 & 91 & 72 & 63 & 57 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 405 & 0 & 29 & 33 & 84 \\
\hline 1348 & 1349 & 179 & 85757 & 85757 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 35 & 70 & 300 & 1 & 405 & 0 & 27 & 27 & 96 \\
\hline 1350 & 1351 & 179 & 92116 & 92116 & 2 & 91 & 75 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 35 & 70 & 300 & 1 & 405 & 0 & 15 & 15 & 93 \\
\hline 1352 & 1353 & 179 & 94031 & 94031 & 2 & 91 & 75 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 35 & 70 & 300 & 1 & 404 & 0 & 19 & 19 & 94 \\
\hline 1354 & 1355 & 179 & 95945 & 95945 & 2 & 91 & 75 & 0 & 0 & 0 & 0 & 0 & - 0 & 0 & 35 & 70 & 300 & 1 & 403 & 0 & 30 & 30 & 96 \\
\hline 1356 & 1357 & 179 & 101902 & 101902 & 2 & 91 & 75 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 35 & 70 & 300 & 1 & 405 & 0 & 24 & 24 & 95 \\
\hline 1358 & 1359 & 179 & 103939 & 103939 & 2 & 91 & 75 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 35 & 70 & 300 & 1 & 403 & 0 & 20 & 20 & 94 \\
\hline
\end{tabular}


Table 8-6. --Inventory of digitized radar composites (continued)


Table 8-6.--Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 151 & Last & J. & Start & END & Last & & gain & STEP & POWE & & & ANT. & Lat & LON & GND & FID & Fid & ranar & Scale & Stc & comp. & total & 0/0 \\
\hline PIC & PIC & DATE & time & time & PIC CODE & 1 & 2 & 3 & 4 & 5 & 6 & TILT & & & CLTR & ang & DIST. & No & \(\times 100\) & & PTS. & GS PTS. & ACC. \\
\hline 70 & 73 & 180 & 120042 & 120224 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 399 & 0 & 165 & 186 & 94 \\
\hline 74 & 77 & 180 & 121842 & 122018 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 402 & 0 & 144 & 164 & 86 \\
\hline 78 & 81 & 180 & 123856 & 124134 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 400 & 0 & 144 & 164 & 89 \\
\hline 82 & 85 & 180 & 135942 & 140223 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 402 & 0 & 104 & 117 & 80 \\
\hline 86 & 89 & 180 & 141942 & 142123 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 405 & 0 & 91 & 105 & 86 \\
\hline 90 & 93 & 180 & 143943 & 144124 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 400 & 0 & 68 & 82 & 75 \\
\hline 94 & 97 & 180 & 145944 & 150126 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 402 & 0 & 66 & 82 & 75 \\
\hline 98 & 101 & 180 & 151947 & 152128 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 403 & 0 & 68 & 84 & 77 \\
\hline 102 & 105 & 180 & 153946 & 154126 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 402 & 0 & 62 & 79 & 83 \\
\hline 106 & 109 & 180 & 155819 & 155959 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 400 & 0 & 59 & 71 & 87. \\
\hline 110 & 113 & 180 & 170027 & 170053 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 401 & 0 & 106 & 112 & 75 \\
\hline 114 & 117 & 180 & 181818 & 181958 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 400 & 0 & 89 & 103 & 84. \\
\hline 118 & 121 & 180 & 184045 & 184226 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 400 & 0 & 90 & 109 & 81 \\
\hline 122 & 125 & 180 & 185942 & 190219 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 401 & 0 & 86 & 103 & 76 \\
\hline 126 & 129 & 180 & 191912 & 192150 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 400 & 0 & 84. & 108 & 76 \\
\hline 130 & 133 & 180 & 193842 & 194119 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 401 & 0 & 70 & 82 & 73 \\
\hline 134 & 137 & 180 & 200207 & 200445 & ? & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 401 & 0 & 95 & 116 & 73 \\
\hline 138 & 141 & 180 & 202139 & 202415 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 401 & 0 & 96 & 122 & 66 \\
\hline 142 & 145 & 180 & 204110 & 204345 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 400 & 0 & 99 & 128 & 62 \\
\hline 146 & 149 & 180 & 205920 & 210158 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 401 & 0 & 91 & 124 & 66 \\
\hline 150 & 153 & 180 & 211850 & 212127 & 2 & 91 & 70 & 60 & 52 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 401 & 0 & 78 & 97 & 43 \\
\hline 154 & 157 & 180 & 220130 & 220355 & 2 & 91 & 72 & 61 & 53 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 402 & 0 & 56 & 78 & 67 \\
\hline 158 & 161 & 180 & 230759 & 230824 & 2 & 91 & 72 & 61 & 53 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 400 & 0 & 48 & 62 & 56 \\
\hline 162 & 165 & 180 & 232236 & 232919 & 2 & 91 & 72' & 61 & 53 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 401 & 0 & 40 & 55 & 54 \\
\hline 1482 & 1483 & 181 & 2010 & 2010 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 400 & 0 & 22 & 22 & 95 \\
\hline 1484 & 1485 & 181 & 10125 & 10125 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 45 & 70 & 300 & 1 & 399 & 0 & 12 & 12 & 91 \\
\hline
\end{tabular}

Table 8-6. --Inventory of digitized radar composites (continued)


Table 8-6.--Inventory of digitized radar composites (continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1564 & 1565 & 181 & 132320 & 132320 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 398 & 0 & 31 & 31 & 96 \\
\hline 1566 & 1567 & 181 & 134029 & 134029 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 397 & 0 & 24 & 24 & 95 \\
\hline 1568 & 1569 & 181 & 140258 & 140258 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 399 & 0 & 37 & 37 & 97 \\
\hline 1570 & 1571 & 181 & 141908 & 141908 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 397 & 0 & 28 & 28 & 96 \\
\hline 1572 & 1573 & 181 & 144035 & 144035 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 398 & 0 & 33 & 33 & 96 \\
\hline 1574 & 1575 & 181 & 150203 & 150203 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 398 & 0 & 28 & 28 & 96 \\
\hline 1576 & 1577 & 181 & 151912 & 151912 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 399 & 0 & 25 & 25 & 95 \\
\hline 1578 & 1579 & 181 & 154038 & 154038 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & . 0 & 40 & 70 & 300 & 1 & 400 & 0 & 24 & 24 & 95 \\
\hline 1580 & 1581 & 181 & 160204 & 160204 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 40 & 40 & 97 \\
\hline 1582 & 1583 & 181 & 162330 & 162330 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 38 & 38 & 97 \\
\hline 1584 & 1585 & 181 & 170105 & 170105 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 398 & 0 & 40 & 40 & 97 \\
\hline 2586 & 1587 & 181 & 171914 & 171914 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 399 & 0 & 40 & 40 & 97 \\
\hline 1588 & 1589 & 181 & 174045 & 174045 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 46 & 46 & 97 \\
\hline 1590 & 1591 & 181 & 180215 & 180215 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 47 & 50 & 100 \\
\hline 1592 & 1593 & 181 & 182029 & 182029 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 407 & 0 & 53 & 53 & 98 \\
\hline 1594 & 1595 & 181 & 184124 & 184124 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & . 40 & 70 & 300 & 1 & 399 & 0 & 55 & 55 & 98 \\
\hline 1596 & 1597 & 181 & 185958 & 185958 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 399 & 0 & 51 & 51 & 98 \\
\hline 1598 & 1599 & 181 & 192053 & 192053 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70. & 300 & 1 & 399 & 0 & 81 & 81 & 98 \\
\hline 1600 & 1601 & 181 & 193928 & 193928 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 97 & 97 & 98 \\
\hline 1602 & 1604 & 181 & 195939 & 200220 & 1 & 91 & 72 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 401 & 0 & 80 & 81 & 86 \\
\hline 1605 & 1608 & 181 & 201945 & 202225 & 2 & 91 & 72 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 401 & 0 & 98 & 105 & 73 \\
\hline 1609 & 1612 & 181 & 203951 & 204231 & 2 & 91 & 72 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 401 & 0 & 96 & 120 & 88 \\
\hline 1613 & 1616 & 181 & 205957 & 210237 & 2 & 91 & 12 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 90 & 108 & 87 \\
\hline 1617 & 1620 & 181 & 211902 & 211926 & 2 & 91 & 72 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 401 & 0 & 90 & 117 & 76 \\
\hline 1621 & 1624 & 181 & 214128 & 214408 & 2 & 91 & 72 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 402 & 0 & 93 & . 113 & 82 \\
\hline 1625 & 1626 & 181 & 220133 & 220133 & 2 & 91 & 72 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 100 & 100 & 98 \\
\hline
\end{tabular}

\section*{Table 8-6. --Inventory of digitized radar composites (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { IST } \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & J. & \begin{tabular}{l}
START \\
TIME
\end{tabular} & \[
\begin{aligned}
& \text { END } \\
& \text { TIME }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC } \\
& \text { CODE }
\end{aligned}
\] & & \[
\begin{array}{r}
\text { GAIN } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { STEP } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{POW} \\
4
\end{gathered}
\] & & 6 & \[
\begin{aligned}
& \text { ANT } \\
& \text { TILT }
\end{aligned}
\] & & LON & \[
\begin{aligned}
& \text { GND } \\
& \text { CLTR }
\end{aligned}
\] & FID & \[
\begin{aligned}
& \text { FID } \\
& \text { OIST. }
\end{aligned}
\] & ranar No & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & Stc & \[
\begin{aligned}
& \text { COMP. } \\
& \text { PTS. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { TOTAL } \\
& \text { GS PTS. }
\end{aligned}
\] & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 1627 & 1630 & 181 & 220254 & 220533 & 2 & 91 & 72 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 98 & 122. & 74 \\
\hline 1631 & 1634 & 181 & 221859 & 222141 & 2 & 91 & 72 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 401 & 0 & 95 & 123 & 82 \\
\hline 1635 & 1638 & 181 & 223906 & 224148 & 2 & 91 & 72 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 401 & 0 & 90 & 111 & 81 \\
\hline 1639 & 1642 & 181 & 225912 & 230154 & 2 & 91 & 72 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 399 & 0 & 108 & 140 & 82 \\
\hline 1643 & 1646 & 181 & 232200 & 232441 & 2 & 91 & 72 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 109 & 148 & 82 \\
\hline 1647 & 1650 & 181 & 2342 23 & 234503 & 2 & 91 & 72 & 63 & 55 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 117 & 150 & 79 \\
\hline 1651 & 1654 & 182 & 212 & 452 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 399 & 0 & 98 & 133 & 81 \\
\hline 1655 & 1658 & 182 & 2639 & 2920 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 96 & 114 & 80 \\
\hline 1659 & 1662 & 182 & 3844 & 4125 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & , & 400 & 0 & 93 & 109 & 88 \\
\hline 1663 & 1666 & 182 & 5849 & 10127 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 399 & 0 & 104 & 123 & 76 \\
\hline 1667 & 1670 & 182 & 11841 & 12118 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 106 & 127 & 83 \\
\hline 1671 & 1674 & 182 & 14332 & 14612 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 130 & 154 & 85 \\
\hline 1675 & 1677 & 182 & 21324 & 21445 & 2 & 91 & 74 & 63 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 147 & 167 & 84 \\
\hline 1678 & 1681 & 182 & 21628 & 21912 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 154 & 187 & 78 \\
\hline 1682 & 1685 & 182 & 24151 & 24431 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 401 & 0 & 165 & 205 & 76 \\
\hline 1686 & 1689 & 182 & 25808 & 30051 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 403 & 0 & 145 & 184 & 70 \\
\hline 1690 & 1693 & 182 & 32236 & 32520 & 2 & \(91{ }^{\circ}\) & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 126 & 158 & 73 \\
\hline 1694 & 1697 & 182 & 33858 & 34141 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 121 & 149 & 67 \\
\hline 1698 & 1701 & 182 & 35924 & 40208 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 401 & 0 & 119 & 166 & 80 \\
\hline 1702 & 1705 & 182 & 41951 & 42232 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 401 & 0 & 126 & 173 & 79 \\
\hline 1706 & 1709 & 182 & 44021 & 44304 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 401 & 0 & 127 & 170 & 75 \\
\hline 1710 & 1713 & 182 & 50050 & 50331 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 401 & 0 & 128 & 168 & 74 \\
\hline 1714 & 1717 & 182 & 52115 & 52400 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 401 & 0 & 124 & 151 & 72 \\
\hline 1718 & 1721 & 182 & 54145 & 54428 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 402 & 0 & 113 & 155 & 69 \\
\hline 1722 & 1725 & 182 & 60213 & 60455 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 401 & 0 & 121 & 161 & 80 \\
\hline 1726 & 1729 & 182 & 61835 & 62118 & 2 & 91 & 74 & 63 & 59 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 401 & 0 & 127 & 177 & 74 \\
\hline
\end{tabular}

Table 8-6.--Inventory of digitized radar composites (continued)


Table 8-6. --Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { 1ST } \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & dote & \begin{tabular}{l}
START \\
TIME
\end{tabular} & \[
\begin{array}{r}
\text { END } \\
\text { TIME }
\end{array}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC } \\
& \text { CODE }
\end{aligned}
\] & \[
1
\] & \[
\begin{array}{r}
\text { GAIN } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & POW & & 6 & \[
\begin{aligned}
& \text { ANT. } \\
& \text { TILT }
\end{aligned}
\] & LAT & LON & \[
\begin{aligned}
& \text { GND } \\
& \text { CLTR }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{gathered}
\text { FID } \\
\text { DIST. }
\end{gathered}
\] & RADAR No & \[
\begin{aligned}
& \text { SCALE } \\
& \times 100
\end{aligned}
\] & STC & \[
\begin{aligned}
& \text { COMP. } \\
& \text { PTS. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { TOTAL } \\
& \text { GS PTS. }
\end{aligned}
\] & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 1828 & 1831 & 182 & 162244 & 162526 & 2 & 91 & 73 & 65 & 57 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 401 & 0 & 75 & 100 & 62 \\
\hline 1832 & 1835 & 182 & 165944 & 170009 & 2 & 91 & 73 & 65 & 57 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 47 & 76 & 72 \\
\hline 1836 & 1837 & 182 & 172133 & 172133 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 399 & 0 & 48 & 48 & 97 \\
\hline 1838 & 1839 & 182 & 174101 & 174101 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 400 & 0 & 43 & 43 & 97 \\
\hline 1840 & 1841 & 182 & 180025 & 180025 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 398 & 0 & 50 & 50 & 97 \\
\hline 1842 & 1843 & 182 & 181950 & 181950 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 398 & 0 & 39 & 39 & 97 \\
\hline 1844 & 1845 & 182 & 184139 & 184139 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 399 & 0 & 35 & 35 & 97 \\
\hline 1846 & 1847 & 182 & 190330 & 190330 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 398 & 0 & 40 & 40 & 97 \\
\hline 1848 & 1849 & 182 & 191704 & 191704 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 398 & 0 & 42 & 42 & 97 \\
\hline 1850 & 1851 & 182 & 194056 & 194056 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 397 & 0 & 34 & 34 & 97 \\
\hline 1852 & 1853 & 182 & 200226 & 200226 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 399 & 0 & 25 & 25 & 95 \\
\hline 1854 & 1855 & 182 & 201833 & 201833 & 2 & 91 & 73 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 40 & 70 & 300 & 1 & 399 & 0 & 24 & 24 & 95 \\
\hline
\end{tabular}

Table 8-6.--Inventory of digitized radar composites (continued)


Table 8-6.--Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 151 \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & docte & \begin{tabular}{l}
START \\
TIME
\end{tabular} & END & LAST PIC CODE & \[
1_{1}^{G}
\] & \[
\begin{gathered}
\text { GAIN } \\
2
\end{gathered}
\] & \[
\underset{3}{\text { STEP }}
\] & \[
\underset{4}{\text { Powe }}
\] & HERS & 6 & \begin{tabular}{l}
ANT. \\
TILT
\end{tabular} & & & \[
\begin{gathered}
\text { GND } \\
\text { CLTR }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Fing } \\
& \text { F }
\end{aligned}
\] & \[
\begin{gathered}
\text { Fid } \\
\text { oIST. }
\end{gathered}
\] & RADAR
NO & \[
\begin{gathered}
\text { SCALE } \\
\times 100 .
\end{gathered}
\] & & COMP. PTS. & \[
\begin{gathered}
\text { TOTAL. } \\
\text { GS PTS. }
\end{gathered}
\] & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 5079 & 5082 & 151 & 144840 & 145000 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & \(?\) & 430 & 1 & 22 & 25 & 95 \\
\hline 5083 & 5086 & 151 & 152110 & 152230 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & ? & 436 & 1 & 23 & 29 & 93 \\
\hline 5087 & 5089 & 151 & 160000 & 160020 & 2 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 429 & 1 & 20 & 20 & 89 \\
\hline 5090 & 5092 & 151 & 162500 & 162550 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 435 & 1 & 18 & 19 & 89 \\
\hline 5093 & 5095 & 151 & 172000 & 172100 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & ? & 432 & 1 & 20 & 21 & 85 \\
\hline 5096 & 5098 & 151 & 174840 & 174900 & 2 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 434 & 1 & 33 & 34 & 97 \\
\hline 5099 & 5100 & 151 & 175900 & 175900 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 434 & 1 & 20 & 20 & 100 \\
\hline 5101 & 5103 & 151 & 184900 & 185020 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & . 0 & 20 & 0 & 345 & 2 & 432 & 1 & 50 & 51 & 98 \\
\hline 5104 & 5107 & 151 & 191700 & 191800 & 2 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 432 & 1 & 29 & 30 & 86 \\
\hline 5108 & 5110 & 151 & 201800 & 201900 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 436 & 1 & 20 & 21 & 100 \\
\hline 5111 & 5112 & 151 & 205700 & 205700 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & ? & 435 & 1 & 28 & 28 & 100 \\
\hline 5113 & 5116 & 151 & 215130 & 215320 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 437 & 0 & 43 & 52 & 80 \\
\hline 5117 & 5118 & 151 & 222300 & 222300 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & ? & 434 & 1 & 30 & 30 & 100 \\
\hline 5119 & 5121 & 151 & 230630 & 230700 & 2 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & \(?\) & 436 & 0 & 53 & 63 & 98 \\
\hline 5122 & 5123 & 152 & 4210 & 4210 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 437 & 1 & 75 & 75 & 100 \\
\hline 5124 & 5127 & 152 & 13430 & 13630 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 434 & 1 & 56 & 68 & 92 \\
\hline 5128 & 5131 & 152 & 20400 & 20500 & 2 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & \(?\) & 437 & 1 & 63 & 69 & 88 \\
\hline 5134 & 5138 & 152 & 55830 & 60020 & 1 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 435 & 1 & 149 & 175 & 87 \\
\hline 5139 & 5143 & 152 & 72040 & 72200 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 436 & 1 & 148 & 178 & 89 \\
\hline 5144 & 5145 & 152 & 73220 & 73220 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 434 & 1 & 142 & 142 & 100 \\
\hline 5146 & 5147 & 152 & 83030 & 83030 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & \(?\) & 436 & 0 & 114 & 114 & 100 \\
\hline 5148 & 5149 & 152 & 90430 & 90430 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 435 & 0 & 123 & 123 & 100 \\
\hline 5150 & 5151 & 152 & 95120 & 95120 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 434 & 1 & 102 & 102 & 100 \\
\hline 5152 & 5155 & 152 & 101000 & 101130 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & \(?\) & 436 & 1 & 87 & 102 & 96 \\
\hline 5156 & 5157 & 152 & 103130 & 103130 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 436 & 1 & 80 & 80 & 100 \\
\hline 5158 & 5160 & 152 & 111730 & 111800 & 2 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 435 & 1 & 67 & 72 & 98 \\
\hline
\end{tabular}

Table 8-6.--Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 15 \mathrm{ST} \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & \[
\underset{\text { DATE }}{\text { J. }}
\] & START TIME & \[
\underset{\text { tiME }}{\text { END }}
\] & Last PIC CODE & & \[
\underset{2}{\text { GAIN }}
\] & \[
\begin{gathered}
\text { STEP } \\
\hline
\end{gathered}
\] & \[
\underset{4}{\text { POWE }}
\] & & 6 & \[
\begin{aligned}
& \text { ANT. } \\
& \text { IILI }
\end{aligned}
\] & & & \[
\begin{gathered}
\text { GNO } \\
\text { CLTR }
\end{gathered}
\] & \[
\begin{array}{r}
\text { FiNG }
\end{array}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { DIST. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { RADAR } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & s.te & COMP. & \[
\begin{aligned}
& \text { TOTAL } \\
& \text { GS PIS. }
\end{aligned}
\] & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 5161 & 5164 & 152 & 115240 & 115400 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 434 & 1 & 40 & 50 & 97 \\
\hline 5165 & 5166 & 152 & 125420 & 125420 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 436 & 1 & 31 & 31 & 100 \\
\hline 5167 & 5168 & 152 & 132520 & 132520 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 436 & 1 & 44 & 44 & 100 \\
\hline 5169 & 5172 & 152 & 141400 & 141530 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 436 & 1 & 26 & 31 & 93 \\
\hline 5173 & 5175 & 152 & 160400 & 160500 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 436 & 1 & 22 & 24 & 100 \\
\hline 5176 & 5177 & 152 & 162720 & 162720 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 436 & 1 & 18 & 18 & 100 \\
\hline 5178 & 5182 & 152 & 184700 & 184800 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 455 & 1 & 16 & 20 & 100 \\
\hline 5183 & 5185 & 152 & 201240 & 201330 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 454 & 1 & 22 & 22 & 90 \\
\hline 5186 & 5187 & 152 & 205700 & 205700 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 455 & \(1{ }^{\text {c }}\) & 19 & 19 & 100 \\
\hline 5188 & 5191 & 152 & 214540 & 214630 & 2 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 457 & 1 & 23 & 27 & 88 \\
\hline 5192 & 5194 & 152 & 220100 & 220200 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 457 & 1 & 29 & 30 & 96 \\
\hline 5195 & 5196 & 152 & 222100 & 222100 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & \(?\) & 457 & 1 & 25 & 25 & 100 \\
\hline 5197 & 5198 & 152 & 230500 & 230500 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & ? & 458 & 1 & 26 & 26 & 100 \\
\hline 5199 & 5200 & 153 & 4930 & 4930 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 455 & 1 & 23 & 23 & 100 \\
\hline 5201 & 5204 & 153 & 11700 & 11810 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 455 & 1 & 53 & 64 & 90 \\
\hline 5205 & 5206 & 153 & 13050 & 13050 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 457 & 1 & 39 & 39 & 100 \\
\hline 5207 & 5211 & 153 & 20940 & 21110 & 1 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 456 & 1 & 55 & 63 & 87 \\
\hline 5212 & 5215 & 153 & 23200 & 23310 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 456 & 1 & 34 & 42 & 95 \\
\hline 5216 & 5219 & 153 & 25300 & 25400 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & \(?\) & 457 & 1 & 38 & 46 & 95 \\
\hline 5220 & 5224 & 153 & 33530 & 33740 & 1 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 456 & 1 & 48 & 61 & 80 \\
\hline 5225 & 5229 & 153 & 40300 & 40500 & 1 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 457 & 1 & 31 & 45 & 82 \\
\hline 5230 & 5234 & 153 & 42550 & 42800 & 1 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 454 & 1 & 39 & 46 & 80 \\
\hline 5235 & 5238 & 153 & 51500 & 51620 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 452 & 1 & 33 & 46 & 89 \\
\hline 5239 & 5243 & 153 & 55100 & 55200 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 457 & 1 & 31 & 42 & 85 \\
\hline 5244 & 5245 & 153 & 60200 & 60200 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 455 & 1 & 43 & 43 & 100 \\
\hline 5246 & 5249 & 153 & 64330 & 64500 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 457 & 1 & 47 & 54 & 88 \\
\hline
\end{tabular}

Table 8-6. --Inventory of digitized radar composites (continued)


Table 8-6. --Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 151 & last & J. & StARt & END & Last & & gain & STEP & Pow & URS & & ant. & Lat & LON & GND & Fio & FID & ranar & scale & stc & COMP. & total & 010 \\
\hline IC & PIC & date & time & IIME & \[
\begin{aligned}
& \text { PIC } \\
& \text { CODE }
\end{aligned}
\] & 1 & & 3 & 4 & & 6 & IILT & & & CLTR & ANG & OIST. & No & \(\times 100\) & & PTS. & GS PTS. & ACC. \\
\hline 5336 & 5337 & 154 & 25400 & 25400 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 456 & 1 & 37 & 37 & 100 \\
\hline 5338 & 5342 & 154 & 34530 & 34800 & 1 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 456 & 1 & 62 & 83 & 86 \\
\hline 5343 & 5344 & 154 & 43200 & 43200 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 455 & 1 & 50 & 50 & 100 \\
\hline 5345 & 5346 & 154 & 50900 & 50900 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 455 & 1 & 52 & 52 & 100 \\
\hline 5347 & 5348 & 154 & 53200 & 53200 & 2 & 91 & \(76^{\circ}\) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 455 & 1 & 61 & 61 & 100 \\
\hline 5349 & 5352 & 154 & 54800 & 54930 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 450 & 1 & 54 & 79 & 94 \\
\hline 5353 & 5354 & 154 & 63100 & 63100 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 456 & 1 & 59 & 59 & 100 \\
\hline 5355 & 5356 & 154 & 65900 & 65900 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & ? & 455 & 1 & 56 & 56 & 100 \\
\hline 5357 & 5360 & 154 & 72400 & 72510 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 455 & 1 & 47 & 56 & 87 \\
\hline 5361 & 5365 & 154 & 81230 & 81410 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & \(?\) & 456 & 1 & 69 & 82 & 81 \\
\hline 5366 & 5369 & 154 & 84700 & 84820 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 456 & 1 & 65 & 86 & 84 \\
\hline 5370 & 5371 & 154 & 85800 & 85800 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & \(\bigcirc\) & 0 & 20 & 0 & 345 & 2 & 456 & 0 & 52 & 52 & 100 \\
\hline 5372 & 5375 & 154 & 94600 & 94700 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & 2 & 449 & 0 & 53 & 70 & 89 \\
\hline 5376 & 5379 & 154 & 102030 & 102230 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & \(?\) & 443 & 1 & 67 & 71 & 71 \\
\hline 5380 & 5384 & 154 & 111930 & 112100 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & ? & 450 & 1 & 37 & 42 & 83 \\
\hline 5385 & 5389 & 154 & 123330 & 123500 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & \(?\) & 447 & 1 & 48 & 55 & 94 \\
\hline 5390 & 5392 & 154 & 130730 & 130800 & 2 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 0 & 20 & 0 & 345 & \(?\) & 448 & 1 & 31 & 35 & 97 \\
\hline 5393 & 5396 & 154 & 151000 & 151130 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & - 20 & 0 & 345 & ? & 445 & 1 & 25 & 28 & 85 \\
\hline 5397 & 5399 & 154 & 155740 & 155830 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 0 & - 20 & 0 & 345 & \(?\) & 446 & 1 & 29 & 31 & 77 \\
\hline 5400 & 5401 & 154 & 162200 & 162200 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 20 & 0 & 345 & 2 & 447 & 1 & 20 & 20 & 100 \\
\hline 5402 & 5405 & 154 & 171340 & 171430 & 2 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & - 20 & 0 & 345 & ? & 446 & 1 & 19 & 23 & 95 \\
\hline 5406 & 5407 & 154 & 174340 & 174400 & 1 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 20 & 0 & 345 & \(?\) & 445 & 1 & 17 & 17 & 100 \\
\hline 5408 & 5410 & 154 & 184700 & 184750 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 0 & - 20 & 0 & 345 & ? & 448 & 1 & 12 & 13 & 92 \\
\hline 5411 & 5414 & 154 & 191640 & 191730 & 2 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 0 & - 20 & 0 & 345 & \(?\) & 456 & 1 & 11 & 13 & 69 \\
\hline 5415 & 5417 & 154 & 201200 & 201310 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 0 & - 20 & 0 & 345 & ? & 450 & 1 & 2 & 2 & 100 \\
\hline 5418 & 5420 & 154 & 204020 & 204110 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 0 & 020 & 0 & 345 & 2 & 452 & 1 & 4 & 4 & 100 \\
\hline
\end{tabular}

Table 8-6. --Inventory of digitized radar̃ caduly


Table 8-6. --Inventory of digitized radar composites (continued)


Table 8-6.--Inventory of digitized radar composites (continued)


Table 8-6.--Inventory of digitized radar composites (continued)


Table 8-6.--Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { IST } \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & J. JATE & START TIME & \[
\begin{aligned}
& \text { END } \\
& \text { TIME }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC } \\
& \text { CODE }
\end{aligned}
\] & \(1{ }_{1}\) & \[
\begin{array}{r}
\text { GAIN } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & & & 6 & \[
\begin{aligned}
& \text { ANT. } \\
& \text { TIL. }
\end{aligned}
\] & & LON & \[
\begin{array}{r}
\text { GND } \\
\text { CLTR }
\end{array}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{gathered}
\text { FIO } \\
\text { DIST, }
\end{gathered}
\] & \[
\begin{aligned}
& \text { RADAR } \\
& \text { ND }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & STC & COMP. PTS. & total GS PTS. & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 887 & 888 & 172 & 25655 & 25655 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 3 & -7 & 25 & 0 & 345 & 2 & 437 & 0 & 267 & 267 & 99 \\
\hline 889 & 892 & 172 & 30000 & 30040 & 2 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 3 & -7 & 25 & 0 & 345 & 2 & 436 & 0 & 221 & 244 & 96 \\
\hline 893 & 896 & 172 & 33620 & 33720 & 2 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 3 & -7 & 25 & 0 & 345 & 2 & 435 & 0 & 167 & 183 & 93 \\
\hline 897 & 901 & 172 & 40500 & 40600 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 3 & -7 & 25 & 0 & 345 & 2 & 436 & 0 & 172 & 191 & 93 \\
\hline 902 & 906 & 172 & 43415 & 43535 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 3 & -7 & 25 & 0 & 345 & \(?\) & 436 & 0 & 104 & 125 & 89. \\
\hline 907 & 910 & 172 & 50430 & 50530 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 3 & -7 & 25 & 0 & 345 & 2 & 441 & 0 & 106 & 132 & 91 \\
\hline 911 & 915 & 172 & 53230 & 53340 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 2 & -7 & 25 & 0 & 345 & 2 & 441 & 0 & 86 & 96 & 72 \\
\hline 916 & 918 & 172 & 80200 & 80215 & 2 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 2 & -7 & 15 & 0 & 345 & 2 & 442 & 0 & 98 & 103 & 98 \\
\hline 919 & 921 & 172 & 83125 & 83220 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 2 & -8 & 25 & 0 & 345 & \(?\) & 442 & 0 & 83 & 89 & 94 \\
\hline 922 & 924 & 172 & 90140 & 90200 & 2 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 2 & -8 & 25 & 0 & 345 & 2 & 441 & 0 & 80 & 83 & 95 \\
\hline 925 & 928 & 172 & 92620 & 93715 & 2 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 2 & -8 & 25 & 0 & 345 & 2 & 441 & 0 & 68 & 72 & 97 \\
\hline 929 & 932 & 172 & 100120 & 100300 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 2 & -8 & 25 & 0 & 345 & 2 & 441 & 0 & 64 & 69 & 89 \\
\hline 933 & 934 & 172 & 103715 & 103745 & 1 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 2 & -8 & 25 & 0 & 345 & 2 & 441 & 0 & 67 & .67 & 98 \\
\hline 935 & 937 & 172 & 110215 & 110300 & 2 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 1 & -9 & 25 & 0 & 345 & 2 & 442 & 0 & 56 & 59 & 98 \\
\hline 938 & 939 & 172 & 135800 & 135830 & 1 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 10 & 25 & 0 & 345 & 2 & 441 & 0 & 13 & 13 & 92 \\
\hline 940 & 941 & 172 & 144005 & 144050 & 1 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 10 & 25 & 0 & 345 & \(?\) & 441 & 0 & 11 & 11 & 90 \\
\hline 942 & 943 & 1.72 & 153545 & 153610 & 1 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 10 & 25 & 0 & 345 & 2 & 441 & 0 & 6 & 6 & 83 \\
\hline 944 & 946 & 172 & 160405 & 160420 & 2 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 10 & 25 & 0 & 345 & 2 & 439 & 0 & 7 & 9 & 88 \\
\hline 947 & 948 & 172 & 171220 & 171240 & 1 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 11 & 25 & 0 & 345 & 2 & 440 & 0 & 9 & 9 & 88 \\
\hline 949 & 950 & 172 & 175450 & 175450 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 11 & 25 & 0 & 345 & 2 & 442 & 0 & 5 & 5 & 79 \\
\hline 951 & 952 & 172 & 193040 & 193110 & 1 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 13 & 25 & 0 & 345 & 2 & 440 & 0 & 14 & 14 & 92 \\
\hline 953 & 954 & 172 & 203055 & 203110 & 1 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 13 & 25 & 0 & 345 & \(?\) & 440 & 0 & 15 & 15 & 93 \\
\hline 955 & 957 & 172 & 223155 & 223210 & 2 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 14 & 25 & 0 & 345 & 2 & 441 & 0 & 15 & 16 & 87 \\
\hline 958 & 960 & 173 & 12400 & 12600 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 1 & 22 & 25 & 0 & 345 & 2 & 441 & 0 & 11 & 13 & 92 \\
\hline 961 & 963 & 173 & 22450 & 22535 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & \(\cdots\) & 1 & 25 & 25 & 0 & 345 & 2 & 441 & 0 & 25 & 27 & 96 \\
\hline 964 & 967 & 173 & 35300 & 35420 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 2 & 29 & 25 & 0 & 345 & 2 & 441 & 0 & 55 & 59 & 67 \\
\hline
\end{tabular}

Table 8-6.--Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 15 & Last & J. & Start & & 5 & & GAIN & STEP & PO & R & & ANT. & & LON & GND & fid & F10 & radar & scale & STC & & total & \\
\hline PIC & PIC & date & time & time & \[
\begin{aligned}
& \text { PIC } \\
& \text { COOE }
\end{aligned}
\] & 1 & 2 & 3 & 4 & 5 & 6 & TILT & & & CLTR & ANG & 0155. & No & \(\times 100\) & & PTS. & GS PTS. & acc. \\
\hline 968 & 971 & 173 & 52235 & 52400 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 2 & 33 & 25 & 0 & 345 & 2 & 441 & 0 & 41 & 47 & 91 \\
\hline 972 & 975 & 173 & 64400 & 64620 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 6 & 36 & 25 & 0 & 345 & 2 & 440 & 0 & 41 & 45 & 79 \\
\hline 976 & 978 & 173 & 71400 & 71505 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 6 & 37 & 25 & 0 & 345 & 2 & 441 & 0 & 21 & 25 & 91 \\
\hline 979 & 981 & 173 & 80630 & 80800 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 6 & 39 & 25 & 0 & 345 & \(?\) & 440 & 0 & 36 & 37 & 91 \\
\hline 982 & 985 & 173 & 83700 & 83820 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 6 & 39 & 25 & 0 & 345 & \(?\) & 442 & 0 & 36 & 40 & 89 \\
\hline 986 & 988 & 173 & 84620 & 94740 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 6 & 39 & 25 & 0 & 345 & ? & 441 & 0 & 37 & 39 & 94 \\
\hline 989 & 990 & 173 & 110800 & 110800 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 6 & 40 & 25 & 0 & 345 & ? & 441 & 0 & 27 & 27 & 96 \\
\hline 991 & 993 & 173 & 125605 & 125700 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 6 & 38 & 25 & 0 & 345 & 2 & 440 & 0 & 15 & 17 & 94 \\
\hline 994 & 996 & 173 & 162215 & 162335 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 5 & 15 & 25 & 0 & 345 & 2 & 440 & 0 & 13 & 15 & 93 \\
\hline 997 & 999 & 173 & 173940 & 174005 & 2 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 2 & -3 & 25 & 0 & 345 & \(?\) & 441 & 0 & 27 & 29 & 96 \\
\hline 1000 & 1001 & 173 & 190200. & 190300 & 1 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 25 & 0 & 345 & ? & 440 & 0 & 10 & 10. & 89 \\
\hline 1002 & 1003 & 173 & 202735 & 202800 & 1 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 15 & 0 & 345 & \(?\) & 440 & 0 & 5 & 5 & 79 \\
\hline 1856 & 1857 & 174 & 20400 & 20400 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 3 & -1 & 25 & 0 & 345 & 2 & 449 & 1 & 10 & 10 & 89 \\
\hline 1858 & 1860 & 174 & 34100 & 34200 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 2 & -1 & 25 & 0 & 345 & 2 & 449 & 1 & 27 & 28 & 92 \\
\hline 1861 & 1862 & 174 & 41500 & 41545 & 1 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 2 & -1 & 25 & 0 & 345 & \(?\) & 445 & 1 & 28 & 28 & 96 \\
\hline 1863 & 1865 & 174 & 51400 & 51500 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & 0 & 25 & 0 & 345 & 2 & 450 & 1 & 38 & 39 & 94 \\
\hline 1866 & 1867 & 174 & 55930 & 55930 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & -2 & 1 & 25 & 0 & 345 & 2 & 451 & 1 & 41 & 41 & 97 \\
\hline 1868 & 2869 & 174 & 70100 & 70100 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 25 & 0 & 345 & \(?\) & 448 & 1 & 46 & 46 & 97 \\
\hline 1870 & 1873 & 174 & 71700 & 71840 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & -1 & 25 & 0 & 345 & 2 & 451 & 1 & 62 & 72 & 79 \\
\hline 1874 & 1877 & 174 & 80500 & 80700 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & -3 & 25 & 0 & 345 & \(?\) & 452 & 1 & 62 & 76 & 94 \\
\hline 1878 & 1879 & 174 & 82350 & 82350 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & -3 & 25 & 0 & 345 & ? & 450 & 1 & 43 & 43 & 97 \\
\hline 1880 & 1881 & 174 & 84200 & 84200 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & -1 & -3 & 25 & 0 & 345 & ? & 451 & 1 & 51 & 51 & 98 \\
\hline 1882 & 1886 & 174 & 84700 & 84900 & 1 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & -1 & -3 & 25 & 0 & 345 & \(?\) & 450 & 1 & 55 & 71 & 90 \\
\hline 1887 & 1890 & 174 & 94420 & 94520 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -2 & -3 & 25 & 0 & 345 & ? & 450 & 1 & 67 & 75 & 91 \\
\hline 1891 & 1894 & 174 & 101120 & 101320 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -2 & -3 & 25 & 0 & 345 & \(?\) & 451 & 1 & 68 & 74 & 91 \\
\hline 1895 & 1896 & 174 & 111200 & 111200 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & -2 & -3 & 25 & 0 & 345 & \(?\) & 451 & 1 & 79 & 79 & 98 \\
\hline
\end{tabular}

\section*{Table 8-6. --Inventory of digitized radar composites (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 157 \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & odé & \[
\begin{aligned}
& \text { START } \\
& \text { E TIME }
\end{aligned}
\] & \[
\begin{aligned}
& \text { END } \\
& \text { TIME }
\end{aligned}
\] & LASt PIC code & \[
1^{6}
\] & \[
\begin{array}{r}
\text { GAIN } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & POUI & \[
\begin{array}{r}
\text { HERS } \\
\mathbf{S}
\end{array}
\] & & 6 & \begin{tabular}{l}
ANT. \\
TILT
\end{tabular} & & LON & \[
\begin{gathered}
\text { GND } \\
\text { CLTR }
\end{gathered}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{gathered}
\text { FIO } \\
\text { DIST. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { RADAR } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & & COMP. PTS. & \[
\begin{aligned}
& \text { TOTAL } \\
& \text { GS PIS. }
\end{aligned}
\] & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC }
\end{aligned}
\] \\
\hline 1897 & 1899 & 174 & 113020 & 113100 & 1 & 91 & 76 & 70 & 0 & 0 & & 0 & 0 & -3 & -3 & 25 & 0 & 345 & 2 & 452 & 1 & 86 & 91 & 94 \\
\hline 1901 & 1903 & 174 & 125000 & 125100 & 1 & 91 & 76 & 70 & 0 & 0 & & 0 & 0 & -3 & -4 & 25 & 0 & 345 & 2 & 451 & 1 & 95 & 108 & 93 \\
\hline 1905 & 1907 & 174 & 141930 & 142030 & 1 & 91 & 76 & 70 & 0 & 0 & & 0 & 0 & -3 & -6 & 25 & 0 & 345 & 2 & 450 & 1 & 89 & 92 & 98 \\
\hline 1908 & 1910 & 174 & 145620 & 145720 & 1 & 91 & 76 & 70 & 0 & 0 & & 0 & 0 & -3 & -5 & 25 & 0. & 345 & 2 & 452 & 1 & 29 & 33 & 93 \\
\hline 1911 & 1912 & 174 & 161230 & 161300 & 1 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & -5 & -6 & 25 & 0 & 345 & 2 & 448 & 1 & 25 & 25 & 95 \\
\hline 1913 & 1914 & 174 & 171540 & 171600 & 1 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & -3 & -5 & 25 & 0 & 345 & 2 & 450 & 1 & 24 & 24 & 95 \\
\hline 1915 & 1918 & 174 & 184200 & 184300 & 2 & 91 & 76 & 70 & 64 & 0 & & 0 & 0 & -2 & -5 & 25 & 0 & 345 & 2 & 448 & 1 & 19 & 23 & 86 \\
\hline 1919 & 1922 & 174 & 201130 & 201230 & 2 & 91 & 76 & 70 & 64 & 0 & & 0 & 0 & -1 & -5 & 25 & 0 & 345 & 2 & 450 & 1 & 21 & 25 & 83 \\
\hline 1004 & 1007 & 174 & 202800 & 202900 & 2 & 91 & 76 & 70 & 64 & 0 & & 0 & 0 & -1 & -5 & 20 & 0 & 345 & 2 & 443 & 1 & 25 & 30 & 86 \\
\hline 1008 & 1009 & 175 & 20900 & 21000 & 1 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & 1 & -2 & 20 & 0 & 345 & 2 & 446 & 1 & 9 & 9 & 88 \\
\hline 1010 & 1013 & 175 & 51800 & 51900 & 2 & 91 & 76 & 70 & 64 & 0 & & 0 & 0 & -1 & -2 & 20 & 0 & 345 & 2 & 438 & 1 & 45 & 50 & 93 \\
\hline 1014 & 1015 & 175 & 70400 & 70400 & 2 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & 1 & -2 & 30 & 0 & 345 & 2 & 470 & 1 & 30 & 30 & 96 \\
\hline 1016 & 1017 & 175 & 83000 & 83000 & 2 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & 1 & -1 & 30 & 0 & 345 & 2 & 473 & 1 & 45 & 45 & 97 \\
\hline 1018 & 1019 & 175 & 95300 & 95300 & 2 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & 1 & 1 & 30 & 0 & 345 & 2 & 467 & 1 & 20 & 20 & 94 \\
\hline 1020 & 1021 & 175 & 125000 & 125000 & 2 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & -3 & 1 & 30 & 0 & 345 & 2 & 466 & 1 & 16 & 16 & 93 \\
\hline 1022 & 1023 & 175 & 162000 & 162000 & 2 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & 0 & -1 & 30 & 0 & 345 & ? & 473 & 1 & 12 & 12 & 91 \\
\hline 1024 & 1025 & 175 & 173000 & 173000 & 2 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & -1 & 0 & 30 & 0 & 345 & 2 & 477 & 1 & 15 & 15 & 93 \\
\hline 1026 & 1027 & 175 & 182400 & 182400 & 2 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & -3 & 0 & 30 & 0 & 345 & 2 & 469 & 1 & 33 & 33 & 96 \\
\hline 1028 & 1029 & 176 & 24500 & 24500 & 2 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & 0 & -2 & 30 & 0 & 345 & 2 & 438 & 1 & 32 & 32 & 96 \\
\hline 1030 & 1031 & 176 & 35000 & 35000 & 2 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & -1 & -2 & 30 & 0 & 345 & 2 & 439 & 1 & 24 & 24 & 95 \\
\hline 1032 & 1033 & 176 & 52200 & 52200 & 2 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & -2 & -2 & 30 & 0 & 345 & 2 & 466 & 1 & 24 & 24 & 95 \\
\hline 10:\% & 1035 & 176 & 70000 & 70000 & 2 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & -5 & -2 & 30 & 0 & 345 & 2 & 465 & 1 & 134 & 134 & 99 \\
\hline 1036 & 1037 & 176 & 82900 & 82900 & 2 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & -6 & -2 & 30 & 0 & 345 & 2 & 468 & 1 & 131 & 131 & 99 \\
\hline 1038 & 1039 & 176 & 131000 & 131000 & 2 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & -6 & -5 & 25 & 0 & 345 & 2 & 465 & 1 & 28 & 28 & 96 \\
\hline 1040 & 1041 & 176 & 142000 & 142000 & 2 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & -5 & -3 & 25 & 0 & 345 & 2 & 467 & 1 & 38 & 38 & 97 \\
\hline 1042 & 1043 & 176 & 172200 & 172200 & 2 & 91 & 76 & 0 & 0 & 0 & & 0 & 0 & -3. & - 5 & 25 & 0 & 345 & 2 & 464 & 1 & 19 & 19 & 94 \\
\hline
\end{tabular}

Table 8-6.--Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 151 \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & J. DATE & \[
\begin{aligned}
& \text { START } \\
& \text { E TIME }
\end{aligned}
\] & \[
\begin{gathered}
\text { END } \\
\text { TIME }
\end{gathered}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC } \\
& \text { CODE }
\end{aligned}
\] & \(1_{1}^{\text {G }}\) & \[
\begin{array}{r}
\text { GAIN } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & \[
\mathrm{POW}_{4}
\] & & 6 & \[
\begin{aligned}
& \text { ANT. } \\
& \text { TILT }
\end{aligned}
\] & LAT & LON & \[
\begin{aligned}
& \text { GND } \\
& \text { CLTR }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{gathered}
\text { FIO } \\
\text { DIST. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Randar } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{aligned}
& \text { SCALE } \\
& \times 100
\end{aligned}
\] & STC & \[
\begin{aligned}
& \text { COMP. } \\
& \text { PTS. }
\end{aligned}
\] & TOTAL GS PTS. & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 1044 & 1045 & 176 & 190000 & 190000 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & -2 & 8 & 25 & 0 & 345 & 2 & 465 & 1 & 37 & 37 & 97 \\
\hline 1046 & 1047 & 176 & 214700 & 214700 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & -6 & 3 & 25 & 0 & 345 & 2 & 465 & 1 & 36 & 36 & 97 \\
\hline 1048 & 1049 & 176 & 222800 & 222800 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & -6 & 3 & 25 & 0 & 345 & 2 & 466 & 1 & 59 & 59 & 98 \\
\hline 1050 & 1051 & 176 & 231500 & 231500 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & -5 & 0 & 25 & 0 & 345 & 2 & 465 & 1 & 25 & 25 & 95 \\
\hline 1052 & 1053 & 177 & 12000 & 12000 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 25 & 0 & 345 & 2 & 471 & 1 & 29 & 29 & 96 \\
\hline 1054 & 1055 & 177 & 21500 & 21500 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 30 & 0 & 345 & 2 & 465 & 0 & 14 & 14 & 92 \\
\hline 1056 & 1057 & 177 & 34500 & 34500 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 2 & -3 & 25 & 0 & 345 & 2 & 466 & 1 & 48 & 48 & 97 \\
\hline 1063 & 1067 & 177 & 51300 & 51500 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & -1 & -5 & 20 & 0 & 345 & 2 & 443 & 1 & 44 & 55 & 79 \\
\hline 1068 & 1072 & 177 & 54630 & 54900 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & -5 & -1 & 25 & 0 & 345 & 2 & 441 & 1 & 70 & 104 & 64 \\
\hline 1073 & 1076 & 177 & 65000 & 65300 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -3 & 2 & 15 & 0 & 345 & 2 & 444 & 1 & 55 & 65 & 84 \\
\hline 1077 & 1080 & 177 & 71600 & 71800 & 2 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -3 & 2 & 17 & 0 & 345 & 2 & 447 & 1 & 42 & 61 & 81 \\
\hline 1081 & 1084 & 177 & 81900 & 82030 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -1 & 5 & 15 & 0 & 345 & 2 & 440 & 1 & 57 & 71 & 80 \\
\hline 1085 & 1088 & 177 & 84900 & 85030 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -1 & 1 & 15 & 0 & 345 & 2 & 442 & 1 & 53 & 63 & 82 \\
\hline 1089 & 1092 & 177 & 94030 & 94200 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 1 & 1 & 15 & 0 & 345 & 2 & 441 & 1 & 40 & 43 & 83 \\
\hline 1093 & 1096 & 177 & 101000 & 101200 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 1 & \(1 \cdot\) & 15 & 0 & 345 & 2 & 441 & 1 & 21 & 26 & 88 \\
\hline 1097 & 1099 & 177 & 123600 & 123700 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & -6 & 5 & 15 & 0 & 345 & 2 & 442 & 1 & 30 & 31 & 93 \\
\hline 1100 & 1101 & 177 & 131300 & 131330 & 1 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & -3 & 1 & 15 & 0 & 345 & 2 & 440 & 1 & 10 & 10 & 89 \\
\hline 1102 & 1103 & 177 & 141700 & 141800 & 1 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & -1 & -7 & 15 & 0 & 345 & 2 & 439 & 1 & 11 & 11 & 90 \\
\hline 1104 & 1106 & 177 & 161400 & 161500 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 5 & 15 & 15 & 0 & 345 & 2 & 441 & 1 & 26 & 28 & 82 \\
\hline 1107 & 1109 & 177 & 171630 & 172500 & 1 & 91 & 76 & 70 & 0 & 0 & 0 & 0 & 0 & -8 & 15 & 0 & 345 & 2 & 445 & 1 & 51 & 57 & 94 \\
\hline 1110 & 1114 & 177 & 185530 & 185800 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 2 & -3 & 15 & 0 & 345 & 2 & 446 & 1 & 133 & 157 & 91 \\
\hline 1115 & 1118 & 177 & 201230 & 201400 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -1 & -3 & 15 & 0 & 345 & 2 & 445 & 1 & 225 & 237 & 96 \\
\hline 1119 & 1122 & 177 & 205500 & 205630 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -1 & -2 & 15 & 0 & 345 & \(?\) & 445 & 1 & 179 & 210 & 89 \\
\hline 1123 & 1126 & 177 & 212700 & 212830 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -1 & -2 & 15 & 0 & 345 & 2 & 446 & 1 & 206 & 263 & 94 \\
\hline 1127 & 1130 & 177 & 215900 & 220030 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 1 & -3 & 15 & 0 & 345 & 2 & 449 & 1 & 182 & 215 & 95 \\
\hline 1131 & 1134 & 177 & 222700 & 222830 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -1 & 0 & 15 & 0 & 345 & 2 & 448 & 1 & 135 & 160 & 79 \\
\hline
\end{tabular}

Table 8-6.--Inventory of digitized radar composites (continued)


\section*{Table 8-6.--Inventory of digitized radar composites (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 151 & Last & J. & Start & END & LASt & & gain & STEP & Pow & ERS & & ANT. & lat & LON & GND & F10 & Fio & radar & scale & STC & COMP. & total & 010 \\
\hline PIC & -IC & date & time & time & \[
\begin{aligned}
& \text { PIC } \\
& \text { CODE }
\end{aligned}
\] & 1 & & 3 & 4 & 5 & 6 & tilt & & & CLTR & ANG & DISt. & No & \(\times 100\) & & PTS. & GS PIS. & Acc. \\
\hline 1974 & 1978 & 179 & 43200 & 43330 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & -6 & -5 & 20 & 0 & 345 & ? & 452 & 1 & 177 & 201 & 93 \\
\hline 1979 & 19.? & 279 & 50300 & 50430 & 1 & \(91^{\circ}\) & - 76 & 70 & 64 & 0 & 0 & 0 & -6 & -5 & 20 & 0 & 345 & ? & 452 & 1 & 178 & 200 & 94 \\
\hline 1983 & 1986 & 179 & 53400 & 53500 & 2 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -3 & -6 & 20 & 0 & 345 & 2 & 451 & 1 & 189 & 218 & 93 \\
\hline 1987 & 1988 & 179 & 55830 & 55830 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & -3 & -6 & 20 & 0 & 345 & \(?\) & 449 & 1 & 185 & 185 & 99 \\
\hline 1989 & 1992 & 179 & 81030 & 81200 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 1 & 11 & 20 & 0 & 345 & 2 & 450 & 1 & 165 & 182 & 91 \\
\hline 1993 & 1996 & 179 & 82900 & 83030 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 1 & 11 & 20 & 0 & 345 & \(?\) & 449 & 1 & 160 & 177 & 90 \\
\hline 1997 & 2000 & 179 & 90630 & 90730 & 2 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -1 & -9 & 20 & 0 & 345 & 2 & 451 & 1 & 109 & 125 & 92 \\
\hline 2001 & 2004 & 179 & 93300 & 93400 & 2 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -3 & -6 & 20 & 0 & 345 & 2 & 450 & 1 & 110 & 124 & 95 \\
\hline 2005 & 2008 & 179 & 100100 & 100200 & 2 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -3 & -3. & 20 & 0 & 345 & 2 & 449 & 1 & 111 & 127 & 92 \\
\hline 2009 & 2012 & 179 & 104900 & 105030 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -8' & 2 & 20 & 0 & 345 & \(?\) & 449 & 1 & 110 & 126 & 89 \\
\hline 2013 & 2016 & 179 & 123330 & 123430 & 2 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -6 & 2 & 20 & 0 & 345 & 2 & 448 & 1 & 101 & 109 & 91 \\
\hline 2017 & 2020 & 179 & 131330 & 131500 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -6 & 2 & 20 & 0 & 345 & 2 & 448 & 1 & 122 & 158 & 82 \\
\hline 2021 & 2024 & 179 & 142800 & 142900 & 2 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -5 & 0 & 20 & 0 & 345 & ? & 450 & 1 & 187 & 212 & 95 \\
\hline 2025 & 2029 & 179 & 154430 & 154600 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & -2 & -2 & 20 & 0 & 345 & 2 & 449 & 1 & 228 & 258 & 94 \\
\hline 2030 & 2031 & 179 & 162600 & 162600 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & -2 & -2 & 20 & 0 & 345 & 2 & 451 & 1 & 243 & 243 & 99 \\
\hline 2032 & 2035 & 179 & 174800 & 174900 & 2 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 1 & 0 & 20 & 0 & 345 & \(?\) & 450 & 1 & 383 & 430 & 96 \\
\hline 2036 & 2039 & 179 & 185400 & 185530 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -1 & 6 & 20 & 0 & 345 & 2 & 451 & 1 & 416 & 450 & 97 \\
\hline 2040 & 2044 & 179 & 201800 & 202000 & 1 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & -3 & 5 & 20 & 0 & 345 & 2 & 449 & 1 & 269 & 350 & 78 \\
\hline 2045 & 2048 & 179 & 214100 & 214230 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -3 & 0 & 20 & 0 & 345 & ? & 449 & 1. & 221 & 260 & 93 \\
\hline 2049 & 2052 & 179 & 220600 & 220730 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -3 & 0 & 20 & 0 & 345 & 2 & 443 & 1 & 194 & 228 & 85 \\
\hline 166 & 170 & 180 & 15010 & 15158 & 1 & 91 & 76 & 70 & . 64 & 58 & 0 & 0 & 6 & 22 & 30 & 0 & 345 & \(?\) & 458 & 0 & 205 & 238 & 86 \\
\hline 171 & 174 & 180 & 22720 & 22850 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 6 & 22 & 40 & 0 & 345 & 2 & 456 & 0 & 241 & 267 & 88 \\
\hline 175 & 178 & 180 & 33545 & 33700 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 8 & 24 & 30 & 0 & 345 & 2 & 455 & 0 & 398 & 431 & 91 \\
\hline 179 & 182 & 180 & 51125 & 51250 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 10 & 25 & 30 & 0 & 345 & ? & 454 & 0 & 330 & 367 & 93 \\
\hline 183 & 186 & 180 & 55255 & 55500 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 8 & 25 & 25 & 0 & 345 & \(?\) & 454 & 0 & 219 & 247 & 90 \\
\hline 187 & 190 & 180 & 64300 & 64420 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 9 & 26 & 25 & 0 & 345 & 2 & 456 & 0 & 301 & 322 & 91 \\
\hline
\end{tabular}

Table 8-6.--Inventory of digitized radar composites (continued)


Table 8-6. --Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { IS1 } \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & date & \begin{tabular}{l}
START \\
TIME
\end{tabular} & \[
\begin{gathered}
\text { END } \\
\text { TIME }
\end{gathered}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC } \\
& \text { COOE }
\end{aligned}
\] & \(1^{6}\) & GAIN & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & \[
{\underset{4}{2}}_{2}
\] & & 6. & \[
\begin{aligned}
& \text { ANT; } \\
& \text { TILI }
\end{aligned}
\] & & LON & \[
\begin{aligned}
& \text { GND } \\
& \text { CLTR }
\end{aligned}
\] & \[
\begin{gathered}
\text { FID } \\
\text { ANG }
\end{gathered}
\] & \[
\begin{gathered}
\text { FID } \\
\text { DIST. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Ranar } \\
& \text { NO }
\end{aligned}
\] & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & STC & \[
\begin{gathered}
\text { COMP. } \\
\text { PTS. }
\end{gathered}
\] & \[
\begin{gathered}
\text { TOTAL } \\
\text { GS PTS. }
\end{gathered}
\] & \[
\begin{aligned}
& \text { 0/0 } \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 2122 & 2125 & 181 & 101330 & 101500 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 19 & -8 & 20 & 0 & 345 & \(?\) & 476 & 1 & 100 & 113 & 84 \\
\hline 2126 & 2127 & 181 & 102400 & 102400 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & \(2 ?\) & -8 & 20 & 0 & 345 & ? & 476 & 1 & 61 & 61 & 98 \\
\hline 2128 & 2129 & 181 & 110530 & 110530 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & - & 24 & 13 & 20 & 0 & 345 & 7 & 475 & 1 & . 63 & 63 & 98 \\
\hline 2130 & 2133 & 1 Al & 111730 & 111900 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 22 & 18 & 20 & 0 & 345 & \(?\) & 476 & 1 & 77 & 82 & 91 \\
\hline 2134 & 2135 & '181 & 113130 & 113130 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 22 & 18 & 20 & 0 & 345 & ? & 476 & 1 & 65 & 65 & 98 \\
\hline 2136 & 2139 & 181 & 125930 & 130100 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 17 & 14 & 20 & 0 & 345 & ? & 475 & 1 & 76 & 95 & 90 \\
\hline 2140 & 2141 & 181 & 132430 & 132430 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 16 & 10 & 20 & 0 & 345 & 2 & 475 & 1 & 83 & 83 & 98 \\
\hline 2142 & 2146 & 181 & 141230 & 141400 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 10 & -6 & 20 & 0 & 345 & ? & 476 & 1 & 78 & 99 & 76 \\
\hline 2147 & 2.148 & 181 & 143530 & 143530 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 8 & -5 & 20 & 0 & 345 & 2 & 478 & 1 & 76 & 76 & 98 \\
\hline 2149 & 2150 & 181 & 145430 & 145430 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & ? & -2 & 20 & 0 & 345 & 7 & 476 & 1 & 84 & 84 & 98 \\
\hline 2151 & 2154 & 181 & 154630 & 154800 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -9 & -2 & 20 & 0 & 345 & ? & 475 & 1 & 108 & 119 & 84 \\
\hline 2155 & 2156 & 101 & 160130 & 160130 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 13 & -2 & 20 & 0 & 345 & 2 & 477 & 1 & 102 & 102 & 99 \\
\hline 2157 & 2161 & 181 & 161830 & 162000 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 13 & -2 & 20 & 0 & 345 & \(?\) & 476 & 1 & 110 & 126 & 86 \\
\hline 2162 & 2160 & 181. & \(\underline{271930}\) & 172130 & 1 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 15 & -2 & 20 & 0 & 345 & ? & 476 & 1 & 92 & 109 & 77 \\
\hline 2167 & 2168 & 181 & 174700 & 174700 & 2 & 91 & 76. & 0 & 0 & 0 & 0 & 0 & 17 & -5 & \(20^{-}\) & 0 & 345 & ? & 474 & 1 & 77 & 77 & 98 \\
\hline 2169 & 2173 & 181 & 185030 & 185200 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 15 & -6 & 20 & 0 & 345 & ? & 482 & 1 & 71 & 88 & 81 \\
\hline 2174 & 2175 & 181 & 190200 & 190200 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 15 & -6 & 20 & 0 & 345 & \(?\) & 478 & 1 & 93 & 93 & 98 \\
\hline 2176 & 2177 & 181 & 191800 & 191800 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 15 & -6 & 20 & 0 & 345 & ? & 476 & 1 & 73 & 73 & 98 \\
\hline 2178 & 2182 & 181 & 201500 & 201700 & 1 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 13 & -3 & 25 & 0 & 345 & \(?\) & 476 & 1 & 80 & 100 & 78 \\
\hline 2183 & 2184 & 181 & 203100 & 203100 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 13 & -3 & 25 & 0 & 345 & \(?\) & 476 & 1 & 67 & 67 & 98 \\
\hline 2185 & 2186 & 181 & 205000 & 205000 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & 13 & -5 & 25 & 0 & 345 & \(?\) & 477 & 1 & 53 & 53 & 98 \\
\hline 2187 & - 2192 & 181 & 214100 & 214400 & 1 & 91 & 76 & 70 & 64 & 58 & 52 & 0 & 14 & 1. & 25 & 0 & 345 & 2 & 476 & 1 & 60 & 85 & 74 \\
\hline 2193 & 2197 & 181 & 220300 & 220500 & 1 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 14 & 1 & 25 & 0 & 345 & \(?\) & 475 & 1 & 57 & 78 & 66 \\
\hline 2198 & 2201 & 181 & 231000 & 231130 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 10 & 3 & 25 & 0 & 345 & ? & 474 & 1 & 67 & 83 & 83 \\
\hline 2202 & 2207 & 182 & 5900 & 10100 & 2 & 91 & 76 & 70 & 64 & 58 & 52 & 0 & -3 & 0 & 25 & 0 & 345 & \(?\) & 476 & 1 & 99 & 118 & 82 \\
\hline 2208 & 2209 & 182 & 12800 & 12800 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & -3 & 0 & 25 & 0 & 345 & ? & 476 & 1 & 81 & 81 & 98 \\
\hline
\end{tabular}

Table 8-6.--Inventory of digitized radar composites (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 15 T \\
& \text { PIC }
\end{aligned}
\] & \[
\begin{aligned}
& \text { LAST } \\
& \text { PIC }
\end{aligned}
\] & J. & \begin{tabular}{l}
START \\
TIME
\end{tabular} & \[
\begin{aligned}
& \text { END } \\
& \text { TIME }
\end{aligned}
\] & LAST PIC CODE & \[
1_{1}^{G}
\] & \[
\begin{array}{r}
\text { GAIN } \\
2
\end{array}
\] & \[
\begin{gathered}
\text { STEP } \\
3
\end{gathered}
\] & \[
\underset{4}{\mathrm{POW}}
\] & & 6 & \[
\begin{aligned}
& \text { ANT. } \\
& \text { TILT }
\end{aligned}
\] & LAT & LON & \[
\begin{array}{r}
\text { GND } \\
\text { CLTR }
\end{array}
\] & \[
\begin{aligned}
& \text { FID } \\
& \text { ANG }
\end{aligned}
\] & \[
\begin{gathered}
\text { FID } \\
\text { DIST. }
\end{gathered}
\] & RAnAR NO & \[
\begin{array}{r}
\text { SCALE } \\
\times 100
\end{array}
\] & STC & \[
\begin{aligned}
& \text { COMP. } \\
& \text { PTS. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { TOTAL } \\
& \text { GS PTS. }
\end{aligned}
\] & \[
\begin{aligned}
& 0 / 0 \\
& \text { ACC. }
\end{aligned}
\] \\
\hline 2210 & 2214 & 182 & 15300 & 15430 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & -4 & -2 & 25 & 0 & 345 & 2 & 476 & 1 & 75 & 89 & 82 \\
\hline 2215 & 2216 & 182 & 22500 & 22500 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & -4 & -2 & 25 & 0 & 345 & \(?\) & 476 & 1 & 81 & 81 & 98 \\
\hline 2217 & 2218 & 182 & 42900 & 42900 & 2 & 91 & 76 & 0 & 0 & 0 & 0 & 0 & -4 & -4 & 25 & 0 & 345 & 2 & 476 & 1 & 73 & 73 & 98 \\
\hline 2219 & 2223 & 182 & 184800 & 184930 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & -? & 4 & 25 & 0 & 345 & \(?\) & 473 & 1 & 51 & 61 & 68 \\
\hline 2224 & 2227 & 182 & 192130 & 192300 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -1 & 4 & 25 & 0 & 345 & \(?\) & 472 & 1 & 77 & 88 & 92 \\
\hline 2228 & 2231 & 182 & 200730 & 200830 & 2 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 0 & 3 & 25 & 0 & 345 & 2 & 472 & 1 & 106 & 111 & 67 \\
\hline 2232 & 22.35 & 182 & 204500 & 204630 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & 1 & 2 & 25 & 0 & 345 & 2 & 471 & 1 & 122 & 137 & 87 \\
\hline 2236 & 2240 & 182 & 213230 & 213400 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 0 & 1 & 25 & 0 & 345 & 2 & 472 & 1 & 157 & 173 & 86 \\
\hline 2241 & 2244 & 1 A2 & 220130 & 220300 & 1 & 91 & 76 & 70 & 64 & 0 & 0 & 0 & -1 & 1 & 20 & 0 & 345 & 2 & 475 & 1 & 135 & 161 & 90 \\
\hline 2245 & 2249 & 182 & 225130 & 225300 & 2 & 91 & 76 & 70 & 64 & 58 & 0 & 0 & 0 & 2 & 20 & 0 & 345 & \(?\) & 471 & 1 & 1 AO & 208 & 47 \\
\hline
\end{tabular}

\section*{9. AIRCRAFT DATA SET}

Data were obtained by the following aircraft: DC-6 and DC-4 aircraft of the Research Flight Facility (RFF), NOAA; WC-121 weather reconnaissance aircraft operated by the Navy VW-4 Squadron; and WB-47, RB-57, and WC-130 aircraft operated by the Air Weather Service, U.S. Air Force. Special call signs and designators for the aircraft, used in BOMEX data logs and in the archived data, are identified in table 9-1. Table 9-2 lists the fixed reporting points used to facilitate mission briefing, operational control, and reporting of aircraft position.

In support of the Sea-Air Interaction Program, or BOMEX Core Experiment, line integral missions were flown by the RFF DC-6 and DC-4 and Navy WC-121 aircraft around the periphery of the BOMEX volume, delineated by the 500 - by \(500-\mathrm{km}\) array formed by the five ships occupying fixed positions at the corners and in the center of the square (sec. 1, fig. 1-1). These missions were flown to obtain data for evaluating the budgets of mass, momentum, water vapor, and total energy for the BOMEX volume.

The line integral patterns can be grouped as follows:
Day line integral patterns (LID A and LID B). Night line integral patterns (LIN, LIN MOD 1, and LIN MOD 2). Multiple-level day and night line integral patterns
(LID C, D, E, F, and G; LIN C, D, and E).
Table 9-3 identifies the days on which these missions were flown. The basic observation system carried aboard each of the RFF aircraft is described in table 9-4, and the recording systems are listed in table 9-5. Tables 9-6 and 9-7 provide information on the basic observation systems and meteorological instrumentation aboard the Navy WC-121 aircraft.

Also in support of the BOMEX Core Experiment during Periods I, II, and III, U.S. Air Force WB-47 and WC-130 aircraft of the 53rd Weather Reconnaissance Squadron, and RB-57 aircraft of the 58th Weather Reconnaissance Squadron flew missions to obtain special symoptic data to describe conditions within the BOMEX array. The flights are listed in table 9-8, and tables 9-9, 9-10, and \(9-11\) list the basic meteorological instrumentation carried aboard these aircraft. The dropsonde data obtained during reconnaissance flights by the WC-130 aircraft constitute a separate data set in the Permanent Archive and are discussed in section 9 of this report.

For the Tropical Convection Program during BOMEX Period IV, when the fixed ships formed a staggered array at positions BRAVO, CHARLIE, ECHO, LIMA, and GOLF (sec. 1, fig. 1-2), all aircraft were ued to acquire data on tropical disturbances, cloud bands, and the Intertropical Convergence Zone (ITCZ).

All aircraft tracks flown are illustrated in BOMEX Field Observations and Basic Data Inventory (BOMAP Office 1971).

Table 9-1.--Call signs and other identifiers for BOMEX aircraft
\begin{tabular}{|c|c|c|c|}
\hline Unit name and type of aircraft & \[
\begin{aligned}
& \text { Voice } \\
& \text { call sign }
\end{aligned}
\] & Abbreviated call & Additional designators \\
\hline & Line Integral Ai & & \\
\hline \multicolumn{4}{|l|}{Research Flight Facility} \\
\hline DC-6 & Research Six ALFA & RFF-6A & 39C (CHARLIE) \\
\hline DC-6 & Research Six BRAVO & RFF-6B & 40C (CHARLIE) \\
\hline DC-4 & Research Four & RFF-4 & 82E \\
\hline \multicolumn{4}{|l|}{U. S. Navy VW-4 Squadron} \\
\hline WC-121* & Navy Twenty-One ALFA & N21A & VW-4 21A \\
\hline WC-121* & Navy Twenty-One BRAVO & N21B & VW-4 21B \\
\hline
\end{tabular}

\section*{Special Synoptic Aircraft}

\section*{USAF Air Weather Service}

53rd Weather Reconnaissance Squadron
\begin{tabular}{lll} 
WB-47* & Air Force Four Seven ALFA & AF 47A \\
WB-47* & Air Force Four Seven BRAVO & AF 47B \\
WC-130* & Air Force Three Zero ALFA & AF 30A \\
WC-130* & Air Force Three Zero BRAVO & AF 30B
\end{tabular}

58th Weather Reconnaissance Squadron
\begin{tabular}{llll} 
RB-57* & Air Force Five Seven ALFA & AF 57A \\
RB-57* & Air Force Five Seven BRAVO & AF 57B
\end{tabular}
*The tail number designation differed due to rotation of these aircraft during BOMEX.

Table 9-2.--Fixed aircraft reporting points
\begin{tabular}{|c|c|c|}
\hline Designation of point & Periods I, II, and III May 1 to July 10 & \[
\begin{aligned}
& \text { Period IV } \\
& \text { July } 11 \text { to } 28
\end{aligned}
\] \\
\hline ALFA & \(16^{\circ} 50^{\prime} \mathrm{N} \quad 59^{\circ} 12^{\prime} \mathrm{W}\) & \(17^{\circ} 30^{\prime} \mathrm{N} \quad 59^{\circ} 00^{\prime} \mathrm{W}\) \\
\hline Bravo & \(17^{\circ} 36^{\prime} \mathrm{N}\) ' \(54^{\circ} 34^{\prime} \mathrm{W}\) & \(17^{\circ} 30^{\prime} \mathrm{N} \quad 54^{\circ} 00^{\prime} \mathrm{W}\) \\
\hline CHARLIE & \(15^{\circ} 00^{\prime} \mathrm{N} \quad 56^{\circ} 30^{\prime} \mathrm{W}\) & \(15^{\circ} 00{ }^{\prime} \mathrm{N} \quad 56^{\circ} 30^{\prime} \mathrm{W}\) \\
\hline delta & \(12^{\circ} 23^{\prime} \mathrm{N} \quad 58^{\circ} 23^{\prime} \mathrm{W}\) & \(13^{\circ} 00{ }^{\prime} \mathrm{N} \quad 59^{\circ} 00^{\prime} \mathrm{W}\) \\
\hline ECHO & \(13^{\circ} 08^{\prime} \mathrm{N} \quad 53^{\circ} 51^{\prime} \mathrm{W}\) & \(13^{\circ} 00{ }^{\prime} \mathrm{N} \quad 54^{\circ} 00{ }^{\prime} \mathrm{W}\) \\
\hline FOXIROT & \(07^{\circ} 57^{\prime} \mathrm{N} \quad 57^{\circ} 36^{\prime} \mathrm{W}\) & \(09^{\circ} 00{ }^{\prime} \mathrm{N} \quad 59^{\circ} 00{ }^{\prime} \mathrm{W}\) \\
\hline GOLF & \(08^{\circ} 42^{\prime} \mathrm{N} \quad 53^{\circ} 03^{\prime} \mathrm{W}\) & \(07^{\circ} 30^{\prime} \mathrm{N} \quad 52^{\circ} 42^{\prime} \mathrm{W}\) \\
\hline HOTEL & \(14^{\circ} 37^{\prime} \mathrm{N} \quad 58^{\circ} 48^{\prime} \mathrm{W}\) & \(15^{\circ} 15^{\prime} \mathrm{N} \quad 59^{\circ} 00{ }^{\prime} \mathrm{W}\) \\
\hline IndIA & \(17^{\circ} 13^{\prime} \mathrm{N} \quad 56^{\circ} 53^{\prime} \mathrm{W}\) & \(17^{\circ} 30^{\prime} \mathrm{N} \quad 56^{\circ} 30^{\prime} \mathrm{W}\) \\
\hline JULIETT & \(15^{\circ} 22^{\prime} \mathrm{N} \quad 54^{\circ} 12^{\prime} \mathrm{W}\) & \(15^{\circ} 15^{\prime} \mathrm{N} \quad 54^{\circ} 00^{\prime} \mathrm{W}\) \\
\hline KILO & \(12^{\circ} 46^{\prime} \mathrm{N} \quad 56^{\circ} 07^{\prime} \mathrm{W}\) & \(13^{\circ} 00{ }^{\prime} \mathrm{N} \quad 56^{\circ} 30^{\prime} \mathrm{W}\) \\
\hline LIMA & Not used & \(10^{\circ} 30^{\prime} \mathrm{N} \quad 56^{\circ} 30^{\prime} \mathrm{W}\) \\
\hline MIKE & Not used & \(09^{\circ} 00{ }^{\prime} \mathrm{N} \quad 57^{\circ} 00{ }^{\prime} \mathrm{W}\) \\
\hline NOVEMBER & Not used & \(09^{\circ} 20^{\prime} \mathrm{N} \quad 54^{\circ} 00^{\prime} \mathrm{W}\) \\
\hline OSCAR & Not used & \(11^{\circ} 00{ }^{\prime} \mathrm{N} \quad 59^{\circ} 00^{\prime} \mathrm{W}\) \\
\hline PAPA & Not used & \(11^{\circ} 00{ }^{\prime} \mathrm{N} \quad 54^{\circ} 00^{\prime} \mathrm{W}\) \\
\hline XRAY & \(16^{\circ} 29^{\prime} \mathrm{N} \quad 54^{\circ} 23^{\prime} \mathrm{W}\) & Not used \\
\hline Yankee & \(14^{\circ} 15^{\prime} \mathrm{N} \quad 54^{\circ} 01^{\prime} \mathrm{W}\) & Not used \\
\hline
\end{tabular}

Table 9-3.-- BOMEX line integral aircraft missions
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Date} & \multicolumn{5}{|c|}{Aircraft and flight patterns} \\
\hline & \[
\begin{array}{r}
\text { Navy } \\
\text { WC-121 }
\end{array}
\] & \[
\begin{gathered}
\text { Navy } \\
\text { WC-121 }
\end{gathered}
\] & \[
\] & \[
\begin{gathered}
\mathrm{RFF} \\
\mathrm{DC}-640 \mathrm{C}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{RFF} \\
\mathrm{DC}-482 \mathrm{E}
\end{gathered}
\] \\
\hline \multicolumn{6}{|l|}{May} \\
\hline 3 & LIN & - & - & - & - \\
\hline 4 & - & LIN & - & LID A & LID B \\
\hline 9 & Comparison & Comparison & - & Comparison & Comparison \\
\hline 10 & - & LIN MOD 1 & - & - & - \\
\hline 11 & LIN MOD 2 & - & - & LID A & LID B \\
\hline 12 & LIN MOD 2 & - & LID B & LID A & - \\
\hline 25 & LIN MOD 2* & LIN MOD \(2{ }^{\dagger}\) & - & - & - \\
\hline 26 & LIN MOD 2 & . - & - & LID A & LID B \\
\hline 27 & LIN MOD 2 & - & - & LID A & LID B \\
\hline 31 & LIN MOD 2 & - & - & - & - \\
\hline \multicolumn{6}{|l|}{June} \\
\hline 1 & LIN MOD 2 & - & - & LID A & LID B \\
\hline 2 & LIN MOD 2 & - & - & LID A & LID B \\
\hline 3 & LIN MOD 2 & - & - & LID A & LID B \\
\hline 7 & LID E & LID F & LID C & LID G & LID D \\
\hline 9 & LID E & LID F & LID C & LID G & LID D \\
\hline 22 & LID E & LID F & LID C & LID G & LID D \\
\hline 23 & LIN F & - & LIN C & LIN D & LIN E \\
\hline 25 & LIN E & - & LIN C & LIN D & LIN F \\
\hline 29 & LID E & LID F & - & LID C & LID D \\
\hline 30 & LID E & LID F & LID D & LID C & - \\
\hline
\end{tabular}
*Aborted prior to H (HOTEL).
tDirect to \(J\) (JULIETT) - I, J, H-I, and return.

Table 9-4.--RFF airborne instrumentation systems supporting BOMEX
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Instrument} & & \multicolumn{5}{|c|}{Aircraft} \\
\hline & & Range & Error & 39 C & 40C & 82E & Remarks \\
\hline Aircraft position (latitude, longitude) & Doppler navigation systems; GPL Div. General Precision & & & & & & \\
\hline \multirow[t]{3}{*}{(LAT/LONG)} & APN-153 & \[
\begin{array}{r}
90^{\circ} \mathrm{N} / \mathrm{S} \\
180^{\circ} \mathrm{E} / \mathrm{W}
\end{array}
\] & & \[
\begin{aligned}
& X \\
& X
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
\] & \[
\begin{array}{ll}
X & C \\
X & f
\end{array}
\] & Computed postflight. \\
\hline & APN-82 & \[
\begin{array}{r}
90^{\circ} \mathrm{N} / \mathrm{S} \\
180^{\circ} \mathrm{E} / \mathrm{W}
\end{array}
\] & & \[
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
\] & \[
\begin{array}{ll}
\mathbf{X} & \mathbf{C} \\
\mathrm{X} & \mathrm{~b}
\end{array}
\] & Computed with onboard computer. \\
\hline & Omega navigation system; Tracor & \[
\begin{array}{r}
90^{\circ} \mathrm{N} / \mathrm{S} \\
180^{\circ} \mathrm{E} / \mathrm{W}
\end{array}
\] & & & X & & Experimental. \\
\hline \multirow[t]{2}{*}{Ground speed (GS)} & APN-153 & 60-1,000 kn & \((0.2 \%+0.35) \mathrm{kn}\) & X & X &  & PE shown. Scale factor \(36^{\circ}\) per 100 kn . \\
\hline & APN-82 & 70-700 kn & \((+2.1 \mathrm{kn})\) or ( \(\pm 0.3 \%\) ) GS & X & X &  & PE shown. RFF experience shows that accuracy is approx. 1\%. Time constant for system. is: \(300 \mathrm{~Hz} \mathrm{~s}^{-1}\); \(14 \mathrm{kn} \mathrm{s}^{-1}\). \\
\hline \multirow[t]{2}{*}{Drift angle (DA)} & APN-153 & \(\pm 40^{\circ}\) & \(\pm 0.17^{\circ}\) & X & X &  & Pitch/roll stabilization provided. \\
\hline & APN-82 & \(\pm 45^{\circ}\) & \(\pm 0.15^{\circ}\) & X & X &  & Pitch/roll stabilization provided. \\
\hline
\end{tabular}

Table 9-4.--RFF airborne instrumentation systems supporting BOMEX (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Instrument} & \multirow[b]{2}{*}{Range} & \multicolumn{5}{|c|}{Aircraft} \\
\hline & & & Error & 39C & 40C & 82E & Remarks \\
\hline \multirow[t]{2}{*}{Wind direction (DDD)} & APN-153 & \(360^{\circ}\) & & X & X & & Computed postflight. \\
\hline & APN-82 & \(360{ }^{\circ}\) & \[
\underset{\mathrm{FFF})]}{[0.4+(150 /}
\] & X & X & & \begin{tabular}{l}
Computed with onboard computer. \\
Response \(2.6^{\circ}\) \\
\(s^{-1}\). Time \\
constant: 35 s .
\end{tabular} \\
\hline \multirow[t]{2}{*}{Wind speed (FFF)} & APN-153 & & & x & X & & Computed postflight. \\
\hline & APN-82 & \(0-240 \mathrm{kn}\) & \[
\begin{aligned}
& {[+3 \mathrm{kn} \text { for }} \\
& \mathrm{FFF} \leq 150 \mathrm{kn}] \\
& {[+0.02(\mathrm{FFF})} \\
& >150 \mathrm{kn}]
\end{aligned}
\] & x & x & & Computed with onboard computer. \\
\hline Distance travel count (DTC) & APN-82 & \[
\begin{aligned}
& 0-999.999 \\
& \text { nmi }
\end{aligned}
\] & 1\% DTC & x & x & & Recycles through "0." \\
\hline Aircraft pitch/ roll angle ( \(\theta / \phi\) ) & \[
\begin{aligned}
& \text { APN-81, Gyro } \\
& \text { C-1160 }
\end{aligned}
\] & \[
\begin{aligned}
& \pm 30^{\circ}(\text { pitch }) \\
& \pm 45^{\circ}(\text { roll })
\end{aligned}
\] & \[
\begin{aligned}
& \pm 0.1^{\circ} \\
& \pm 0.1^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
\] & & \begin{tabular}{l}
\[
36^{\circ} \mathrm{s}^{-1} .
\] \\
(Removed from digital tape during BOMEX.)
\end{tabular} \\
\hline \begin{tabular}{l}
Magnetic heading \\
(MIDG)
\end{tabular} & N-1 Flux gate system, w/C-2 transmitter & \(360{ }^{\circ}\) & \(\pm 0.2^{\circ}\) & X & & & \(36^{0} \mathrm{~s}^{-1}\). Backup systems avallable on all aircraft. \\
\hline
\end{tabular}

Table 9-4.--RFF airborne instrumentation systems supporting BOMEX (continued)
\begin{tabular}{llllll}
\hline \multicolumn{1}{c}{ Parameter } & & & & \\
\hline
\end{tabular}

Table 9-4.--RFF airborne instrumentation systems supporting BOMEX (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Instrument} & \multirow[b]{2}{*}{Range} & \multicolumn{5}{|c|}{Aircraft} \\
\hline & & & Error & 39C & 40C & 82E & Remarks \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Ambient (vortex) \\
temperature (TEMP)
\end{tabular}} & Bendix ML-471/ AMQ-8 vortex & -80 to \(+50^{\circ} \mathrm{C}\) & \(\pm 1^{\circ} \mathrm{C}\) & X & X & & 10-s response \\
\hline & RFF modified AMQ-8 thermocouple vortex & 0 to \(400^{\circ} \mathrm{K}\) & \(<1{ }^{\circ} \mathrm{C}\) & X & X & & Developmental. Response <5 s. \\
\hline \multirow[t]{2}{*}{Sea-surface temperature (SST)} & Barnes PRT-5, IR & -40 to \(+40^{\circ} \mathrm{C}\) & \(\pm 0.5{ }^{\circ} \mathrm{C}\) & X & X & & 50-ms response time. \\
\hline & Te radiometer & -20 to \(\pm 45^{\circ} \mathrm{C}\) & \(\pm 0.5^{\circ} \mathrm{C}\) & X & X & & 2-s response time. \\
\hline Total temperature & Rosemount system & -60 to \(\pm 40^{\circ} \mathrm{C}\) & \(\pm 1^{\circ} \mathrm{C}\) & X & . X & & l/e time 20 ms . Developmental; requires TAS corr. \\
\hline Liquid water content (LWC) & Levine hot-wire & \[
\begin{aligned}
& 0 \mathrm{to}_{-3}^{10} \\
& \mathrm{~g}
\end{aligned}
\] & 30-50\% & X & X & & Also provides the volume median drop size. 4-s response time. \\
\hline Absolute humidity & IR hygrometer & \[
\begin{aligned}
& 0 \text { to } 20 \\
& \text { (plus) } \mathrm{g} \mathrm{~m}^{-3}
\end{aligned}
\] & 5\% & x & x & & \[
\begin{aligned}
& 0-10 \text { s for a } 90 \% \\
& \text { change. }
\end{aligned}
\] \\
\hline Dew (frost) point temperature (TD) & Cambridge systems hygrometer & -50 to \(+50^{\circ} \mathrm{C}\) & \[
\begin{aligned}
& \text { Within } \pm 2^{\circ} \mathrm{C} \\
& \text { of IRH }
\end{aligned}
\] & X & X & & 10-s response time; faster at temperatures \(>0^{\circ} \mathrm{C}\). \\
\hline
\end{tabular}

Table 9-4.--RFF airborne instrumentation systems supporting BOMEX (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multirow[b]{2}{*}{Ins trument} & \multirow[b]{2}{*}{Range} & \multicolumn{5}{|c|}{Aircraft} \\
\hline & & & Error & 39C & 40C & 82E & Ṙemarks \\
\hline Ice detector & Pressure difference cyclic sensor & & & X & X & & \\
\hline Aitken nuclei count & APCL System & & & X & X & & Operated by APCL. \\
\hline Vertical acceleration & Statham AJ-43 accele rometer & 0 to \(\pm 3 \mathrm{~g}\) & 10\% & X & X & X & \\
\hline Refractive index (N) & Microwave refractometer & & & X & & & System operated by WPL; used for rapid measurement of water vapor. \\
\hline Solar radiation & Eppley precision spectral pyranometer & \[
\begin{aligned}
& \lambda: 285-2,800 \mathrm{~m} \mathrm{\mu} \\
& \mathrm{~T}:-20 \text { to }+50^{\circ} \mathrm{C}
\end{aligned}
\] & * & X & X & X & *Comparison data obtained for each flight: Sensitivity: [5mv cal \({ }^{-1}\) \(\left.\mathrm{cm}^{-2} \mathrm{~min} n^{-1}\right]\), with impedance of 300 ohms. \\
\hline \multirow[t]{4}{*}{Radar systems} & & & & X & X & & PPI. \\
\hline & WP-101 5.6 cm & 150 nmi & & X & X & & PPI. \\
\hline & RDR-ID 3.2 cm & 20 nmi & & X & X & & Cross section. \\
\hline & APS-42A 3.2 cm & 200 nmi & & & & X & PPI. \\
\hline Radiation detection & Air sampler, foil assembly FI-2A w/B 200A CRM, 90-GM tube & \[
\begin{aligned}
& 0-200,000 \\
& \text { counts }
\end{aligned}
\] & & X & X & & Used with \(41 / 4-i n\). paper filters. \\
\hline
\end{tabular}

Table 9-5.--RFF airborne recording system
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Recorder/Display} & \multirow{2}{*}{MFG/Model} & \multicolumn{2}{|r|}{\multirow{2}{*}{Speed}} & \multirow{2}{*}{Channels} & \multicolumn{3}{|r|}{Aircraft} & \multirow{2}{*}{Remarks} \\
\hline & & & & & 39C & & 82E & \\
\hline Digital (magnetic tape) recorder & ESS GEE, Inc. mod. by RFF & & * & 7 BCD & X & X & & See (1). \\
\hline Digital (magnetic tape) recorder & Radiation, Inc. & & ** & \begin{tabular}{l}
\[
7 \text { BCD }
\] \\
FM analog
\end{tabular} & & & X & See (2). \\
\hline FM (IRIG) analog recorder & \[
\begin{aligned}
& \text { Sangamo series } \\
& 3560
\end{aligned}
\] & & Var. & 14 & X & & & See (3) : \\
\hline Strip-chart recorder (6 and 8 in.) & Honeywellvisicorder & & Var. & \[
\begin{aligned}
& 14 \\
& 28
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{X} \\
& \mathrm{X}
\end{aligned}
\] & See (4). \\
\hline Strip-chart recorder & Hewlett-Packard & & Var. & 2 & X & X & X & See (5). \\
\hline Cloud cameras, sidemounted, 35 mm & Automax G-2 & & \(\mathrm{fr} / 5 \mathrm{sec}\) & 1 & X & X & & Mounted left/right \\
\hline Cloud camera, forward looking, 16 mm & Milliken DBM-5C & & \(\mathrm{fr} / 2 \mathrm{sec}\) & 1 & X & X & & \\
\hline Photo-panel camera, 35 mm & Automax G-1 & & \(\mathrm{fr} / 5 \mathrm{sec}\) & 1 & X & X & X & \\
\hline Radar cameras, 35 mm & Fairchild 0-15 & & Var. & 1 & X & X & X & All radars. \\
\hline
\end{tabular}
(1) Records are 150 BCD characters each in length. *Tape moves at \(76 \mathrm{~cm} \mathrm{sec}{ }^{-1}\). Recording capacity 4,500 BCD characters per second with bit density of 200 bits per inch. Original system modified by RFF.
(2) Records are 150 BCD characters each in length. **Capability of recording 50 complete samples per second. System can also be used to record 20 channels of analog (FM) data.
(3) Used to record individual components of the water vapor flux system.
(4) Light-beam galvanometer type. Used to record, continuously, output of special instruments.
(5) Electrostatic recorder used for IR and solar radiation measurement recording.

Table 9-6. --Navy WC-121 aircraft basic observation system
\begin{tabular}{|c|c|}
\hline Parameter measured & Sensor or method of recording \\
\hline Temperature (total) & AMR-42 potentiometer \\
\hline Temperature (ambient) & DY 2861 A \\
\hline Dew point & Cambridge systems 137-C3 dew pointer \\
\hline Wind direction at flight level & APN-153 Doppler, ASR-41 adapter \\
\hline Wind speed at flight level & APN-153 Doppler, ASR-41 adpter \\
\hline Radar altitude & APN-159 potentiometer \\
\hline Ambient pressure & Rosemount transducer \\
\hline Cloud cover & Manually recorded \\
\hline Sea state & Manually recorded \\
\hline Sea-surface temperature & Barnes PRT-4A \\
\hline Subsurface seawater temperature & SSQ-36 bathy thermograph \\
\hline Radar precipitation areas (horizontal) & APS-20 CR-1A camera \\
\hline Radar precipitation areas (vertical) & APS-45 CR-1A camera \\
\hline Weather & Manually recorded \\
\hline Icing & Manually recorded \\
\hline Date & Manually recorded \\
\hline Time & Clock \\
\hline Octant of globe & ASN-41 adapter \\
\hline Lattidue and longitude & ASN-41 adapter \\
\hline True airspeed & AX-606 TEL computer \\
\hline True heading & ASN-41 adapter \\
\hline Ground speed & APN-153 Doppler \\
\hline Drift angle & APN-153 Doppler \\
\hline Compass & CGRS \\
\hline
\end{tabular}

Table 9-7.--Navy WC-121 aircraft meteorological instrumentation
\begin{tabular}{|c|c|}
\hline Sys tem & Description \\
\hline Data acquisition logging system (DALS) & \\
\hline Baththermograph system & \[
\begin{aligned}
& \text { SSQ-36 BT probe }\left(0.5^{\circ} \mathrm{F}\right) \\
& \text { ARR-58 receivers }\left( \pm 1^{\circ} \mathrm{F}\right) \\
& \mathrm{XN}-1 \& 3 \text { Rustrack recorder }\left( \pm 0.275^{\circ} \mathrm{C}\right)
\end{aligned}
\] \\
\hline Radiosonde system & \begin{tabular}{l}
AMT-6 radiosonde ( \(\pm 0.2 \mathrm{mb}\) ) \\
AMR-3 radiosonde deceptor \\
MA-1 radiosonde dispenser \\
MH-1 radios onde adapter sleeve
\end{tabular} \\
\hline Airborne radiation thermometer system & PRT-4A radiation thermometer ( \(\pm 0.2^{\circ} \mathrm{C}\) ) 680 Mosely strip-chart recorder \(\left( \pm 0.55^{\circ} \mathrm{C}\right)\) \\
\hline AMQ-17 aerograph set & \begin{tabular}{l}
AMA-2 indicator recorder \\
Pressure transducer ( \(\pm 0.2^{\circ} \mathrm{C}\) ) \\
Temperature humidity probe
\[
\left( \pm 0.5^{\circ} \mathrm{C}, \pm 3 \%\right)
\]
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Instruments dials at or near Metro panel} \\
\hline A Absolute altitude indicators & \[
\begin{aligned}
& \text { SCR- } 718 \text { radio altimeter }( \pm 50 \mathrm{ft}) \\
& \text { APN-159 radar altimeter }( \pm 10 \mathrm{ft})
\end{aligned}
\] \\
\hline \begin{tabular}{l}
MA-1 Kollsman pressure altimeter \\
AMQ vortex thermometer \\
\(\mathrm{C}-3\) Cambridge dew pointer ( \(\pm 1^{\circ} \mathrm{C}\) ) \\
True heading indicator \\
Ground speed indicator \\
True airspeed indicator \\
True wind speed indicator \\
Drift angle indicator \\
FA-122 barometer ( \(\pm 0.5 \mathrm{mb}\) ) \\
Clock
\end{tabular} & \\
\hline Navigation aids & \begin{tabular}{l}
APN-70 Loran \\
APN-153 Doppler \\
ARN-21 TACAN \\
ARN-14 OMNI \\
ASN-41 navigation computer \\
Sextant \\
BDHI
\end{tabular} \\
\hline
\end{tabular}

Table 9-8.--Special synoptic aircraft missions
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date 1969} & \multicolumn{2}{|r|}{WB-47} & \multicolumn{2}{|c|}{RB-57} & \multicolumn{2}{|c|}{WC-130} \\
\hline & Radar & \[
\begin{gathered}
\text { Air } \\
\text { sampling }
\end{gathered}
\] & Photography & \[
\begin{gathered}
\text { Air } \\
\text { sampling }
\end{gathered}
\] & \[
\begin{gathered}
\text { Air } \\
\text { sampling }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Comparison } \\
& \text { flight }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{May} \\
\hline 1 & & & & & X & \\
\hline 3 & x & X & X & x & X & \\
\hline 4 & x & X & X & X & X & \\
\hline 5 & X & X & X & X & X & \\
\hline 6 & x & X & X & X & X & x \\
\hline 7 & x & x & x & x & x & \\
\hline 8 & & & & x & & \\
\hline 9 & x & X & X & X & X & \\
\hline 10 & & X & X & X & X & \\
\hline 11 & x & x & X & x & x & \\
\hline 12 & & X & x & x & x & \\
\hline 13 & x & X & & X & X & \\
\hline 14 & X & X & x & X & x & \\
\hline
\end{tabular}

Table 9-8.--Special synoptic aircraft missions (continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date 1969} & \multicolumn{2}{|r|}{WB-47} & \multicolumn{2}{|c|}{RB-57} & \multicolumn{2}{|c|}{WC-130} \\
\hline & Radar & \[
\begin{gathered}
\text { Air } \\
\text { sampling }
\end{gathered}
\] & Photography & \[
\begin{gathered}
\text { Air } \\
\text { sampling }
\end{gathered}
\] & \[
\begin{gathered}
\text { Air } \\
\text { sampling }
\end{gathered}
\] & Comparison flight \\
\hline \multicolumn{7}{|l|}{May} \\
\hline 15 & & & & X & & \\
\hline 24 & x & & x & X & & \\
\hline 25 & X & & x & & & \\
\hline 26 & & & X & & & \\
\hline 27 & X & & X & & & \\
\hline 28 & X & & X & & & x \\
\hline \multicolumn{7}{|l|}{29} \\
\hline 30 & X & & X & & & \\
\hline 31 & X & & X & X & & X \\
\hline \multicolumn{7}{|l|}{June} \\
\hline 1 & x & & X & & & \\
\hline 2 & x & & x & & & \\
\hline 3 & X & & X & & & \\
\hline 4 & X & & X & & & \\
\hline 5 & & & & & & \\
\hline
\end{tabular}

Table 9-8.--Special synoptic aircraft missions (continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Date 1969} & \multicolumn{2}{|r|}{WB-47} & \multicolumn{2}{|c|}{RB-57} & \multicolumn{2}{|c|}{WC-130} \\
\hline & Radar & \[
\begin{gathered}
\text { Air } \\
\text { sampling }
\end{gathered}
\] & Photography & \[
\begin{gathered}
\text { Air } \\
\text { sampling }
\end{gathered}
\] & \[
\begin{gathered}
\text { Air } \\
\text { sampling }
\end{gathered}
\] & Comparison flight \\
\hline \multicolumn{7}{|l|}{June} \\
\hline 6 & X & & \(x\) & & & \\
\hline 7 & x & & x & & & \\
\hline 8 & & & X & & & \\
\hline 9 & X & & X & & & \\
\hline 10 & & & X & & & \\
\hline 11 & & & & X & & \\
\hline 21 & X & X & X & X & x & \\
\hline 22 & X & x & X & X & x & \\
\hline 23 & X & X & X & X & X & \\
\hline 24 & X & X & X & x & X & \\
\hline 25 & X & X & X & X & X & \\
\hline 26 & X & x & X & x & X & X \\
\hline 27 & & & & X & & \\
\hline 28 & X & X & X & X & x & \\
\hline 29 & X & X & X & X & X & \\
\hline 30 & X & X & X & X & X & \\
\hline \multicolumn{7}{|l|}{July} \\
\hline 1 & X & X & & X & X & X \\
\hline 2 & & X & X & x & x . & \\
\hline
\end{tabular}

Table 9-9.--Air Weather Service WB-47 basic meteorological instrumentation
\begin{tabular}{ll}
\hline \multicolumn{1}{c}{ Measurement } & \multicolumn{1}{c}{ Instrument } \\
\hline Precipitation areas & AN/APS-64 search radar \\
Altitude & AN/APN-42A radar altimeter \\
& MA-1 pressure altimeter \\
Wind speed and direc- \\
tion at flight level & AN/APN-102 Doppler \\
Temperature (total) & Rosemount probe \\
D-value & AN/APN-42, MA-1 altimeter \\
Particulate air sampling & U-1 foil \\
Cloud cover & Visual observation \\
Present weather & Visual observation \\
Past weather & Visual observation \\
Turbulence & Subjectively manual \\
Icing & Visual observation \\
\hline
\end{tabular}

Table 9-10.--Air Weather Service WC-130 basic meteorological instrumentation
\begin{tabular}{|c|c|}
\hline Measurement & Sensor \\
\hline Temperature (total) & Rosemount probe \\
\hline Wind direction & AN/APN-147 (V) Doppler \\
\hline Wind speed & AN/APN-147 (V) Doppler \\
\hline Altitude & AN/APN-133A or SCR-718 radio altimete MA-1 STD AC aneroid \\
\hline Radar precipitation & AN/APN-59 radar system \\
\hline Drops onde temperature pressure humidity & AN/AMT-6 system ML-419/AMT-4 rod thermistor aneroid cell ML-476/AMT carbon strip \\
\hline Particulate air sampling & U-1 foil \\
\hline
\end{tabular}

Table 9-11.--Air Weather Service RB-57 basic meteorological instrumentation
Measurement Sensor

Color photographs of cloud cover F-415P Fairchild camera system
Particulate air sampling
U-1 foil
Temperature
Rosemount probe
Wind direction and speed at flight Doppler, APN-102 level

Altitude
MA-1 pressure altimeter

\subsection*{9.1 RFF Aircraft}

The data collected by the RFF aircraft were assigned a fiight identification (ID) number for every mission flown. This number is made up of the year, month, and day, and a letter designating a particular aircraft. The letter " \(A\) " was used for the \(D C-6\) 39C; " \(B\) " for the DC-6 40C; and "E" for the \(\mathrm{DC}-482 \mathrm{E}\). An extra digit at the end of the flight ID number indicates the number of missions flown in one day, e.g., flight number 690526Bl means that the DC-6 40C was flown on May \(26,1969\).

The original meteorological data were recorded aboard the aircraft at the rate of one record every second. Each record consists of 150 characters (7-track BCD) written on magnetic tape at 200 BPI . There are approximately 10 to 12 hr of data, i.e., 36,000 to 44,000 records, per flight. No record counts are available, but each observation is distinguished by time in hours, minutes, and seconds. Most of the parameters contained in each record must be calibrated, based on constants provided by RFF to convert counts to engineering units.

The DC-6 "A" and "B" aircraft use the APN-82 Doppler radar navigation system as the primary source for basic navigational parameters. During BOMEX, an APN-153 Doppler radar navigation system was included and used for the first time on RFF aircraft because of its better response at altitudes below \(1,000 \mathrm{ft}\). "Normally, the " \(A\) " and " \(B\) " aircraft tape records are identical. When the APN-153 was used, the PITCH and ROLL in the tape record were replaced by GS-153 and DA-153.

The DC-6 "A" aircraft operated with the APN-153 on all flights, but the " \(B\) " aircraft did not use it until late in May 1969. The " \(E\) " aircraft used the APN-153 only; it did not use its APN-82 to record data on tape. The "E" tape record did not contain true airspeed, wind direction, windspeed, longitude, latitude, and magnetic variation; all these elements were derived during subsequent data processing. Pitch, roll, liquid water content, Rosemount temperature, and dewpoint were also missing, and could not be derived. Another parameter unavailable on the \(D C-4\) " \(E\) " aircraft data tape is the memory on/off indicator. On the DC-6 airctaft, the APN-82 system goes into memory mode when the return radar signal is too weak to compute a ground speed or drift angle (usually the result of hitting very smooth sea surfaces or the aircraft being in a tight turn). In such cases, the last reliable wind direction and windspeed are stored in the memory and are combined with the true airspeed and magnetic heading plus magnetic variation for computation of ground speed (GS) and drift angle (DA). When the memory is on, a switch on the \(D C-6\) " \(A\) " and "B" records indicates this. Because the "E" aircraft record has no memory switch, the memory-on situation has to be interpreted when GS-153 and DA-153 do not change over a short period of time.

\subsection*{9.1.1 Preliminary Processing of Meteorological Data}

The original data were recorded at 200 BPI on magnetic tape in BCD format at the rate of one complete record per second, including all parameters. These BCD records were edited by RFF for long records (more than 150 characters), short records (less than 150 characters), and noise records, and
for parity and illegal characters. The tape was then rewritten minus the unreliable records onto a higher density ( 556 BPI) IBM-compatible CONVERT tape. The tape had the same format as the original tape, except for two new parameters: the actual record count and the original record count. These were used to show when records had been deleted. An error summary was provided to indicate the relative merit of each flight. RFF also provided the calibration constants for use in later processing to convert the original count units to meteorological and engineering units, with the exception of the infrared hygrometer (IRH) and liquid water count. The constants are listed in table 9-12.

The following equations were obtained by the method of least squares to relate the IRH count values to absolute humidity at \(1,015 \mathrm{mb}\) for each of the aircraft:
Absolute humidity \(\left(\mathrm{g} / \mathrm{m}^{3}\right)=\mathrm{C}_{\mathrm{o}}+\mathrm{C}_{1} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}^{2}+\mathrm{C}_{3} \mathrm{H}^{3}+\mathrm{C}_{4} \mathrm{H}^{4}+\mathrm{C}_{5} \mathrm{H}^{5}+\mathrm{C}_{6} \mathrm{H}^{6}\), where
\(H=\) counts, and the coefficients are
\begin{tabular}{|c|c|c|c|}
\hline & DC-6 "A" & DC-6 "B" & DC-4 "E" \\
\hline \(\mathrm{C}_{0}\) & \(-7.959 \times 10^{-1}\) & - \(4.981 \times 10^{-1}\) & \(-7.238 \times 10^{-2}\) \\
\hline \(\mathrm{C}_{1}\) & \(9.420 \times 10^{-3}\) & \(4.326 \times 10^{-3}\) & \(-2.660 \times 10^{-3}\) \\
\hline \(\mathrm{C}_{2}\) & \(-1.811 \times 10^{-5}\) & \(7.718 \times 10^{-6}\) & \(4.098 \times 10^{-5}\) \\
\hline \(\mathrm{C}_{3}\) & \(3.854 \times 10^{-8}\) & \(-1.309 \times 10^{-8}\) & \(-7.904 \times 10^{-8}\) \\
\hline \(\mathrm{C}_{4}\) & \(-3.635 \times 10^{-11}\) & \(1.544 \times 10^{-11}\) & \(8.022 \times 10^{-11}\) \\
\hline \(\mathrm{C}_{5}\) & \(1.695 \times 10^{-14}\) & \(-8.181 \times 10^{-15}\) & \(-3.953 \times 10^{-14}\) \\
\hline \(\mathrm{C}_{6}\) & \(-2.876 \times 10^{-18}\) & \(1.744 \times 10^{-18}\) & \(7.632 \times 10^{-18}\) \\
\hline
\end{tabular}

The absolute humidity was then obtained from the expression
\[
\text { AHUM } \mathrm{g} / \mathrm{m}^{3}=\operatorname{IRH}\left(\frac{1015}{\mathrm{P}+20}\right)^{0.18} *\left(\frac{\mathrm{P}}{\mathrm{P}+20}\right) *\left(\frac{308}{\mathrm{~T}}\right),
\]
where \(P\) is ambient pressure, and \(T\) is ambient air temperature in degrees absolute.

Liquid water counts from the \(\mathrm{DC}-6\) " A " and " B " aircraft data record (the DC-4 "E" aircraft 'ad none) were converted into liquid water measured in grams per cubic meter by use of the latest set of RFF liquid water conversion graphs. Each graph has two curves, one for a \(0-2\) range and the other for a \(0-6\) range. The ranges are determined by the state of the two switches operated aboard the DC-6 aircraft and recorded into the tape record. The curves are essentially straight lines, and the linear equations that yield liquid water are

Table 9-12.--Calibration constants
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} & \multicolumn{3}{|l|}{Aircraft} & \multirow[t]{2}{*}{Range of count} & \multirow[b]{2}{*}{Conversion} & \multirow[b]{2}{*}{Units} \\
\hline & "A" & & "E" & & & \\
\hline GS-153 (ground speed) & X & X & X & & COUNT * 0.1489 & \(\mathrm{m} / \mathrm{s}\) \\
\hline DA-82 (drift angle) & X & X & - & & (COUNT-500) * 0.1 & deg \\
\hline DA-153 (drift angle) & X & X & X & & (COUNT-500) * 0.1 & deg \\
\hline DTC (distance travelled count) & X & X & . & & COUNT * 0.001 & nmi \\
\hline MHDG (magnetic heading) & X & X & X & & COUNT * 0.1 & deg \\
\hline APRESS (ambient pressure) & X & X & X & & (COUNT+1000) * 0.05 & mb \\
\hline \multirow[t]{3}{*}{DPRESS (differential pressure)} & X & & & & COUNT * 0.01381 & mb \\
\hline & & X & & & COUNT * 0.01379 & mb \\
\hline & & & X & & COUNT * 0.01376 & mb \\
\hline RA (radar altitude) & X & X & X & & COUNT * 0.3048 & m \\
\hline \multirow[t]{2}{*}{TEMP (vortex temperature)} & X & X & & & (COUNT-1200) * 0.05 & deg \\
\hline & & & X & & (COUNT-800) * G. 05 & deg \\
\hline \multirow[t]{4}{*}{TD (CS1 dewpoint temperature)} & X & & . & \(<1005\) & (COUNT-1005) * 0.05443 & deg \\
\hline & & & & > 1005 & (COUNT-1005) * 0.0504 & deg \\
\hline & & X & & < 1010 & (COUNT-1010) * 0.055 & deg \\
\hline & & & & > 1010 & (COUNT-1010) * 0.05 & deg \\
\hline TR (Rosemount temperature) & X & X & - & & \[
\begin{aligned}
& (\text { COUNT } * 0.05071-60.14) \\
& 0.0004984 * \mathrm{TAS}^{2}
\end{aligned}
\] & deg \\
\hline
\end{tabular}
\(\overline{\mathrm{X}}=\) available \(\quad .=\) unavailable \(\quad \star=\) multiply blank \(=\) ignore

The desired consequence of applying the intercomparison corrections was to force the data from the three aircraft into internal consistency, admitting the possibility that all three might be wrong in the same direction. Since the unusual circumstance was an intercomparison of all three aircraft at the same time, a nontrivial "closure error" can be defined as
\[
\varepsilon=\Sigma(40 C-39 C)+\Sigma(39 C-82 E)+\Sigma(82 E-40 C) .
\]

The summations were made over the comparisons between the aircraft pairs as indicated. Ideally, \(\varepsilon\) should be zero. Table 9-15 shows the closure errors and their estimated standard deviations \(\sigma_{\varepsilon}\) for several sensors. The aircraft altimeters were assumed to be correct, and adjustments in pressure and temperature were made for aircraft altitude differences.

Table 9-14.--RFF intercomparison differences
\begin{tabular}{|c|c|c|c|}
\hline Sensor & DC-6 40C/39C & 82E/39C & 82E/40C \\
\hline Pressure (mb) & 0.3, -3.5* & 5.0 & 5.8, 9.0* \\
\hline Heading (deg) & - 0.8 & 0.1 & 1.4 \\
\hline APN-82 ground speed (m/s) & 1.3 & --- & --- \\
\hline APN-82 drift angle (deg) & 0.8 & --- & --- \\
\hline Vortex temperature ( \({ }^{\circ} \mathrm{C}\) ) 3 & 2.0 & 2.1 & 1.6 \\
\hline Infrared hygrometer ( \(\mathrm{g} / \mathrm{m}^{3}\) ) & 0.2 & 0.3 & 0.8 \\
\hline Differential pressure (mb) & 0.8 & 0.3 & -0.6 \\
\hline APN-153 ground speed (m/s) & 1.2 & - 1.4 & - 1.3 \\
\hline APN-153 drift angle (deg) & - 1.0 & - 2.1 & 0.3 \\
\hline Rosemount temperature ( \({ }^{\circ} \mathrm{C}\) ) & 2.2, -1.3** & --- & --- \\
\hline CSI hygrometer ( \({ }^{\circ} \mathrm{C}\) ) & 1.3 & --- & --- \\
\hline
\end{tabular}
*Applicable to 40C after May 11.
**Applicable to 40C after July 11.

Table 9-15.--Closure errors and their estimated standard deviations
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { Pressure } \\
& \text { (mb) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Heading } \\
& \text { (deg) }
\end{aligned}
\] & Vortex temperature \(\left({ }^{\circ} \mathrm{C}\right)\) & Absolute humidity ( \(\mathrm{g} / \mathrm{m}^{3}\) ) & Differential pressure (mb) & APN-153 ground speed (m/s) & APN-153 drift angle (deg) \\
\hline \(\varepsilon\) & 1.1, 0.5* & * 0.5 & 1.5 & 0.8 & - 0.1 & 1.3 & 1.4 \\
\hline \(\sigma_{\varepsilon}\) & 2.4 & 1.4 & 0.8 & 1.0 & 2.2 & 2.6 & 1.7 \\
\hline
\end{tabular}
*Applicable after May 11 .

All three RFF aircraft flew a large number of "wind boxes," a maneuver in which they covered four sides of a square, each side about 10 km long. Under the assumption that the wind velocity does not change significantly during the 8 to 10 min required for the flight pattern, one can compute
corrections to an angle-speed pair chosen from heading, drift angle, ground speed, and airspeed. Friedman et al., in the NOAA Technical Report cited earlier, describe the computation for finding the drift-angle and airspeed corrections. Instead of these, the drift-angle and ground-speed corrections were computed in the final processing of the RFF data. Since only two of the four sides of the wind box are needed for computing a pair of corrections and six pairs of sides are available, a single wind box can yield six sets of corrections to the same pair of angle-speed measurements. It was found that the average variance among the six sets was approximately the same as the variance taken across all wind boxes. The drift-angle and ground-speed corrections listed in table 9-16 were therefore applied to all the RFF data.

Wind-box patterns were flown most frequently near the BOMEX ships, from which rawinsondes were released at frequent intervals. By comparing aircraft winds and temperatures with those interpolated from the rawinsonde data, a third set of corrections, given in table 9-17, was obtained under the assumption that the rawinsonde winds and temperatures are correct. The correction to the \(u\) component of the wind (positive east) represents the correction for sea drift on the Doppler radar ground speed. Some indication of its- value can be seen in figure 9-1, which shows the geographic coordinates for the last data collected on all RFF flights departing from and terminating at Seawell Airport, Barbados. Without the sea-drift correction, the distribution would have been centered about 60 km (approximately \(0.6^{\circ}\) ) east of the island. Beginning latitude and longitude of all these flights were \(13.083^{\circ} \mathrm{N}, 59.466^{\circ} \mathrm{W}\).

Table 9-16.--Wind box corrections
\begin{tabular}{llc}
\hline & \begin{tabular}{c} 
Ground speed \\
\((\mathrm{m} / \mathrm{s})\)
\end{tabular} & \begin{tabular}{c} 
Drift angle \\
(deg)
\end{tabular} \\
\hline 39C APN-82 & \(-0.7+0.00033 z\) & 0.5 \\
39C APN-153 & -1.9 & -1.0 \\
40C APN-82 & \(-3.6+0.00092 z\) & -0.5 \\
40C APN-153 & -2.9 & +0.4 \\
82E APN-153 & -2.2 & +0.4 \\
\hline
\end{tabular}

Table 9-17.--Aircraft-rawinsonde comparison corrections
\begin{tabular}{lccc}
\hline \multirow{2}{c}{ Parameter } & \multicolumn{4}{c}{ Aircraft } \\
\cline { 2 - 5 } & 39 C & 40 C & 82 E \\
\hline & & & \\
\hline
\end{tabular}


Figure 9-1.--Termination latitudes and longitudes of RFF flights.

Because of redundant sensors aboard each aircraft, and the possibility of deriving height from pressure and vice versa, a priority system had to be used to compute a best estimate of temperature, humidity, height, pressure, and wind at any given time. Two things should be noted. First, the data from a given sensor may not be available at that time because of its deletion during editing or because, in the case of the Doppler radar, the memory switch was on. Second, if data were neither available at that time from any sensor nor could be computed, the last valid datum was carried forward, second by second, until data became available again. The priority scheme, where subscript o denotes the previous value, is as follows:
```

Height, $2 \quad$ Radar altimeter $>$ hydrostatic computation $>2$
Pressure, $P \quad$ Pressure sensor $>$ hydrostatic computation $>\mathrm{P}_{0}^{0}$
Temperature, $T$
Humidity, $\rho$
Wind velocity, u,v
Position
Ground speed
Heading, D
Radar altimeter $>$ hydrostatic computation $>20$
Pressure sensor $>$ hydrostatic computation $>p_{0}$.
Rosemount $>$ Vortex $>\mathrm{T}_{0}$
Infrared $>C S I>\rho_{0}$
$u_{0}, v_{0}$
APN-153 > APN-82 $>\mathrm{f}$ (airspeed, heading, $u_{0}, v_{0}$ )
$f$ (airspeed, heading, $u_{o}, v_{0}$ )
Magnetic compass $>\mathrm{D}_{\mathrm{O}}$

```

Priorities or computational intermediates, such as atmospheric density and airspeed, are not shown.

\subsection*{9.1.3 Archive Format and Inventory of Meteorological Data}

The RFF meteorological data are archived on 800 BPI , BCD magnetic tape. The length of each record is 2,080 characters ( \(16 \mathrm{~s} \times 130\) characters/s). The format of each record is as follows:
\begin{tabular}{|c|c|c|c|c|}
\hline Field & Character & Data & Units & Remarks \\
\hline 1 & 1-6 & Air pressure & counts & Notes 1,2,3 \\
\hline 2 & 7-12 & Radar altitude & counts & Notes 1,2,3 \\
\hline 3 & 13-17 & Heading & counts & Notes 1,2,3 \\
\hline 4 & 18-24 & APN-82 distance travel count & counts & Notes 1,2,3 \\
\hline 5 & 25-28 & APN-82 drift angle & counts & Notes 1,2,3 \\
\hline 6 & 29-33 & Vortex temperature & counts & Notes 1,2,3 \\
\hline 7 & 34-38 & Infrared hygrometer & counts & Notes 1,2,3 \\
\hline 8 & 39-43 & Differential pressure & counts & Antes \(1,2,3,4\) \\
\hline 9 & 44-47 & APN-153 ground speed & counts & Notes 1,2,3 \\
\hline 10 & 48-51 & APN-153 drift angle & counts & Notes 1,2,3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Field & Character & Data & Units & Remarks \\
\hline 11 & 52-56 & Rosemount temperature & counts & Notes 1,2,3 \\
\hline 12 & 57-61 & CSI dewpoint & counts & Notes 1,2,3 \\
\hline 13 & 62-66 & Liquid water content & counts & Notes 1,2,3 \\
\hline 14 & 67-68 & APN-82 and APN-153 memory & counts & Notes 1,2,3 \\
\hline 15 & 69-71 & Julian day & day & \\
\hline 16 & 72-73 & Hour & hr & \\
\hline 17 & 74-75 & Minute & min & \\
\hline 18 & 76-77 & Second & S & \\
\hline 19 & 78-81 & \(\mathbf{u}\) (positive east) wind component & m/s x 10 & \\
\hline 20 & 82-85 & \(v\) (positive north) wind component & m/s \(\times 10\) & \\
\hline 21 & 86-89 & Temperature & \({ }^{\circ} \mathrm{C} \times 10\) & \\
\hline 22 & 90-93 & Absolute humidity & \(g / m^{3} \times 10\) & \\
\hline 23 & 94-97 & Liquid water content & \(g / \mathrm{m}^{3} \times 10\) & Note 5 \\
\hline 24 & 98-102 & Pressure & mb \(\times 10\) & \\
\hline 25 & 103-107 & Altitude & m & \\
\hline 26 & 108-114 & Latitude (positive north) & deg \(\times 10^{4}\) & \\
\hline 27 & 115-121 & Longitude (positive east) & deg \(\times 10^{4}\) & \\
\hline 28 & 122-125 & Ground speed & \(\mathrm{m} / \mathrm{s} \times 10\) & \\
\hline 29 & 126-129 & True heading & deg x 10 & \\
\hline 30 & 130 & (9) Dummy character & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
Note 1. Data missing from the CONVERT tape are denoted by -1 in field. \\
Note 2. Edited values are denoted by -count in field. \\
Note 3. Units of "counts" as originally recorded, with the exceptions noted in 1 and 2 above. \\
Note 4. A programming error did not allow sufficient room for minus sign for the purpose described in 2 above. Characters \(39-43\) and their multiples should be read or decoded under an \(A\) format since field overflow is on tape as an asterisk. \\
Note 5. Where liquid water content counts were negative ( 1 and. 2 above), liquid water content in grams per cubic meters was set equal to zero. \\
An inventory of the RFF meteorological data is given in table 9-18.
\end{tabular}}} \\
\hline & & & & \\
\hline
\end{tabular}

Table 9-18.--Inventory of RFF aircraft meteorological data
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Magnetic tape No. & Aircraft & BOMEX Observation Period & \[
\begin{aligned}
& \text { Julian } \\
& \text { day }
\end{aligned}
\] & \[
\begin{gathered}
\text { Date } \\
\text { (1969) }
\end{gathered}
\] & Start time
(hr:min:s) & End time (hr:min:s) \\
\hline \multirow[t]{2}{*}{\[
2321
\]} & DC-6 39C & I & 124 & May 4 & 14:43:30 & 21:54:24 \\
\hline & DC-6 40C & " & " & & 10:27:02 & 21:50:45 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
2322 \\
\text { " }
\end{gathered}
\]} & DC-6 39C & " & 125 & May 5 & 14:53:45 & 21:00:08 \\
\hline & DC-6 40C & " & 129 & May 9 & 13:59:32 & 19:56:19 \\
\hline \multirow[t]{2}{*}{"} & DC-6 39C & " & 131 & May 11 & 15:05:55 & 21:35:13 \\
\hline & DC-6 40C & " & " & " & 10:22:30 & 21:25:57 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
2324 \\
11
\end{gathered}
\]} & DC-6 39C & " & 132 & May 12 & 11:32:25 & 21:31:52 \\
\hline & DC-6 40C & " & " & " & 11:25:00 & 21:26:03 \\
\hline " & DC-6 39C & " & 134 & May 14 & 12:10:00 & 19:49:11 \\
\hline \multirow[t]{2}{*}{\[
2325
\]} & DC-6 39C & " & 137 & May 17 & 14:03:10 & 19:09:49 \\
\hline & " & " & 142 & May 22 & 17:38:25 & 23:33:36 \\
\hline " & " & II & 144 & \[
\text { May } 24
\] & 18:36:10 & 01:54:33 \\
\hline " & " & 1 & 146 & \[
\text { May } 26
\] & 14:42:40 & 22:30:55 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
2326 \\
11
\end{gathered}
\]} & DC-6 40C & " & 146 & May 26 & 10:58:15 & 21:22:46 \\
\hline & DC-4 82E & " & " & & 11:03:16 & 21:18:11 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
2327 \\
\hline 1
\end{gathered}
\]} & DĊ-6 39C & " & 147 & May 27 & 13:17:00 & 22:13:30 \\
\hline & DC-6 40C & " & " & " & 10:50:00 & 21:32:07 \\
\hline 2328 & DC-4 82E & " & 147 & May 27 & 10:55:37 & 21:28:08 \\
\hline \multirow[t]{2}{*}{\[
2330
\]} & " & " & 152 & June 1 & 11:01:41 & 21:51:16 \\
\hline & DC-6 40C & " & 153 & June 2 & 10:55:01 & 21:46:12 \\
\hline \multirow[t]{3}{*}{\begin{tabular}{c}
2331 \\
\hline 1
\end{tabular}} & DC-4 82E & " & " & " & 10:53:51 & 21:44:09 \\
\hline & DC-6 39C & " & 154 & June 3 & 13:07:30 & 19:32:01 \\
\hline & DC-6 40C & " & " & " & 10:54:15 & 21:33:32 \\
\hline
\end{tabular}

Table 9-18. --Inventory of RFF aircraft meteorological data (continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Magnetic tape No. & Aircraft & BOMEX Observation Period & Julian day & \[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\] & Start time (hr:min:s) & End time (hr:min:s) \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
2332 \\
11
\end{gathered}
\]} & DC-4 82E & \multirow[t]{2}{*}{II} & 154 & June 3 & 10:54:36 & 21:31:54 \\
\hline & DC-6 39C & & 158 & June 7 & 10:00:00 & 22:19:43 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
2333 \\
\text { " }
\end{gathered}
\]} & DC-6 40C & \multirow[t]{2}{*}{"} & " & " & 10:24:00 & 21:10:55 \\
\hline & DC-6 39C & & 160 & June 9 & 10:01:05 & 21:53:03 \\
\hline 2334 & DC-6 40C & 11 & 160 & June 9 & 10:22:00 & 21:07:19 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
2335 \\
41
\end{gathered}
\]} & DC-6 39C & III & 172 & June 21 & 17:05:00 & 21:50:19 \\
\hline & DC-6 39C & " & 173 & \multirow[t]{2}{*}{June 22} & 10:08:01 & 22:12:16 \\
\hline " & DC-6 40C & " & 11 & & 10:26:00 & 21:30:31 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
2336 \\
11
\end{gathered}
\]} & DC-4 82E & " & 173 & June 22 & 10:06:31 & 21:21:42 \\
\hline & DC-6 39C & " & 174 & June 23 & 22:06:00 & 09:15:51 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
2337 \\
11
\end{gathered}
\]} & DC-6 40C & " & \multirow[t]{2}{*}{\[
174
\]} & \multirow[t]{2}{*}{June 23} & 22:00:00 & 09:18:23 \\
\hline & DC-4 82E & ' & & & 22:40:21 & 06:58:28 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
2338 \\
11
\end{gathered}
\]} & DC-6 39C & " & \multirow[t]{2}{*}{\[
176
\]} & \multirow[t]{2}{*}{June
"} & 22:35:20 & 09:46:15 \\
\hline & DC-6 40C & " & & & 22:30:00 & 09:48:23 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
2339 \\
11
\end{gathered}
\]} & DC-6 39C & " & \multirow[t]{2}{*}{\[
\begin{gathered}
179 \\
71
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { June } \\
\text { " }
\end{gathered}
\]} & 13:24:01 & 20:34:24 \\
\hline & DC-4 82E & " & & & 13:22:11 & 20:26:10 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
2340 \\
11
\end{gathered}
\]} & DC-6 40C & " & \multirow[t]{2}{*}{\[
\begin{gathered}
180 \\
" 1
\end{gathered}
\]} & \multirow[t]{2}{*}{June 29} & 10:00:00 & 21:19:27 \\
\hline & DC-6 82E & " & & & 10:11:30 & 21:12:48 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
2341 \\
11
\end{gathered}
\]} & DC-6 39C & " & \multirow[t]{2}{*}{\[
\begin{gathered}
181 \\
\hline 1
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\underset{\text { June }}{\substack{\text { June }}} 30
\]} & 14:01:15 & 22:19:54 \\
\hline & DC-6 40C & " & & & 11:00:00 & 22:22:39 \\
\hline \multirow[t]{2}{*}{\[
2342
\]} & DC-6 39C & " & \multirow[t]{2}{*}{\[
\begin{gathered}
183 \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{July 2} & 12:29:40 & 20:29:39 \\
\hline & DC-4 82E & " & & & 12:00:08 & 21:00:08 \\
\hline
\end{tabular}

Table 9-18. --Inventory of RFF aircraft meteorological data (continued)
\begin{tabular}{ccccccc}
\hline \begin{tabular}{c} 
Magnetic \\
tape No.
\end{tabular} & Aircraft & \begin{tabular}{c} 
BOMEX \\
Observation \\
Period
\end{tabular} & \begin{tabular}{c} 
Julian \\
day
\end{tabular} & \begin{tabular}{c} 
Date \\
(1969)
\end{tabular} & \begin{tabular}{c} 
Start time \\
(hr:min:s)
\end{tabular} & \begin{tabular}{c} 
End time \\
(hr:min:s)
\end{tabular} \\
\hline 2343 & DC-6 40C & IV & 192 & July 11 & \begin{tabular}{l}
\(11: 11: 00\) \\
\("\)
\end{tabular} & DC-6 39C
\end{tabular}

\subsection*{9.1.4 Archive Format and Inventory of Radar and Cloud Photographs}

Radar scope photographs taken by RFF aircraft are available for selected days in \(35-\mathrm{mm}\) black and white positive film, with synchronized time reference appearing on each frame. Data are from the following radar scopes:

APSS-20E \(10-\mathrm{cm}\) radar PPI scope (DC-6 39C and 40C only). WP-101 \(5.6-\mathrm{cm}\) radar scope PPI scope (DC-6 39C and 40 C only). RDR-ID \(3.2-\mathrm{cm}\) radar RHI presentation (DC-6 39C and 40C only). APS-42A 3.2-cm radar PPI scope (DC-4 82E only).

An inventory of the archived radar photographs, which are registered copies of the original film, is given in table 9-19.

Cloud photographs along the flight tracks were taken on the DC-6 39C and 40 C with one \(16-\mathrm{mm}\) forward-viewing camera, time lapsed to expose one frame every 2 s and with a synchronized time-synchronized data chamber appearing on each frame; and two \(35-\mathrm{mm}\) side-viewing time-lapsed cameras recording \(90^{\circ}\) each side of the heading of the aircraft, with wide-angle lenses exposing one frame every 5 s . The 16 -mm cloud photographs are in Ektachrome color; the \(35-\mathrm{mm}\) photographs are on black and white positive film. An inventory of the cloud photographs is given in table 9-20.

Table 9-19.--RFF aircraft radar data inventory
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Microfilm reel No.} & \multirow[b]{2}{*}{Aircraft} & \multirow[b]{2}{*}{Radar} & \multirow[t]{2}{*}{BOMEX Observation Period} & \multicolumn{2}{|l|}{First frame} & \multicolumn{2}{|l|}{Last frame} \\
\hline & & & & \[
\begin{gathered}
\hline \text { Date } \\
\text { (1969) }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Time } \\
& \text { (GMT) }
\end{aligned}
\] & \[
\begin{gathered}
\hline \text { Date } \\
(1969)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Time } \\
& \text { (GMT) }
\end{aligned}
\] \\
\hline 118 & DC-6 40C & RDR-1 & I & May 4 & 1102 & May 4 & 1705 \\
\hline 119 & " & " & " & " & 1705 & " & 2150 \\
\hline 120 & DC-4 82E & APS-42 & 11 & " & 1043 & " & 1335 \\
\hline 121 & " & " & " & 11 & 1403 & 1 & 1701 \\
\hline 122 & " & " & " & " & 1701 & " & 1945 \\
\hline 123 & " & " & " & 11 & 2017 & 11 & 2147 \\
\hline 124 & DC-6 40C & WP-101 & " & May 9 & 1418 & May 9 & 1943 \\
\hline 125 & " & RDR-1 & " & " & 1418 & " & 1943 \\
\hline 126 & " & APS-20 & " & " & 1500 & " & 1752 \\
\hline 127 & DC-4 82E & APS-42 & " & " & 1610 & " & 1942 \\
\hline 128 & DC-6 40C & APS-20 & " & May 11 & 1736 & May 11 & 2004 \\
\hline 129 & " & RDR-1 & " & " & 1030 & " & 1743 \\
\hline 130 & " & " & " & " & 1743 & " & 2113 \\
\hline 131 & DC-4 82E & APS-42 & " & 1 & 1030 & " & 2015 \\
\hline 132 & " & " & " & " & 2015 & " & 2115 \\
\hline 133 & DC-6 39C & WP-101 & " & May 12 & 1154 & May 12 & 1805 \\
\hline 134 & " & " & " & " & 1805 & " & 2125 \\
\hline 135 & " & RDR-1 & " & " & 1154 & " & 1805 \\
\hline 136 & " & " & " & 1 & 1805 & " & 2125 \\
\hline 137 & DC-6 40C & RDR-1 & " & " & 1141 & " & 1839 \\
\hline 138 & " & " & " & " & 1845 & " & 2037 \\
\hline 139 & " & WP-101 & II & May 26 & 1109 & May 26 & 1135 \\
\hline 140 & 11 & " & " & 1 & 1156 & " & 1600 \\
\hline 141 & .י' & " & " & 1 & 1722 & " & 2105 \\
\hline 142 & 11 & RDR-1 & 11 & " & 1109 & 11 & 1943 \\
\hline 143 & " & " & " & " & 1945 & " & 2214 \\
\hline
\end{tabular}

Table 9-19.--RFF aircraft radar data inventory (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Microfilm reel No.} & \multirow[b]{2}{*}{Aircraft} & \multirow[b]{2}{*}{Radar} & \multirow[t]{2}{*}{\begin{tabular}{l}
BOMEX \\
Observation Period
\end{tabular}} & \multicolumn{3}{|l|}{First frame} & \multicolumn{3}{|l|}{Last frame} \\
\hline & & & & \[
\begin{gathered}
\text { Date } \\
(1969
\end{gathered}
\] & & Time (GMT) & \[
\begin{gathered}
\text { Dat } \\
(1969
\end{gathered}
\] & & Time (GMT) \\
\hline 144 & DC-4 82E & APS-42 & II & May & 26 & 1106 & May & 26 & 2036 \\
\hline 145 & " & " & " & " & & 2036 & " & & 2118 \\
\hline 146 & DC-6 40C & WP-101 & " & May & 27 & 1237 & May & 27 & 2105 \\
\hline 147 & " & RDR-1 & " & " & & 1108 & " & & 1844 \\
\hline 148. & " & " & " & " & & 1844 & " & & 2121 \\
\hline 149 & DC-4 82E & APS-42 & 11 & 11 & & 1103 & " & & 1312 \\
\hline 150 & DC-6 40C & WP-101 & ! & June & 1 & 1109 & June & 1 & 1815 \\
\hline 151 & " & " & " & " & & 1843 & " & & 2147 \\
\hline 152 & " & " & " & June & 2 & 1132 & June & 2 & 1840 \\
\hline 153 & 1 & " & " & 1 & & 1840 & " & & 2143 \\
\hline 154 & 1 & " & 1 & June & 3. & 1106 & June & 3 & 1824 \\
\hline 155 & " & " & " & " & & 1841 & . " & & 2114 \\
\hline 156 & DC-4 82E & APS-42 & " & " & & 1422 & " & & 2131 \\
\hline 157 & DC-6 40C & WP-101 & " & June & 7 & 1031 & June & 7 & 1745 \\
\hline 158 & " & " & " & " & & 1752 & " & & 2057 \\
\hline 159 & " & APS-20 & " & " & & 1531 & " & & 2045 \\
\hline 160 & DC-4 82E & APS-42 & " & " & & 1017 & " & & 2150 \\
\hline 161 & DC-6 40C & WP-101 & " & June & 9 & 1029 & June & 9 & 1728 \\
\hline 162 & " & " & " & " & & 1728 & " & & 2102 \\
\hline 163 & " & APS-20 & " & " & & 1445 & " & & 1940 \\
\hline 164 & DC-4 82E & APS-42 & " & " & & 1126 & " & & 1932 \\
\hline 165 & DC-6 40C & WP-101 & III & June & & 1047 & June & 22 & 1749 \\
\hline 166 & " & " & " & " & & 1749 & " & & 2123 \\
\hline 167 & " & RDR-1 & " & " & & 1100 & " & & 1749 \\
\hline 168 & " & " & " & " & & 1753 & " & & 2123 \\
\hline 169 & DC-4 82E & APS-42 & " & " & & 1018 & " & & 1440 \\
\hline
\end{tabular}

Table 9-19.--RFF aircraft radar data inventory (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Microfilm reel No.} & \multirow[b]{2}{*}{Aircraft} & \multirow[b]{2}{*}{Radar} & \multirow[t]{2}{*}{\begin{tabular}{l}
BOMEX \\
Observation Period
\end{tabular}} & \multicolumn{2}{|l|}{First frame} & \multicolumn{2}{|l|}{Last frame} \\
\hline & & & & \[
\begin{gathered}
\hline \text { Date } \\
(1969)
\end{gathered}
\] & Time (GMT) & \[
\begin{gathered}
\hline \text { Date } \\
(1969)
\end{gathered}
\] & Time (GMT) \\
\hline 170 & DC-6 40C & WP-101 & III & June 23 & 1215 & June 23 & 1925 \\
\hline 171 & " & " & " & " & 1935 & " & 2305 \\
\hline 172 & " & RDR-1 & " & " & 1215 & 1 & 1930 \\
\hline 173 & " & " & " & " & 1935 & 11 & 2310 \\
\hline 174 & DC-4 82E & APS-42 & -" & 11 & 1840 & June 24 & 0255 \\
\hline 175 & DC-6 40C & RDR-1 & " & June 25 & 2246 & June 26 & 0130 \\
\hline 176 & " & " & " & June 26 & 0409 & " & 0942 \\
\hline 177 & DC-4 82E & APS-42 & " & June 25 & 2236 & " & 0937 \\
\hline 178 & " & " & " & June 28 & 1326 & June 28 & 2008 \\
\hline 179 & DC-6 40C & RDR-1 & " & June 29 & \[
1012
\] & June 29 & 1736 \\
\hline 180 & " & " & " & " & 1736 & " & 2114 \\
\hline 182 & DC-4 82E & APS-42 & " & " & 1025 & " & 2114 \\
\hline 183 & DC-6 40C & RDR-1 & " & June 30 & 1110 & June 30 & 1838 \\
\hline 184 & " & " & " & " & 1738 & " & 2116 \\
\hline 185 & DC-4 82E & APS-42 & " & " & 1108 & 11 & 1304 \\
\hline 186 & " & " & 1 & July 2 & 1237 & July 2 & 2058 \\
\hline 187 & DC-6 39C & APS-20 & IV & July 11 & \[
1438
\] & July 11 & 2112 \\
\hline 188 & " & WP-101 & " & " & 1433 & " & 1719 \\
\hline 189 & DC-6 40C & APS-20 & " & " & 1554 & " & 2004 \\
\hline 190 & " & WP-101 & " & " & 1121 & " & 1816 \\
\hline 191 & " & " & " & " & 1818 & " & 2208 \\
\hline 192 & " & RDR-1 & " & " & 1334 & " & 1817 \\
\hline 193 & " & " & " & " & 1818 & 11 & 2210 \\
\hline 194 & DC-6 39C & RDR-1 & 1 & July 13 & 1355 & Ju1y 13 & 2000 \\
\hline 195 & " & " & " & " & 2001 & 11 & 2225 \\
\hline
\end{tabular}

Table 9-19.--RFF aircraft radar data inventory (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Microfilm reel No.} & \multirow[b]{2}{*}{Aircraft} & \multirow[b]{2}{*}{Radar} & \multirow[t]{2}{*}{\begin{tabular}{l}
BOMEX \\
Observation Period
\end{tabular}} & \multicolumn{2}{|l|}{First frame} & \multicolumn{2}{|l|}{Last. frame} \\
\hline & & & & \[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\] & Time (GMT) & \[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\] & Time (GMT) \\
\hline 196 & DC-6 40C & APS-20 & IV & July 13 & 1431 & July 13 & 2223 \\
\hline 197 & " & WP-101 & " & " & 1230 & " & 1933 \\
\hline 198 & " & " & " & " & 1934 & 1 & 2226 \\
\hline 199 & " & RDR-1 & " & " & 1232 & " & 2034 \\
\hline 200 & " & " & " & " & 2035 & " & 2226 \\
\hline 201 & DC-4 82E & APS-42 & " & " & 1225 & " & 1507 \\
\hline 202 & DC-6 39C & APS-20 & " & July 14 & 1430 & July 14 & 2345 \\
\hline 203 & " & RDR-1 & " & " & 1335 & " & 2021 \\
\hline 204 & " & " & " & " & 2023 & " & 2345 \\
\hline 205 & DC-6 40C & APS-20 & " & " & 2120 & " & 2345 \\
\hline 206 & " & WP-101 & " & " & 1448 & " & 2105 \\
\hline 207 & " & " & " & " & 2106 & " & 2353 \\
\hline 208 & " & RDR-1 & " & 11 & 1339 & " & 2104 \\
\hline 209 & " & " & " & " & 2104 & " & 2353 \\
\hline 210 & DC-4 82E & APS-42 & " & -July 15 & 1210 & July 15 & 1702 \\
\hline 211 & DC-6 39C & APS-20 & " & July 18 & 1145 & July 18 & 2013 \\
\hline 212 & " & RDR-1 & " & " & 1145 & 1 & 1845 \\
\hline 213 & " & " & " & " & 1546 & " & 2013 \\
\hline 214 & DC-6 40C & APS-20 & " & " & 1136 & " & 1921 \\
\hline 215 & " & " & " & " & 2002 & " & 2128 \\
\hline 216 & 1 & WP-101 & " & " & 1323 & " & 1352 \\
\hline 217 & " & " & " & " & 1518 & " & 2128 \\
\hline 218 & " & RDR-1 & " & " & 1116 & " & 1522 \\
\hline 219 & " & " & " & " & 1523 & " & 2128 \\
\hline 220 & DC-4 82E & APS-42 & " & " & 1114 & " & 2053 \\
\hline 221 & DC-6 40C & APS-20 & " & July 20 & 1636 & July 20 & 2218 \\
\hline 222 & " & WP-101 & " & " & 1521 & 1 & 2223 \\
\hline
\end{tabular}

Table 9-19.--RFF aircraft radar data inventory (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Microfilm reel No.} & \multirow[b]{2}{*}{Aircraft} & \multirow[b]{2}{*}{Radar} & \multirow[t]{2}{*}{\begin{tabular}{l}
BOMEX \\
Observation Period
\end{tabular}} & \multicolumn{2}{|l|}{First frame} & \multicolumn{2}{|l|}{Last frame} \\
\hline & & & & \[
\begin{gathered}
\hline \text { Date } \\
\text { (1969) }
\end{gathered}
\] & Time (GMT) & \[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\] & \[
\begin{aligned}
& \text { Time } \\
& \text { (GMT) }
\end{aligned}
\] \\
\hline 223 & DC-6 40C & RDR-1 & IV & Ju1y 20 & 1520 & July 20 & 2223 \\
\hline 224 & DC-4 82E & APS-42 & " & July 21 & 1309 & July 21 & 1743 \\
\hline 225 & DC-6 40C & APS-20 & " & July 23 & 1502 & July 23 & 2223 \\
\hline 226 & " & WP-101 & " & . 11 & 1240 & 11 & 1935 \\
\hline 227 & " & " & " & " & 1937 & " & 2223 \\
\hline 228 & " & 1 & " & " & 1240 & 11 & 1932 \\
\hline 229 & " & " & " & " & 1933 & " & 2223 \\
\hline 230 & DC-4 82E & APS-42 & " & " & 1240 & " & 2129 \\
\hline 231 & DC-6 39C & RDR-1 & " & July 25 & 1016 & July 25 & 1720 \\
\hline 232 & " & " & " & " & 1720 & 1 & 2154 \\
\hline 233 & " & " & " & July 26 & 1324 & July 26 & 2006 \\
\hline 234 & " & 1 & " & " & 2006 & " & 0017 \\
\hline 235 & DC-6 40C & APS-20 & " & " & 1028 & 11 & 2000 \\
\hline 236 & " & WP-101 & " & " & 1011 & " & 1706 \\
\hline 237 & " & " & " & " & 1706 & " & 2003 \\
\hline 238 & " & RDR-1 & " & " & 1012 & " & 1704 \\
\hline 239 & " & " & " & " & 1705 & " & 2000 \\
\hline 240 & DC-4 82E & APS-42 & " & 11 & 0916 & " & 1615 \\
\hline 241 & DC-6 39C & WP-101 & " & July 28 & 1435 & July 28 & 2143 \\
\hline 242 & " & " & " & " & 2144 & " & 2351 \\
\hline 243 & " & RDR-1 & " & " & 1435 & " & 2142 \\
\hline 244 & " & " & " & " & 2143 & " & 2351 \\
\hline
\end{tabular}

Table 9-20.--RFF aircraft cloud photograph data inventory
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Microfilm reel No.}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Film type}} & \multirow[b]{2}{*}{Aircraft} & \multirow[b]{2}{*}{Camera} & \multirow[t]{2}{*}{BOMEX Observation Period} & \multicolumn{3}{|r|}{First frame} & \multicolumn{3}{|r|}{Last frame} \\
\hline & & & & & & & \multicolumn{2}{|l|}{\[
\begin{gathered}
\hline \text { Date } \\
\text { (1969) }
\end{gathered}
\]} & \[
\begin{aligned}
& \text { Time } \\
& \text { (GMT) }
\end{aligned}
\] & \multicolumn{2}{|l|}{\[
\begin{gathered}
\hline \text { Date } \\
\text { (1969) }
\end{gathered}
\]} & \[
\begin{aligned}
& \text { Time } \\
& \text { (GMT) }
\end{aligned}
\] \\
\hline 504 & AF & \[
\begin{aligned}
& 16-\mathrm{mm} \\
& \text { reel, }
\end{aligned}
\] & \[
400-\mathrm{ft}
\]
color & DC-6 39C & Nose Camera & I & May & 4 & 1440 & May & 4 & 2154 \\
\hline 505 & AF & & " & " & " & " & May & 5 & 1446 & May & 5 & 2100 \\
\hline 510 & AF & & " & " & " & " & May & 10 & 0941 & May & 10 & 1751 \\
\hline 511 & AF & & " & " & " & " & May & 11 & 1346 & May & 11 & 2134 \\
\hline 512 & AF & & " & " & " & " & May & 12 & 1129 & May & 12 & 2029 \\
\hline 514 & AF & & " & " & " & " & May & 14 & 1200 & May & 14 & 1950 \\
\hline 517 & AF & & " & " & " & " & May & 17 & 1400 & May & 17 & 1910 \\
\hline 522 & AF & & " & " & " & " & May & 22 & 1730 & May & 22 & 2335 \\
\hline 524 & AF & & " & " & " & II & May & 24 & 1835 & May & 24 & 2205 \\
\hline 526 & AF & & " & " & " & " & May & 26 & 1437 & May & 26 & 2205 \\
\hline 527 & AF & & " & " & " & " & May & 27 & 1310 & May & 27 & 2200 \\
\hline 601 & AF & & " & " & " & " & June & 1 & 1255 & June & 1 & 2054 \\
\hline 603 & AF & & " & " & " & " & June & 3 & 1300 & June & 3 & 1929 \\
\hline 607 & AF & & " & " & " & " & June & 7 & 1130 & June & 7 & 2023 \\
\hline 609 & AF & & " & " & " & " & June & 9 & 1130 & June & 9 & 2015 \\
\hline 621 & AF & & " & " & " & III & June & 21 & 1701 & June & 21 & 2153 \\
\hline 622 & AF & & " & " & " & " & June & 22 & 1130 & June & 22 & 2040 \\
\hline 628 & AF & & " & " & " & " & June & 28 & 1316 & June & 28 & 2034 \\
\hline 629 & AF & & " & " & " & " & June & 29 & 1320 & June & 29 & 2013 \\
\hline 630 & AF & & " & " & " & " & June & 30 & 1358 & June & 30 & 2220 \\
\hline 702 & AF & & " & " & " & " & July & 2 & 1222 & July & 2 & 2029 \\
\hline 713 & AF & & " & " & " & IV & July & 13 & 1338 & July & 13 & 2235 \\
\hline 714 & AF & & " & " & " & " & July & 14 & 1430 & July & 14 & 2230 \\
\hline 718 & AF & & " & " & " & " & July & 18 & 1235 & July & 18 & 2018 \\
\hline 720 & AF & & " & " & " & " & July & 20 & 1457 & July & 20 & 2152 \\
\hline 723 & AF & & " & " & " & " & July & 23 & 1229 & July & 23 & 2118 \\
\hline 726 & AF & & " & " & " & " & July & 26 & 1258 & July & 26 & 2212 \\
\hline 728 & AF & & " & " & " & " & July & 28 & 1418 & July & 28 & 2230 \\
\hline
\end{tabular}

Table 9-20.--RFF aircraft cloud photograph data inventory (continued).


Table 9-20.--RFF aircraft cloud photograph data inventory (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Microfilm reel No.}} & \multirow[b]{2}{*}{Film type} & \multirow[b]{2}{*}{Aircraft} & \multirow[b]{2}{*}{Camera} & \multirow[t]{2}{*}{\begin{tabular}{l}
BOMEX \\
Observation Period
\end{tabular}} & \multicolumn{2}{|l|}{First frame} & \multicolumn{2}{|l|}{Last frame} \\
\hline & & & & & & \[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\] & \begin{tabular}{l}
Time \\
(GMT)
\end{tabular} & \[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\] & \begin{tabular}{l}
Time \\
(GMT)
\end{tabular} \\
\hline 718 & AL & \(35-\mathrm{mm} 800 \mathrm{ft}\) reel, black and white & DC-6 39C & \begin{tabular}{l}
Left \\
side camera
\end{tabular} & IV & July 18 & 1108 & July 20 & 2152 \\
\hline 723 & AL & " & " & " & " & July 23 & 1227 & July 25 & 2021 \\
\hline 726 & AL & 1 & " & " & " & July 26 & 1257 & July 28 & 2230 \\
\hline 504 & BF & \[
\begin{aligned}
& 16-\mathrm{mm} 400 \mathrm{ft} \\
& \text { reel, color }
\end{aligned}
\] & DC-6 40C & Nose camera & I & May 4 & 1024 & May 4 & 1541 \\
\hline 509 & BF & " & " & " & " & May 9 & 1357 & May 9 & 2001 \\
\hline 511 & BF & " & " & " & " & May 11 & 1020 & May 11 & 1730 \\
\hline 512 & BF & " & " & " & " & May 12 & 1124 & May 12 & 1951 \\
\hline 526 & BF & 1 & " & " & II & May 26 & 1055 & May 26 & 1950 \\
\hline 527 & BF & 1 & " & 11 & " & May 27 & 1050 & May 27 & 1948 \\
\hline 601 & BF & " & " & " & " & June 1 & 1045 & June 1 & 1958 \\
\hline 602 & BF & 11 & " & " & " & June 2 & 1050 & June 2 & 1948 \\
\hline 603 & BF & " & " & " & " & June 3 & 1055 & June 3 & 2011 \\
\hline 607 & BF & " & " & " & " & June 7 & 1020 & June 7 & 1958 \\
\hline 609 & BF & " & " & " & " & June 9 & 1020 & June 9 & 1823 \\
\hline 622 & BF & " & " & " & III & June 22 & 1026 & June 22 & 1915 \\
\hline 629 & BF & " & " & " & " & June 29 & 1000 & June 29 & 1855 \\
\hline 630 & BF & 1 & " & " & " & June 30 & 1100 & June 30 & 1930 \\
\hline 713 & BF & " & 11 & " & IV & July 13 & 1205 & July 13 & 2140 \\
\hline 714 & BF & " & " & " & " & July 14 & 1314 & July 14 & 1802 \\
\hline 718 & BF & " & " & " & " & July 18 & 1135 & July 18 & 1305 \\
\hline 720 & BF & " & " & " & " & July 20 & 1513 & Juiy 20 & 2159 \\
\hline 723 & BF & 1 & " & " & " & July 23 & 1230 & July 23 & 1351 \\
\hline 726 & BF & " & " & " & " & Ju1y 26 & 1012 & July 26 & 1728 \\
\hline 504 & BR & \(35-\mathrm{mm} 800 \mathrm{ft}\) reel, black and white & " & Right side camera & I & May 4 & 1024 & May 9 & 1959 \\
\hline
\end{tabular}

Table 9-20.--RFF aircraft cloud photograph data inventory (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\begin{tabular}{l}
Microfilm \\
reel No.
\end{tabular}}} & \multirow[b]{2}{*}{Film type} & \multirow[b]{2}{*}{Aircraft} & \multirow[b]{2}{*}{Camera} & \multirow[t]{2}{*}{BOMEX Observation Period} & \multicolumn{3}{|l|}{First frame} & \multicolumn{3}{|r|}{Last frame} \\
\hline & & & & & & \multicolumn{2}{|l|}{\[
\begin{gathered}
\hline \text { Date } \\
(1969)
\end{gathered}
\]} & Time (GMT) & \multicolumn{2}{|l|}{\[
\begin{gathered}
\hline \text { Date } \\
\text { (1969) }
\end{gathered}
\]} & \[
\begin{aligned}
& \text { Time } \\
& \text { (GMT) }
\end{aligned}
\] \\
\hline 511 & BR & \(35-\mathrm{mm} 800 \mathrm{ft}\) reel, black and white & DC-6 40C & Right side camera & I & May & 11 & 1020 & May & 12 & 2125 \\
\hline 526 & BR & " & " & " & II & May & 26 & 1055 & May & 27 & 2133 \\
\hline 601 & BR & " & " & " & " & June & 1 & 1045 & June & 2 & 2148 \\
\hline 603 & BR & " & " & " & " & June & 3 & 1055 & June & 7 & 2113 \\
\hline 609 & BR & " & " & " & " & June & 9 & 1015 & June & 9 & 2110 \\
\hline 622 & BR & " & " & " & III & June & & 1025 & June & & 2108 \\
\hline 630 & BR & " & " & " & " & June & 30 & 1100 & June & 30 & 2125 \\
\hline 711 & BR & " & " & " & IV & July & & 1502 & July & & 2116 \\
\hline 713 & BR & " & " & " & " & July & & 1200 & July & & 2230 \\
\hline 718 & BR & " & " & " & " & July & & 1201 & July & & 2220 \\
\hline 723 & BR & " & " & " & " & July & & 1230 & July & & 2007 \\
\hline 504 & BL & \(35-\mathrm{mm} 800 \mathrm{ft}\) reel, black and white & " & Left side camera & I & May & 4 & 1024 & May & 9 & 1959 \\
\hline 511 & BL & " & " & " & " & May & 11 & 1020 & May & 12 & 2125 \\
\hline 526 & BL & " & " & " & II & May & 26 & 1055 & May & 27 & 2133 \\
\hline 601 & BL & " & " & " & " & June & & 1045 & June & 2 & 2148 \\
\hline 603 & BL & " & " & " & " & June & & 1055 & June & 7 & 2113 \\
\hline 609 & BL & " & " & " & " & June & 9 & 1015 & June & 9 & 2110 \\
\hline 622 & - BL & " & " & " & III & June & & 1025 & June & 29 & 2000 \\
\hline 630 & BL & " & " & " & " & June & & 1100 & June & & 2125 \\
\hline 711 & BL & " & " & " & IV & July & & 1334 & July & & 0518 \\
\hline 713 & BL & " & " & " & " & July & & 1200 & July & & 2209 \\
\hline 718 & BL & " & " & " & " & July & & 1100 & July & & 2227 \\
\hline 723 & BL & " & " & " & " & July & & 1230 & July & & 2007 \\
\hline
\end{tabular}

\subsection*{9.2 Navy and Air Force Aircraft}

Weather reconnaissance data obtained by Navy WC-121 and Air Force WB-47, RB-57, and WC-130 aircraft were recorded on the BOMEX RECCO Code (Aerial Meteorological Reconnaissance Reporting Code) Form. Navigation data were also manually recorded aboard these aircraft. Radar scope photographs were taken by Navy WC-121 and Air Force WB-47 aircraft. Air Force WC-130 aircraft also obtained dropsonde data, which are discussed separately in section 10 .

\subsection*{9.2.1 RECCO Data}

The RECCO Code form, shown in figure 9-2, was filled in manually by the flight crews aboard all the Navy and Air Force aircraft. The information was later transcribed onto regular coding forms, on which the original 71 colums were preserved, and only columns 72 through 80 were redesignated, as follows:

Column 75. Pressure indicator. If columns 34 through 36 on the RECCO Code Form showed pressure in millibars, code 1 was entered in column 75 on the transcription form.

Column 76. Altitude indicator. Group \(9 x x x 9\) at the top of the page indicated the number to be entered. For example, 97779 was coded as 7 in column 76 of the transcription form.

Column 77. Aircraft identifier. The types of Navy and Air Force aircraft used during BOMEX are indicated earlier in table 9-1. However, different aircraft of these types were used on rotating basis, and in processing the data, the following codes were used for the tail number designations: Code 3 for Navy A/C 141323; 6 for Navy A/C 137896, 8 for Navy A/C 143198; 1 for only one or for the first Air Force flight on a given day; and 2 for the second Air Force flight the same day.

Columns 78, 79, and 80. Date, e.g., 522 for May 22.
The notes referred to by number at the bottom of the form, which served as guides in coding the data, are listed below. The tables referred to just below the column head on the form, which were also used in the coding, are shown in figure 9-3.

\section*{Notes}
9. GGgg and \(Y\) - The time the aircraft is on the vertical axis of the observation cylinder is reported for "GGgg." All elements are observed, insofar as practicable, when the aircraft is at the point of observation or in proximity thereto. The actual time of observation is the time at which observation of all elements is completed. All times (GGgg) and the day of the week (Y) are given in Greenwich Mean Time. The day reported for \(Y\) is the day on which the observation is taken and NOT the day on which it is transmitted.


Figure 9-2.--RECCO Code Form.

Table 2: \(i_{u}\)
\(0^{\circ} \mathrm{C}\), No humidity report
\(1{ }^{\circ} \mathrm{C}\), Relative humidity
\(2{ }^{\circ} \mathrm{C}\), Difference between dry- and wet-bulb temperatures \(3^{\circ} \mathrm{C}\), Difference between dry-bulb and dewpoint temperatures \(4^{\circ} \mathrm{C}\), Dewpoint

Table 3: \(Y\)
\begin{tabular}{|ll|}
\hline 1 & Sunday \\
2 & Monday \\
3 & Tuesday \\
4 & Wednesday \\
5 & Thursday \\
6 & Friday \\
7 & Saturday \\
\hline
\end{tabular}

Table 4: \(Q\)


Table 6: \(f_{c}^{\prime}\)
0 Cloud amount less than \(1 / 8\)
1 Cloud amount at least \(1 / 8\), with either \(1 / 8\) to \(4 / 8\) above or \(1 / 8\) to \(4 / 8\) below, or combinations thereof
2 Cloud amount more than \(4 / 8\) above and 0 to \(4 / 8\) below
3 Cloud amount 0 to \(4 / 8\) above and more than \(4 / 8\) below
4 Cloud amount more than \(4 / 8\) above and more than \(4 / 8\) below
5 Chaotic sky; many undefined layers
6 In and out of clouds; on instruments 25 percent of the time
7 In and out of clouds; on instruments 50 percent of the time
8 In and out of clouds; on instruments 75 percent of the time
9 In clouds all the time; continuous instrument flight
/ Impossible to determine due to darkness

Figure 9-3.--Tables referred to on RECCO Code form that were used in encoding.

Table 7: \(d_{t}\)
\begin{tabular}{llll}
0 & Spot wind & \\
1 & Winds averaged over 100 nmi preceding last fix & Last fix \\
2 & Winds averaged over 200 nmi preceding last fix. & 25 nmi \\
3 & Winds averaged over 300 nmi preceding last fix & prior to \\
4. & Winds averaged over 400 nmi preceding last fix & position. \\
5 & Winds averaged over 100 nmi preceding last fix & Last fix \\
6 & Winds averaged over 200 nmi preceding last fix & 75 nmi prior \\
7 & Winds averaged over 300 nmi preceding last fix & to this \\
8 & Winds averaged over 400 nmi preceding last fix & position. \\
9 & Winds averaged over more than 400 nmi &
\end{tabular}

Table 8: \(\mathrm{d}_{\mathrm{a}}\)
\begin{tabular}{ll}
0 & 90 to 100 percent reliable \\
-1 & 75 to 100 percent reliable \\
2 & 80 to 100 percent reliable \\
3 & 75 to 90 percent reliable \\
4 & 60 to 80 percent reliable \\
5 & 50 to 75 percent reliable \\
6 & Less than 50 percent reliable \\
7 & No reliability \\
8 & No wind \\
9 & Not used \\
& (see note 15 )
\end{tabular}

Figure 9-3.--Tables referred to on RECCO Code form that were used in encoding (continued).

Table 9: \(w\)

0 Clear (no cloud at any level)
1 Partly cloudy (scattered or broken)
2 Continuous layer(s) of cloud(s)
3 Sandstorm, duststorm, or storm of drifting snow
4 Fog, thick dust, or haze
5 Drizzle
6 Rain
7 Snow or rain and snow mixed
8 Shower(s)
9 Thunderstorm(s)

Table 10: m
\begin{tabular}{ll}
0 & No remarks \\
1 & Light intermittent \\
2 & Light continuous \\
3 & Moderate intermittent \\
4 & Moderate continuous \\
5 & Heavy intermittent \\
6 & Heavy continuous \\
7 & With rain \\
8 & With snow \\
9 & With hail
\end{tabular}

1 Light intermittent
2 Light continuous
3 Moderate intermittent
4 Moderate continuous
5 Heavy intermittent
6 Heavy continuous
7 With rain
8 With snow
9 With hail

\section*{Table 11: \(j\)}

0 Surface pressure in whole millibars; 6 Altitude of \(200-\mathrm{mb}\) surface in thousands figure omitted decameters or tens of feet
1. Altitude of \(1,000-\mathrm{mb}\) surface in deca- 7 Altitude of \(100-\mathrm{mb}\) surface in meters or tens of feet; if negative, add 500
2 Altitude of 850-mb surface in decameters or tens of feet; if negative, add 500

3 Altitude of \(700-\mathrm{mb}\) surface in decameters or tens of feet
4 A1titude of \(500-\mathrm{mb}\) surface in decameters or tens of feet

5 Altitude of 300-mb surface in decameters or tens of feet decameters or tens of feet
8 True altitude (radio altimeter or other method) minus pressure altitude (set at \(1,013 \mathrm{mb}\) ) in tens of feet; if negative, add 500 to absolute value (e.g., minus 100 is reported as 600)
9 Altimeter subscale reading in whole millibars; thousands figure omitted

Figure 9-3.-Tables referred to on RECCO Code form that were used in encoding (continued).

Table 12: \(N_{1}, N_{2}, N_{3}\)
\begin{tabular}{|c|c|c|}
\hline 0 & Zero & Zero \\
\hline 1 & 1/10 or less, but not zero & 1 Okta or less, but not zero \\
\hline 2 & 2/10 and 3/10 & 2 Oktas \\
\hline 3 & 4/10 & 3 Oktas \\
\hline 4 & 5/10 & 4 Oktas \\
\hline 5 & 6/10 & 5 Oktas \\
\hline 6 & 7/10 and 8/10 & 6 Oktas \\
\hline 7 & 9/10 or more, but not 10/10 & 7 Oktas or more, but not 8 oktas \\
\hline 8 & 10/10 & 8 Oktas \\
\hline & Sky obscured, or cloud amount & cannot be estimated \\
\hline
\end{tabular}

Table 14: hh, \(\mathrm{HH}, \mathrm{h}_{\mathrm{i}} \mathrm{h}_{\mathrm{i}}, \mathrm{H}_{\mathrm{i}} \mathrm{H}_{\mathrm{i}}\)

Table 13: \(C\)
\begin{tabular}{ll}
0 & Cirrus (Ci) \\
1 & Cirrocumulus (Cc) \\
2 & Cirrostratus (Cs) \\
3 & Alto cumulus (Ac) \\
4 & Altostratus (As) \\
5 & Nimbostratus (Ns) \\
6 & Stratocumulus (Sc) \\
7 & Stratus (St) or Fractostratus (Fs) \\
8 & Cumulus (Cu) or Fractocumulus (Fc) \\
9 & Cumulonimbus (Cb) \\
\(/\) & Cloud not visible owing to darkness, \\
fog, dustorm, sandstorm, or other \\
analogous phenomena
\end{tabular}

00 Less than \(100 \mathrm{ft}(30 \mathrm{~m})\)
\(01100 \mathrm{ft}(30 \mathrm{~m})\)
\(02200 \mathrm{ft}(60 \mathrm{~m})\)
\(03300 \mathrm{ft}(90 \mathrm{~m})\)
04400 ft ( 120 m )
\(05500 \mathrm{ft}(150 \mathrm{~m})\), etc.
\(49 \mathrm{4,900} \mathrm{ft}(1,470 \mathrm{~m})\)
\(505,000 \mathrm{ft}(1,500 \mathrm{~m})\)
51 Not specified, etc.
\(566,000 \mathrm{ft}(1,800 \mathrm{~m})\)
\(57 \mathrm{7,000} \mathrm{ft}(2,100 \mathrm{~m})\), etc.
\(7828,000 \mathrm{ft}(8,400 \mathrm{~m})\)
79 29,000 ft ( \(8,700 \mathrm{~m}\) )
\(8030,000 \mathrm{ft}(9,000 \mathrm{~m})\)
\(8135,000 \mathrm{ft}(10,500 \mathrm{~m})\)
\(8240,000 \mathrm{ft}(12,000 \mathrm{~m})\), etc.
\(8765,000 \mathrm{ft}(19,500 \mathrm{~m})\)
\(8870,000 \mathrm{ft}(21,000 \mathrm{~m})\)
89 Above \(70,000 \mathrm{ft}(21,000 \mathrm{~m})\)
// Unknown

Figure 9-3.--Tables referred to on RECCO Code form that were used in encoding (continued).

Table 15: \(D, D_{K}, D_{W}\)
\begin{tabular}{|lll}
\hline 0 & Calm or stationary (or \\
at the station) \\
1 & NE \\
2 & E \\
3 & SE \\
4 & S \\
5 & SW \\
6 & W \\
7 & NW \\
8 & N \\
9 & All directions, no \\
definite direction, \\
or unknown, or no \\
report
\end{tabular}

Table 16: \(F\)
\begin{tabular}{|c|c|}
\hline 0 & Calm \\
\hline 1 & 1 to 3 kn \\
\hline 2 & 4 to 6 kn \\
\hline 3 & 7 to 10 kn \\
\hline 4 & 11 to 16 kn \\
\hline 5 & 17 to 21 kn \\
\hline 6 & 22 to 27 kn \\
\hline 7 & 28 to 33 kn \\
\hline 8 & 34 to 40 kn \\
\hline 9 & 41 to 47 kn \\
\hline & \begin{tabular}{l}
or over \\
(see note 30 )
\end{tabular} \\
\hline
\end{tabular}

Table 17: \(S\)
\begin{tabular}{|c|c|c|}
\hline 0 & Calm (glassy) & \\
\hline 1 & Calm (rippled) & ( 0 to 1 ft ) \\
\hline 2 & Smooth (wavelets) & ( 1 to 2 ft ) \\
\hline 3 & Slight & ( 2 to 4 ft ) \\
\hline 4 & Moderate & ( 4 to 8 ft ) \\
\hline 5 & Rough & ( 8 to 13 ft ) \\
\hline 6 & Very rough & (13 to 20 ft ) \\
\hline 7 & High & ( 20 to 30 ft ) \\
\hline 8 & Very high & (30 to 45 ft ) \\
\hline 9 & Phenomenal, as & (over 45 ft ) \\
\hline & might exist & \\
\hline & at ine center & \\
\hline & of a hurricane & \\
\hline
\end{tabular}

Figure 9-3.-Thables referred to on RECCO Code form that were used in encoding (continued).

Table 18: \(\mathrm{W}_{\mathrm{S}}\)
\begin{tabular}{ll}
0 & No change \\
1 & Marked wind shift \\
2 & Marked turbulence begins or ends \\
3 & Marked turbulence change (not \\
with altitude) \\
4 & Precipitation begins or ends \\
5 & Change in cloud form \\
6 & Fog bank begins or ends \\
7 & Warm front \\
8 & Cold front \\
9 & Front, type not specified
\end{tabular}

Table 19: \(S_{S}, S_{b}, S_{e}\)
\begin{tabular}{ll}
\hline 0 & No report \\
1 & Reported at previous position \\
2 & Occurring at present position \\
3 & 20 nmi \\
4 & 40 nmi \\
5 & 60 nmi \\
6 & 80 nmi \\
7 & 100 nmi \\
8 & 150 nmi \\
9 & More than 150 nmi
\end{tabular}
1 Reported at previous position
2. Occurring at present position
\(3 \quad 20 \mathrm{nmi}\)
\(4 \quad 40 \mathrm{nmi}\)
\(5 \quad 60 \mathrm{nmi}\)
\(6 \quad 80 \mathrm{nmi}\)
\(7 \quad 100 \mathrm{nmi}\)
9 More than 150 nmi

Figure 9-3.--Tables referred to on RECCO Code form that were used in encoding (continued).
10. \(L_{a} L_{a} L_{a}\) and \(L_{o} L_{o} L_{o}\) - The latitude and longitude of the point at which the flight level observation is made are reported for " \(L_{a} L_{a} L_{a}\) " and " \(L_{0} L_{0} L_{0}\)," respectively. Tenths of a degree are obtained by dividing the number of minutes by six, disregarding the remainder. The hundreds digit is omitted from longitudes \(100^{\circ}\) to \(180^{\circ}\), inclusive.
12. \(\mathrm{E}_{\mathrm{c}}^{\prime}\) - The average flight condition existing during the time required to make the flight level observation is reported for "f \({ }_{c}\)."
13. hhh - The true altitude of the aircraft at the time of the flight level observation is reported to the nearest \(100-\mathrm{ft}\) or \(30-\mathrm{m}\) level, e.g., when the aircraft is 50 ft or more above a \(100-\mathrm{ft}\) level, the next higher level is reported for "hhh."
14. \(d_{t}\) - When code figure 9 is reported, the distance over which the wind is averaged is added at the end of the message in plain language.
15. \(d_{\text {a }}\) and ddfff - When code figure 8 is reported for "da," five solid ( \(9 / / / /\) ) are reported for the "ddfff" group. The complete specifications for \(d_{a}\) (table 8, fig. 9-3) are:

090 to 100 percent reliable. Multiple drift with closed wind star, or small open star when winds are 50 kn or greater. Short radar wind runs.

175 to 100 percent reliable. Multiple drift with small open star or double drift or single drift with average ground speed by timing. Short radar run.

280 to 100 percent reliable. Fix-to-fix winds based on the following pin-point visual fixes, radar fixes, or accurate Loran fixes from good ground waves.

375 to 90 percent reliable. Fix-to-fix winds based on two or three lines of positions (LOPs), either Loran, celestial, radio, or sight bearings, or any combination of the above three when all lines of position are considered reliable.

460 to 80 percent reliable. Winds obtained from single drift and single LOP (speed line), air plot, etc.

550 to 75 percent reliable. Fix-to-fix winds based on two or three lines of position, either Loran, celestial, radio or sight bearings, or any combination of the above three when one of the lines is not considered reliable.

6 Less than 50 percent reliable. Winds obtained by any of the above methods that the navigator believes to be inaccurate or of questionable accuracy.

7 No reliability. Assumed or estimated winds.

8 No wind. Navigator unable to determine wind.
9 Not used.
16. TT - free-air temperature (corrected for calibration, installation, and dynamic heating effects) at flight level (hhh) at the time of observation is reported for "TT" to the nearest whole degree Celsius.

When the temperature is below zero, 50 is added to the absolute value of the temperature, and the sum is reported for "TT." The hundreds figure, if any, resulting from this addition is disregarded.
17. \(\mathrm{T}_{\mathrm{d}} \mathrm{T}_{\mathrm{d}}\) - When the wet-bulb temperature is below \(-35^{\circ} \mathrm{C}\), "//" is reported for " \(T_{d} T_{d}\)." Dewpoint is used to indicate the moisture content of the air in United States RECCO reports (see note 16).
18. w - The specification most descriptive of the weather existing at the time of observation is reported for "w." Code figure 2 is reported when the total amount of cloud above or below the aircraft is \(7 / 8\) or more.
19. m - The information which best amplifies the present weather reported for "w" is reported for "m."
20. \(1 k_{n} N_{1} N_{2} N_{3}\) - If data on more than three layers of cloud are reported, a second \(1 \mathrm{k}_{\mathrm{n}} \mathrm{N}_{1} \mathrm{~N}_{2} \mathrm{~N}_{3}\) group plus the required number of ChhHH groups are inserted in the message following the last of the first three ChhHH groups. The additional number of layers (exclusive of the first three layers) being reported is given for \(" k_{n}\) " in the second \(1 k_{n} N_{1} N_{2} N_{3}\) group. The coverage of the additional cloud layers is reported for \(N_{1}, N_{2}\), and \(N_{3}\) in the second group, as required. When no clouds exist, the \(1 k_{n} N_{1} N_{2} N_{3}\) and ChhHH groups are omitted from the message.
21. \(K_{n}\) - When clouds are present in indefinite layers (chaotic sky), code figure 9 is reported for " \(k_{n}\)." If it is impossible to détermine that clouds exist (due to darkness or for other reasons) a "/" is reported for " \(k_{n}\)." When a cloud layer is present but data on the type, the extent of coverage, and altitude cannot be observed, "/'s" are reported for \(\mathrm{N}, \mathrm{C}\), hh, and HH, as appropriate; however, the layer will be included in the number of layers reported for " \(k_{n}\) " (see note 22).
22. \(N_{1}, N_{2}, N_{3}\) - The amount of cloud reported for \(N_{1}, N_{2}\), etc., is the amount in the individual layer as though no other clouds were present; the summation concept is not used. The cloud layers are reported in the message in ascending order according to altitude of the base. When code figure 9 is reported for " \(k_{n}\) " the value reported for " \(N_{1}\) " is the total amount of cloud coverage present, and "//" is reported for \(" \mathrm{~N}_{2} \mathrm{~N}_{3}\)." When a "/" is reported for " \(k_{n}\)," "999" is reported for \(" N_{1} N_{2} N_{3}\) " (see note 21).
23. ChhHH - This group is included in the message for each layer of clouds reported by " \(k_{n}\) " and described by \(N_{1}, N_{2}\), etc.
24. C - The type of cloud predominating in the layer is reported as "C."
25. hh and HHH - The average altitude of both the base and top of the cloud layer reported for "C" is reported for "hh" and "HH," respectively."
26. \(4 d d f f\) and \(5 D F S D_{k}\) - Surface data are reported in this group. Surface wind data are included in each low-level report. Either or both of the groups may be included in•the message if required.
27. dd - The estimated direction (true) from which the surface wind is blowing is reported for "dd" (see note 28).
28. ff - The estimated speed of the surface wind is reported for "ff." In the range of 100 to 199 kn , inclusive, the hundreds figure is omitted, the tens and the units values are reported for "ff," and 50 is added to the value normally reported for "dd." For speeds in excess of 199 kn , "//" is reported for "ff," and the actual speed is reported in plain language at the end of the message.
29. D - The estimated direction (true) from which the surface wind is blowing is reported for "D."
30. F - The estimated force of the surface wind is reported. When the speed exceeds force 9, code figure 9 .is reported for " \(F\)," and a plain-language remark is added at the end of the flight level portion of the message giving the actual Beaufort force as "GALE TEN," "STORM ELEVEN," or "HURRICANE TWELVE."
31. \(D_{K}\) - The true direction FROM which the swell is moving is reported for " \(\mathrm{D}_{\mathrm{K}}\)." Code figure 0 is reported for "no swell," and code figure 9 is reported to indicate "confused" swell. When the waves are from several directions, the direction from which the wave of longest period is traveling is reported.
32. \(6 W_{s} S_{s} W_{c} D_{w}\) - Two 6-groups may be included in the message to report two significant weather changes, and/or two weather phenomena off course, or two combinations thereof.
33. \(W_{S}\) - Significant weather changes that have occurred since the last observation, or in the preceding hour (whichever period is shorter) along the track of the aircraft are reported for " \(W_{s}\)."
34. \({ }^{-} S_{S}\) - The distance from the present position back to the location of the significant weather change \(\left(W_{S}\right)\) is reported for " \(S_{S}\)."
35. \(W_{c}\) - Any off-course weather condition of importance that is not included or implied in the specification reported for present weather will be reported for " \(\mathrm{W}_{\mathrm{C}}\)." The information reported for " \(\mathrm{W}_{\mathrm{c}}\) " supplements the present weather (w) (see notes \(2,18,54\), and 55).
36. \(D_{w}\) - Code figure 9 indicates "in all directions."
44. \(8 d_{r}{ }^{d} S_{r}{ }^{0} e^{8 w} e^{a} e^{c} e^{i} e^{-}\)When radar data are observed, both the 8 -groups shall be included in the report. The 8 -groups may be repeated as often as necessary to report essential data.
54. Plain-language remarks may be added at the end of the message to supplement the coded data or to supply additional information of importance not provided for in the code, e.g., time of occurrence of significant weather \(\left(W_{s}\right)\), past weather, etc.
55. If information on past weather is added as a plain-language remark, the most significant weather encountered since the last report, or in the last hour, whichever period of time is shorter, shall be described by the remark.
9.2.1.1 RECCO Data Processing. After the transcription sheets have been completed, cards were punched and verified. The data were then checked for the following gross errors:
(1) Missing time or date; time \(\leq 2369\) and date \(\geq 501, \leq 731\).
(2) Latitude must be between \(0.0^{\circ}\) and \(20.0^{\circ}\), longitude between \(45.0^{\circ}\) and \(68.0^{\circ}\).
(3) Flight condition must be from 0 through 9.
(4) Wind directions between 00 through 36 and wind directions of 99 are good; windspeed \(\leq 100 \mathrm{kn}\).
(5) Temperature and dewpoint were checked for positive values between 00.0 through 30.0 and for negative values \(\geq 50.0\). Sea temperature was checked for values between 20.0 through 35.0 .
(6) Altitude indicator must be \(1,2,6\), or 7 ; with an altitude indicator \(=2\) or 7 , the value of altitude must be 2 and 999 decameters, respectively. With altitude indicator \(=1\) or 6 and aircraft indicator \(=1\) or 2 , altitude must be between 0 to 60,000 ft ; with an altitude indicator \(=1\) or 6 and aircraft \(-3,5,6\), or 8 , altitude must be between 0 to \(10,500 \mathrm{ft}\).
(7) Humidity indicator must be between 0 through 4.
(8) Day of the week must be between 1 through 7 .
(9) Octant must equal 0 on1y.
(10) Pressure field checked for the first 32 files on tape. If pressure indicator \(=1\), pressure field must lie between \(\geq 700\) and < 999. If pressure indicator \(=2\), pressure field is pressure altitude \(\geq 350\).
(11) Clouds were checked for continuity. Layers should ascend, i.e., no third layer unless second layer is present, and no second layer unless a first layer is present. Height of the top of cloud should be greater than height of bottom.
(12) Surface wind direction and force were checked against sea state and direction of swell for inconsistencies.

Approximately 150 to 200 observations were corrected. When an error was found, the original recording form was checked for error or data transposition between columns. A correction was made only if the inserted data could be validated. If the correction could not be proven, the standard "no report" or "missing data" descriptors were used.

\subsection*{9.2.1.2 Characteristics of the Navy and Air Force Data To Be} Considered Before Use in Analysis. Although the RECCO data were checked for gross errors, as described in the preceding section, many errors of various types may have been overlooked. The user must be prepared to test the data quality thoroughly before use in scientific analysis. Also to be noted are the following:
(1) The data (characters 78-90) on Navy RECCO flight from 1615 to 0030 GMT on July 22 , 1969 , does not change to July 23 at 0000 GMT.
(2) The observations between 1452 and 1534 on Air Force RECCO flight from 1400 to 2230 on July 17, 1969, were written out of order.
(3) The nominal frequencies of RECCO observations reported by the Navy and Air Force flight crews were: Navy WC-121 - observations vary from one every 5 to 10 min in flight; Air Force \(W C-130\) - observations vary from one every 10 to 20 min in flight; Air Force \(W B-47\) - observations vary from one every 10 to 25 min in flight; and Air Force \(R B-57\) - observations vary from one every 15 to 45 min in flight.

\subsection*{9.2.2 Navigation (NAV) Data}

The NAV data consist of manual observations of aircraft altitude, airspeed, and heading; drift angle and ground speed; pressure and temperature; and indicated wind direction and windspeed uncorrected for Doppler radar errors and the variation of airspeed with density. The observations were frequently made in rapid succession during long, straight flight paths, and during each leg of a "wind box." The NAV data were punched on cards and scanned for lying within the limits shown in the next section. In addition, the time and position data were scanned for consistency with the flight log. No other processing or error checks were done. Airspeed is uncorrected for density; ground speed and drift angle are not corrected by wind-box or
intercomparison data; and windspeed and wind direction are uncorrected for airspeed, heading, ground speed, and drift-angle errors.

\subsection*{9.2.3 Archive Format and Inventory of RECCO and NAV Data}

The format of the RECCO data is as follows:
\begin{tabular}{|c|c|}
\hline Word & Data Element \\
\hline 1 & Time \\
\hline \multirow[t]{3}{*}{2} & Humidity indicator \\
\hline & Day of week \\
\hline & Octant of globe \\
\hline 3 & Latitude \\
\hline 4 & Longitude \\
\hline 5 & Flight conditions \\
\hline 6 & Altitude \\
\hline \multirow[t]{2}{*}{7} & Type of wind \\
\hline & Reliability of wind \\
\hline 8 & Wind direction \\
\hline 9 & Windspeed \\
\hline 10 & Temperature \\
\hline 11 & Dewpoint \\
\hline \multirow[t]{2}{*}{12} & Present weather \\
\hline & Remarks on present weather \\
\hline 13 & Index pertaining to HHH \\
\hline 14 & HHH (Altitude and other data) \\
\hline \multirow[t]{4}{*}{15} & Cloud amount group indicator \\
\hline & \begin{tabular}{l}
No: of cloud layers \\
Cloud amount layer 1
\end{tabular} \\
\hline & Cloud amount layer 2 \\
\hline & Cloud amount layer 3 \\
\hline \multirow[t]{3}{*}{16} & C1 Cloud type \\
\hline & Altitude of base \\
\hline & Altitude of top \\
\hline 17 & C2 same as C1 \\
\hline
\end{tabular}

Format
F4. 0
F3. 0

F3. 0

F3. 0
F1. 0
F3. 0
F2. 0

F2. 0

F3. 0

F3. 1
F3. 1
F2. 0

F1. 0
F3. 0

F5.0

F5. 0

F5.0

Code Reference
HHMM
Table 2, fig. 9-3
Table 3, fig. 9-3
Table 4, fig. 9-3
\(\mathrm{L}_{\mathrm{a}} \mathrm{L}_{\mathrm{a}} \mathrm{L}_{a}\)
\(L_{o} L_{o} L_{0}\)
Table 6, fig. 9-3
hhh
Table 7, fig. 9-3
Table 8, fig. 9-3
dd
fff

TT.T
TT.T
Table 9, figi. 9-3
Table 10, fig. 9-3
Table 11, fig. 9-3
HHH
Table 12, fig. 9-3

Table 13, fig. 9-3
Table 14, fig. 9-3
Table 14, fig. 9-3

17
C2 same as C1
\begin{tabular}{|c|c|c|c|c|}
\hline Word & \multicolumn{2}{|l|}{Data Element} & Format & Code Reference \\
\hline 18 & C3 same as C1 & & F5.0 & \\
\hline \multirow[t]{6}{*}{19} & VSFC group indicator & 1 & F8.0 & \[
\text { Notes } 26,27,28
\]
(sec. 9.2.1) \\
\hline & Direction of surface wind & 2 & & \\
\hline & Speed of surface wind & 2 & & ff \\
\hline & Group indicator & 1 & & \[
\begin{aligned}
& \text { Note } 26 \\
& \text { (sec. } 9.2 .1 \text { ) }
\end{aligned}
\] \\
\hline & Surface wind direction & 1 & & Table 15, fig. 9-3 \\
\hline & Surface wind force & 1 & & Table 16, fig. 9-3 \\
\hline \multirow[t]{7}{*}{20} & AMISC state of sea & 1 & \multirow[t]{7}{*}{F7.0} & Table 17, fig. 9-3 \\
\hline & Direction of swell & 1 & & Table 15, fig. 9-3 \\
\hline & Group indicator & 1 & & \[
\begin{aligned}
& \text { Note } 36 \\
& \text { (sec. } 9.2 .1 \text { ) }
\end{aligned}
\] \\
\hline & Significant change in WX & 1 & & Table 18, fig. 9-3 \\
\hline & Distance of occurrence & 1 & & Table 19, fig. 9-3 \\
\hline & Weather off course & 1 & & Table 20, fig. 9-3 \\
\hline & Bearing WX off course & 1 & & Table 15, fig. 9-3 \\
\hline 21 & Sea surface temperature & & F3.1 & \\
\hline 22 & Pressure indicator & & F1.0 & Redesignated columns \\
\hline 23 & Altitude indicator & & F1.0 & on RECCO Form
(sec. 2.2.1) \\
\hline 24 & Aircraft indicator & & F1.0 & \\
\hline 25 & Date & & F3.0 & \\
\hline
\end{tabular}

The format of the NAV data is as follows:
\begin{tabular}{cl} 
Character & \multicolumn{1}{c}{ Data Element } \\
1 & \\
\(2-4\) & Data type \\
\(5-8\) & Location \\
\(9-10\) & Observation time \\
\(11-13\) & Observation time \\
\(14-15\) & Latitude \\
\(16-18\) & Latitude \\
\(19-20\) & Longitude \\
\(21-23\) & Longitude \\
\(24-25\) & Observation time \\
\(26-31\) & Observation time \\
\(32-35\) & Aircraft altitude \\
\(36-39\) & Aircraft heading \\
\(40-43\) & Drift angle \\
\(44-49\) & Ground speed \\
\(50-52\) & Pressure altitude \\
& Pressure altitude \\
& indicator
\end{tabular}
\begin{tabular}{lll}
\multicolumn{1}{c}{ Units } & \multicolumn{2}{c}{ Format } \\
& & \\
see table 9-21 & I1 \\
see table 9-22 & I3 \\
month & I4 or F4.0 \\
day & I2 or F2.0 \\
degrees & I3 or F3.0 \\
minutes & I2 or F2.0 \\
degrees & I3 or F3.0 \\
minutes & I2 or F2.0 \\
hours & I3 or F3.0 \\
minutes & I2 or F2.0 \\
feet & I5 or F5.0 \\
degrees & I4 or F4.0 \\
degrees & F4.1 \\
knots & I4 or F4.0 \\
feet & I6 or F6.0 \\
significance unknown & I3
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Character & Data Element & Units & Format \\
\hline 53-57 & Temperature & degrees Celsius & F6.1 \\
\hline 58-61 & Airspeed & knots & I3. or F3.0 \\
\hline 62-64 & Airspeed indicator & significance unknown & I3 \\
\hline 65-68 & Wind direction & degrees & I4 or F4.0 \\
\hline 69-71 & Wind speed & knots & I3 or F3.0 \\
\hline 72-77 & Observation No. & & I6 \\
\hline
\end{tabular}

Table 9-21.--Data type
\begin{tabular}{cl}
\hline Integer value & \multicolumn{1}{c}{ Meaning } \\
\hline 0 & Flying intercomparison leg \\
1 & Flying data leg \\
2 & Sounding \\
3 & Flying wind box \\
4 & Other \\
\hline
\end{tabular}

Table 9-22.--Location with respect to BOMEX array
Integer value Location
\begin{tabular}{ll}
10 & ALFA \\
20 & BRAVO \\
30 & ECHO \\
40 & DELTA \\
50 & HOTEL \\
60 & INDIA \\
70 & JULIETT \\
80 & KILO \\
90 & Barbados \\
12 & ALFA-BRAVO (northern side) \\
23 & BRAVO-ECHO (eastern side) \\
34 & ECHO-DELTA (southern side) \\
14 & ALFA-DELTA (western side) \\
95 & Barbados-HOTEL \\
00 & Other
\end{tabular}

As noted earlier, the NAV data were scanned for laying within certain limits. These limits are as follows:
\(0 . \leq\) data type \(\leq 4\)
Location \(=10, \overline{2} 0, \ldots, 90,12,23,34,14,95\), or 00
Month \(=0,5,6\), or 7
\(1 \leq\) day \(\leq 31\)
```

    Latitude < 25
    Longitude < 60
    0000 < time < 2400
    0 < altitude< < 9999
    0< heading < 360
    -9.9 < drift angle < 9.9
0 < ground speed < 225
0 < pressure altitude < 9999
Temperature < 30
150 < airspeed < 225
0\leqwind direction \leq 360
0\leqwindspeed \leq 50
Missing data are indicated by 9's
Both the RECCO and NAV data are contained on the same archive magnetic tape, No. B3407. All flights appear sequentially by date as shown in the inventory in table 9-23. In general, on any given date, the Air Force WC-310 flight data come first, followed by Air Force WB-47, Air Force RB-57, and Navy C-121 data. There is only one file on the tape. Each record is 800 characters long and contains 10 card images. Each card image corresponds to one observation. Flights are separated by 800 character records, which are blank except for the first 10 characters, which contain RECCO only or NAV plus RECCO to describe the contents of the following records. The last three characters of the NAV observations are blank, and the last three characters of the NAV plus RECCO observations in a flight are 9's. All 9's is the case where the number of RECCO or NAV observations is an even multiple of 10 , necessitating the writing of one record of all 9 's to indicate the end of the RECCO and NAV observations for that flight.

```

Table 9-23.--Inventory of RECCO and NAV data contained on magnetic tape No. B3407
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Flight \\
No.
\end{tabular}} & \multirow[b]{2}{*}{Aircraft} & \multirow[b]{2}{*}{\begin{tabular}{l}
BOMEX \\
Observation Period
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Date } \\
& (1969)
\end{aligned}
\]}} & \multicolumn{3}{|c|}{RECCO data} & \multicolumn{3}{|c|}{NAV data} \\
\hline & & & & & \begin{tabular}{l}
Start \\
time \\
(GMT)
\end{tabular} & Stop time (GMT) & No.
of
observations & \begin{tabular}{l}
Start \\
time \\
(GMT)
\end{tabular} & Stop time (GMT) & No.
of
observations \\
\hline 1 & AF 1 & I & May & 1 & 1242 & 1410 & 3 & - & - & - \\
\hline 2 & " 1 & " & May & 3 & 0131 & 0544 & 15 & - & - & - \\
\hline 3 & " 2 & " & May & 3 & 1139 & 1827 & 24 & - & - & - \\
\hline 4 & " 1 & " & May & 3 & 1402 & 1726 & 9 & - & - & - \\
\hline 5 & " 2 & " & May & 3 & 1400 & 1654 & 11 & - & - & - \\
\hline 6 & " 1 & " & May & 3 & 1425 & 1715 & 11 & - & - & - \\
\hline 7 & Navy 6 & " & May & 3 & 2240 & 0710 & 89 & 2240 & 0731 & 110 \\
\hline 8 & AF 1 & " & May & 4 & 0136 & 0552 & 16 & - & - & - \\
\hline 9 & " 2 & " & May & 4 & 1210 & 1917 & 24 & - & - & - \\
\hline 10 & " 1 & " & May & 4 & 1256 & 1619 & 9 & - & - & - \\
\hline 11 & " 2 & " & May & 4 & 1349 & 1647 & 11 & - & - & - \\
\hline 12 & " 1 & " & May & 4 & 1423 & 1700 & 11 & - & - & - \\
\hline 13 & Navy 3 & " & May & 4 & 2247 & 0853 & 21 & 2247 & 0851 & 20 \\
\hline 14 & AF 1 & " & May & 5 & 0122 & 0542 & 16 & - & - & - \\
\hline 15 & " 2 & " & May & 5 & 1245 & 1943 & 24 & - & - & - \\
\hline 16 & " 1 & " & May & 5 & 1247 & 1608 & 9 & - & - \({ }^{\text {a }}\) & - \\
\hline 17 & " 2 & " & May & 5 & 1347 & 1650 & 11 & - & - & - \\
\hline 18 & ". 1 & " & May & 5 & 1310 & 1748 & 14 & - & - & - \\
\hline 19 & " 1 & " & May & 6 & 1138 & 1826 & 24 & - & - & - \\
\hline 20 & " 2 & " & May & 6 & 1137 & 1530 & 9 & - & - & - \\
\hline 21 & " 1 & " & May & 6 & 1414 & 1741 & 9 & - & - & - \\
\hline 22 & " 2 & " & May & 6 & 1407 & 1656 & 11 & - & - & - \\
\hline 23 & " 1 & " & May & 6 & 1429 & 1659 & 11 & - & - & - \\
\hline 24 & " 1 & " & May & 7 & 1217 & 1840 & 14 & - & - & - \\
\hline 25 & " 1 & 11 & May & 7 & 1255 & 1628 & 9 & - & - & - \\
\hline 26 & " 1 & " & May & 7 & 1413 & 1655 & 11 & - & - & - \\
\hline 27 & " 1 . & " & May & 8 & 1416 & 1657 & 7 & - & - & - \\
\hline 28 & Navy 8 & " & May & 9 & 1420 & 1935 & 64 & 1402 & 1930 & 49 \\
\hline 29 & 116 & " & May & 9 & 1502 & 1925 & 44 & 1505 & 1925 & 43 \\
\hline 30 & AF 1 & " & May & 9 & 1225 & 1833 & 14 & - & - & - \\
\hline 31 & " 1 & " & May & 9 & 1256 & 1631 & '9 & - & - & - \\
\hline
\end{tabular}

Table 9-23.--Inventory of RECCO and NAV data contained on magnetic tape No. B3407 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Flight No.} & \multirow[b]{2}{*}{Aircraft} & \multirow[b]{2}{*}{\begin{tabular}{l}
BOMEX \\
Observation Period
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\]}} & \multicolumn{3}{|c|}{RECCO data} & \multicolumn{3}{|c|}{NAV data} \\
\hline & & & & & \begin{tabular}{l}
Start \\
time \\
(GMT)
\end{tabular} & Stop time (GMT) & No.
of
observations & \begin{tabular}{l}
Start \\
time \\
(GMT)
\end{tabular} & Stop time (GMT) & No.
of
observations \\
\hline 32 & AF 2 & I & May & 9 & 1341 & 1638 & 11 & - & - & - \\
\hline 33 & " 1 & " & May & 9 & 1421 & 1756 & 11 & - & - & - \\
\hline 34 & " 1 & " & May & 10 & 1136 & 1833 & 24 & - & - & - \\
\hline 35 & " 1 & " & May & 10 & 1347 & 1641 & 13 & - & - & - \\
\hline 36 & " 1 & " & May & 10 & 1253 & 1629 & 9 & - & - & - \\
\hline 37 & 11 & " & May & 10 & 1418 & 1651 & 11 & - & - & - \\
\hline 38 & Navy 8 & " & May & 10 & 2313 & 0811 & 77 & 2315 & 0857 & 180 \\
\hline 39 & AF 1 & " & May & 11 & 0120 & 0528 & 15 & - & - & - \\
\hline 40 & " 2 & " & May & 11 & 1131 & 1826 & 24 & - & - & - \\
\hline 41 & " 1 & " & May & 11 & 1347 & 1644 & 11 & - & - & - \\
\hline 42 & " 1 & " & May & 11 & 1254 & 1616 & 9 & - & - & - \\
\hline 43 & 1 & " & May & 11 & 1420 & 1655 & 11 & - & - & - \\
\hline 44 & Navy 6 & " & May & 11 & 2245 & 0914 & 110 & 2245 & 1008 & 419 \\
\hline 45 & AF 1 & " & May & 12 & 0130 & 0539 & 15 & - & & \\
\hline 46 & " 2 & " & May & 12 & 1139 & 1832 & 24 & - & - & - \\
\hline 47 & " 1 & " & May & 12 & 1347 & 1647 & 11 & - & - & - \\
\hline 48 & " 1 & " & May & 12 & 1255 & 1627 & 9 & - & - & - \\
\hline 49 & " 1 & " & May & 12 & 1423 & 1657 & 11 & - & - & - \\
\hline 50 & Navy 8 & " & May & 12 & 2240 & 0758 & 78 & 2240 & 0837 & 615 \\
\hline 51 & \(\dot{A F} 1\) & " & May & 13 & 0234 & 0638 & 15 & - & - & - \\
\hline 52 & " 2 & " & May & 13 & 1134 & 1842 & 24 & - & - & - \\
\hline 53 & " 2 & " & May & 13 & 1200 & 1530 & 8 & - & - & - \\
\hline 54 & " 1 & " & May & 13 & 1257 & 1626 & 9 & - & - & - \\
\hline 55 & " 1 & " & May & 13 & 1421 & 1656 & 11 & - & - & - \\
\hline 56 & " 1 & " & May & 14 & 1211 & 1830 & 14 & - & - & - \\
\hline 57 & " 1 & " & May & 14 & 1259 & 1623 & 9 & - & - & - \\
\hline 58 & " 2 & " & May & 14 & 1345 & 1638 & 14 & - & - & - \\
\hline 59 & " 1 & " & May & 14 & 1418 & 1652 & 11 & - & - & - \\
\hline 60 & " 1 & " & May & 15 & 1419 & 1700 & 7 & - & - & - \\
\hline 61 & " 1 & II & May & 24 & 1243 & 1557 & 9 & - & - & - \\
\hline
\end{tabular}

Table 9-23.--Inventory of RECCO and NAV data contained on magnetic tape No. B3407 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Flight No.} & \multirow[b]{2}{*}{Aircraft} & \multirow[b]{2}{*}{BOMEX Observation Period} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\]}} & \multicolumn{3}{|c|}{RECCO data} & \multicolumn{3}{|c|}{NAV data} \\
\hline & & & & & Start time (GMT) & Stop time (GMT) & No.
of
observations & Start time (GMT) & Stop time (BMT) & No.
of
observations \\
\hline 62 & AF 1 & II & May & 24 & 1414 & 1600 & 7 & - & - & - \\
\hline 63 & " 2 & " & May & 24 & 1442 & 1737 & 7 & - & - & - \\
\hline 64 & " 1 & " & May & 25 & 1422 & 1820 & 15 & - & - & - \\
\hline 65 & " 1 & " & May & 25 & 1247 & 1612 & 9 & - & - & - \\
\hline 66 & " 1 & " & May & 25 & 1415 & 1605 & 7 & - & - & - \\
\hline 67 & Navy 6 & " & May & 26 & 0207 & 0835 & 62 & 0207 & 0835 & 319 \\
\hline 68 & AF 1 & " & May & 26 & 0122 & 0524 & 15 & - & - & - \\
\hline 69 & " 2 & " & May & 26 & 1319 & 1721 & 15 & - & - & - \\
\hline 70 & " 1 & " & May & 26 & 1424 & 1612 & 7 & - & - & - \\
\hline 71 & Navy 6 & " & May & \(26^{\circ}\) & 2353 & 0846 & 73 & 2349 & 0848 & 453 \\
\hline 72 & AF 1 & " & May & 27 & 0119 & 0525 & 15 & - & - & - \\
\hline 73 & " 2 & " & May & 27 & 1319 & 1714 & 15 & - & - & - \\
\hline 74 & " 1 & " & May & 27 & 1303 & 1626 & 9 & - & - & - \\
\hline 75 & " 1 & " & May & 27 & 1428 & 1600 & 7 & - & - & - \\
\hline 76 & Navy 6 & " & May & 27 & 2300 & 0708 & 109 & 2300 & 0708 & 578 \\
\hline 77 & AF 1 & " & May & 28 & 0118 & 0523 & 15 & - & - & - \\
\hline 78 & " 2 & " & May & 28 & 1200 & 1530 & 8 & - & - & - \\
\hline 79 & " 2 & 11 & May & 28 & 1328 & 1719 & 15 & - & - & - \\
\hline 80 & " 1 & " & May & 28 & 1257 & 1626 & 9 & - & - & - \\
\hline 81 & " 1 & " & May & 28 & 1447 & 1623 & 8 & - & - & - - \\
\hline 82 & " 1 & " & May & 30 & 1249 & 1621 & 9 & - & - & - \\
\hline 83 & " 1 & " & May & 30 & 1442 & 1626 & 7 & - & - & - \\
\hline 84 & " 1 & " & May & 31 & 1325 & 1720 & 15 & - & - & - \\
\hline 85 & " 1 & " & May & 31 & 1300 & 1624 & 9 & - & - & - \\
\hline 86 & " 1 & " & May & 31 & 1408 & 1652 & 7 & - & - & - \\
\hline 87 & " 2 & " & May & 31 & 1439 & 1613 & 7 & - & - & - \\
\hline 88 & Navy 6 & " & May & 31 & 2324 & 0820 & 107 & 2324 & 0815 & 581 \\
\hline 89 & AF 1 & " & June & 1 & 0133 & 0541 & 15 & - & - & - \\
\hline 90 & " 2 & " & June & 1 & 1318 & 1723 & 15 & - & - & - \\
\hline 91 & " 1 & " & June & 1 & 1254 & 1626 & 9 & - & - & - \\
\hline 92 & " 1 & " & June & 1 & 1454 & 1628 & 7 & - & - & - \\
\hline
\end{tabular}

Table 9-23. --Inventory of RECCO and NAV data contained on magnetic tape No. B3407 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Flight No.} & \multirow[b]{2}{*}{Aircraft} & \multirow[b]{2}{*}{\begin{tabular}{l}
BOMEX \\
Observation Period
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{\[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\]}} & \multicolumn{3}{|c|}{RECCO data} & \multicolumn{3}{|c|}{NAV data} \\
\hline & & & & & \begin{tabular}{l}
Start \\
time \\
(GMT)
\end{tabular} & Stop time (GMT) &  & \begin{tabular}{l}
Start \\
time \\
(GMT)
\end{tabular} & Stop time (GMT) & No.
of
observations \\
\hline 93 & Navy 6 & II & June & 1 & 2359 & 0831 & 102 & 2355 & 0832 & 550 \\
\hline 94 & AF 1 & 11 & June & 2 & 0116 & 0522 & 15 & - & - & - \\
\hline 95 & " 2 & " & June & 2 & 1317 & 1724 & 15 & - & - & - \\
\hline 96 & " 1 & " & June & 2 & 1253 & 1618 & 9 & - & - & - \\
\hline 97 & " 1 & " & June & 2 & 1440 & 1615 & 7 & - & - & - \\
\hline 98 & Navy 6 & " & June & 3 & 0001 & 0856 & 108 & 0001 & 0856 & 592 \\
\hline 99 & AF 1 & " & June & 3 & 0122 & 0529 & 15 & - & - & - \\
\hline 100 & " 2 & " & June & 3 & 1321 & 1725 & 15 & - & - & - \\
\hline 101 & " 1 & " & June & 3 & 1254 & 1626 & 9 & - & - & - \\
\hline 102 & " 1 & " & June & 3 & 1449 & 1623 & 7 & - & - & - \\
\hline 103 & Navy 6 & " & June & 3 & 2350 & 0806 & 105 & 2349 & 0807 & 576 \\
\hline 104 & AF 1 & 11 & June & 4 & 0115 & 0518 & 15 & - & - & - \\
\hline 105 & " 2 & " & June & 4 & 1317 & 1640 & 12 & - & - & - \\
\hline 106 & " 1 & " & June & 4 & 1254 & 1620 & 9 & - & - & - \\
\hline 107 & " 1 & " & June & 4 & 1442 & 1612 & 7 & - & - & - \\
\hline 108 & " 1 & " & June & 6 & 1258 & 1648 & 9 & - & - & - \\
\hline 109 & " 1 & " & June & 6 & 1439 & 1610 & 7 & - & - & - \\
\hline 110 & Navy 6 & " & June & 7 & 1215 & 1910 & 60 & 1050 & 2045 & 811 \\
\hline 111 & " 8 & " & June & 7 & 1055 & 2045 & 75 & 1055 & 2047 & 856 \\
\hline 112 & AF 1 & " & June & 7 & 1315 & 1718 & 15 & - & - & - \\
\hline 113 & " 1 & " & June & 7 & 1305 & 1618 & 9 & - & - & - \\
\hline 114 & " 1 & " & June & 7 & 1446 & 1725 & 8 & - & - & - \\
\hline 115 & \({ }^{\prime \prime} 1\) & " & June & 8 & 0119 & 0525 & 15 & - & - & - \\
\hline 116 & 12 & " & June & 8 & 1327 & 1748 & 15 & - & - & - \\
\hline 117 & " 1 & " & June & 8 & 1305 & 1520 & 7 & - & - & - \\
\hline 118 & " 1 & " & June & 8 & 1453 & 1627 & 7 & - & - & - \\
\hline 119 & Navy 6 & " & June & 9 & 1035 & 2030 & 74 & 1035 & 2035 & 829 \\
\hline 120 & " 8 & " & June & 9 & 1035 & 2025 & 72 & 1035 & 2027 & 852 \\
\hline 121 & - AF 1 & " & June & 9 & 0122 & 0530 & 15 & - & - & - \\
\hline 122 & " 1 & 11 & June & 9 & 1307 & 1624 & 9 & - & - & - \\
\hline 123 & " 1 & " & June & 9 & 1443 & 1622 & 7 & - & - & - \\
\hline
\end{tabular}

Table 9-23. --Inventory of RECCO and NAV data contained on magnetic tape No. B3407 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Flight No.} & \multirow[b]{2}{*}{Aircraft} & \multirow[b]{2}{*}{\begin{tabular}{l}
BOMEX \\
Observation Period
\end{tabular}} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Date } \\
(1969)
\end{gathered}
\]} & \multicolumn{3}{|c|}{RECCO data} & \multicolumn{3}{|c|}{NAV data} \\
\hline & & & & Start time (GMT) & Stop time (GMT) & No.
of
observations & Start time (GMT) & Stop time (GMT) & No.
of
observations \\
\hline 124 & AF 2 & II & June 10 & 1313 & 1717 & 15 & - & - & - \\
\hline 125 & " 1 & " & June 10 & 0117 & 0526 & 15 & - & - & - \\
\hline 126 & 11 & " & June 10 & 1259 & 1623 & 9 & - & - & - \\
\hline 127 & " 1 & " & June 10 & 1447 & 1620 & 7 & - & - & - \\
\hline 128 & " 1 & " & June 11 & 1408 & 1604 & 7 & - & - & - \\
\hline 129 & " 1 & III & June 21 & 1233 & 1853 & 15 & - & - & - \\
\hline 130 & " 1 & " & June 21 & 1300 & 1628 & 9 & - & - & - \\
\hline 131 & " 2 & " & June 21 & 1348 & 1630 & 9 & - & - & - \\
\hline 132 & " 1 & " & June 21 & 1412 & 1643 & 7 & - & - & - \\
\hline 133 & " 1 & " & June 21 & 1424 & 1654 & 11 & - & - & - \\
\hline 134 & Navy 3 & " & June 22 & 1055 & 2155 & 101 & 1055 & 2205 & 927 \\
\hline 135 & 18 & " & June 22 & 1056 & 2200 & 102 & 1105 & 2200 & 787 \\
\hline 136 & AF 1 & " & June 22 & 0115 & 0521 & 15 & - & - & - \\
\hline 137 & " 2 & " & June 22 & 1123 & 1826 & 22 & - & - & - \\
\hline 138 & " 1 & " & June 22 & 1247 & 1602 . & 9 & - & - & - \\
\hline 139 & " 2 & " & June 22 & 1347 & 1638 & 11 & - & - & - \\
\hline 140 & " 1 & " & June 22 & 1425 & 1702 & 11 & - & - & - \\
\hline 141 & " 1 & " & June 23 & 0114 & 0600 & 17 & - & - & - \\
\hline 142 & " 2 & " & June 23 & 1126 & 1215 & 3 & - & - & - \\
\hline 143 & " 1 & " & June 23 & 1407 & 1716 & 9 & - & - & - \\
\hline 144 & " 2 & " & June 23 & 1358 & 1640 & 11 & - & - & - \\
\hline 145 & " 1 & " & June 23 & 1516 & 1750 & 11 & - & - & - \\
\hline 146 & Navy 8 & " & June 23 & 2250 & 0945 & 95 & 2255 & \(0838{ }^{\circ}\) & 800 \\
\hline 147 & AF 1 & " & June 24 & 0115 & 0551 & 17 & - & - & - \\
\hline 148 & " 2 & " & June 24 & 1128 & 1825 & 22 & - & - & - \\
\hline 149 & " 1 & " & June 24 & 1255 & 1623 & 9 & - & - & - \\
\hline 150 & " 2 & " & June 24 & 1415 & 1717 & 11 & - & - & - \\
\hline 151 & " 1 & " & June 24 & 1424 & 1702 & 11 & - & - & - \\
\hline 152 & " 1 & " & June 25 & 0120 & 0550 & 17 & - & - & - \\
\hline 153 & " 2 & " & June 25 & 1130 & 1824 & 24 & - & - & - \\
\hline 154 & " 1 & 1 & June 25 & 1257 & 1628 & 9 & - & - & - \\
\hline
\end{tabular}

Table 9-23. --Inventory of RECCO and NAV data contained on magnetic tape No. B3407 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Flight No.} & \multirow[b]{2}{*}{Aircraft} & \multirow[b]{2}{*}{BOMEX Observation Period} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Date } \\
\text { (1969) }
\end{gathered}
\]} & \multicolumn{3}{|c|}{RECCO data} & \multicolumn{3}{|c|}{NAV data} \\
\hline & & & & Start time (GMT) & Stop time (GMT) & No.
of
observations & Start time (GMT) & Stop time (GMT) & No.
of
observations \\
\hline 155 & AF 2 & III & June 25 & 1333 & 1617 & 11 & - & - & - \\
\hline 156 & " 1 & " & June 25 & 1421 & 1643 & 11 & - & - & - \\
\hline 157 & Navy 3 & " & June 25 & 2237 & 0940 & 123 & 2240 & 0940 & 946 \\
\hline 158 & AF 1 & " & June 26 & 0057 & 0555 & 15 & - & - & - \\
\hline 159 & " 2 & " & June 26 & 1201 & 1530 & 8 & - & - & - \\
\hline 160 & Navy 3 & " & June 26 & 1141 & 1223 & 3 & - & - & - \\
\hline 161 & AF 1 & " & June 26 & 1256 & 1619 & 9 & - & - - & - \\
\hline 162 & " 2 & " & June 26 & 1344 & 1646 & 11 & - & - & - \\
\hline 163 & " 1 & " & June 26 & 1427 & 1658 & 11 & - & - & - \\
\hline 164 & " 1 & " & June 27 & 1411 & 1645 & 7 & -- & - & - \\
\hline 165 & " 1 & " & June 28 & 1140 & 1858. & 22 & - & - & - \\
\hline 166 & " 1 & " & June 28 & 1304 & 1627 & 9 & - & - & - \\
\hline 167 & " 2 & " & June 28 & 1349 & 1645 & 11 & - & - & - \\
\hline 168 & " 1 & " & June 28 & 1413 & 1650 & 11 & - & - & - \\
\hline 169 & Navy 3 & " & June 29 & 1032 & 2045 & 83 & 1035 & 2045 & 972 \\
\hline 170 & " 8 & " & June 29 & 1040 & 2040 & 82 & 1045 & 2040 & 789 \\
\hline 171 & AF 1 & " & June 29 & 0157 & 0643 & 17 & - & - & - \\
\hline 172 & " 2 & " & June 29 & 1200 & 1904 & 22 & - & - & - \\
\hline 173 & " 1 & " & June 29 & 1259 & 1630 & 9 & - & - & - \\
\hline 174 & " 2 & " & June 29 & 1411 & 1648 & 11 & - & - & - \\
\hline 175 & " 1 & " & June 29 & 1410 & 1637 & 11 & - & & - \\
\hline 176 & Navy 8 & " & June 30 & 1145 & 2140 & 83 & 1150 & 2145 & 820 \\
\hline 177 & " 3 & " & June 30 & 1145 & 2146 & 79 & 1145 & 2150 & 980 \\
\hline 178 & AF 1 & " & June 30 & 0116 & 0557 & 17 & - & & \\
\hline 179 & " 2 & " & June 30 & 1052 & 1828 & 22 & - & - & - \\
\hline 180 & " 1 & " & June 30 & 1247 & 1612 & 9 & - & - & - \\
\hline 181 & " 2 & " & June 30 & 1338 & 1630 & 11 & - & - & - \\
\hline 182 & " 1 & " & June 30 & 1415 & 1651 & 11 & - & - & - \\
\hline 183 & \(\cdots 1\) & " & July 1 & 0144 & 0634 & 17 & - & - & . - \\
\hline 184 & " \({ }^{\prime \prime}\) & " & July 1 & 1125 & 1827 & 24 & - & - & - \\
\hline 185 & " 1 & " & July 1 & 1257 & 1625 & 9 & - & - & - \\
\hline
\end{tabular}

Table 9-23.--Inventory of RECCO and NAV data contained on magnetic tape No. B3407 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Flight } \\
& \text { No. }
\end{aligned}
\]} & \multirow[b]{2}{*}{Aircraft} & \multirow[b]{2}{*}{BOMEX Observation Period} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Date } \\
\text { (1969) }
\end{gathered}
\]} & \multicolumn{3}{|c|}{RECCO data} & \multicolumn{3}{|c|}{NAV data} \\
\hline & & & & Start time (GMT) & \[
\begin{aligned}
& \text { Stop } \\
& \text { time } \\
& \text { (GMT) }
\end{aligned}
\] & No.
of
observations & Start time (GMT) & \[
\begin{aligned}
& \text { Stop } \\
& \text { time } \\
& \text { (GMT) }
\end{aligned}
\] & No.
of
observations \\
\hline 186 & AF 2 & III & July 1 & 1347 & 1645 & 11 & - & - & - \\
\hline 187 & " 1 & " & July 1 & 1424 & 1655 & 11 & - & - & - \\
\hline 188 & " 1 & " & July 2 & 1248 & 1557 & 9 & - & - & - \\
\hline 189 & " 2 & " & July 2 & 1348 & 1637 & 11 & - & - & - \\
\hline 190 & " 1 & " & July 2 & 1424 & 1653 & 7 & - & - & - \\
\hline 191 & " 1 & " & July 2 & 1423 & 1657 & 11 & - & - & - \\
\hline 192 & " 1 & " & July 3 & 1921 & 2319 & 7 & - & - & - \\
\hline 193 & " 1 & IV & July 13 & 1415 & 2100 & 24 & 1415 & 2115 & 206 \\
\hline 194 & " 1 & " & July 13 & 1351 & 1710 & 15 & - & - & - \\
\hline 195 & " 1 & " & July 13 & 1305 & 1815 & 18 & - & - & - \\
\hline 196 & Navy 3 & " & July 14 & 1400 & 2300 & 36 & 1400 & 2300 & 210 \\
\hline 197 & AF 1 & " & July 14 & 1415 & 2100 & 26 & 1410 & 2100 & 208 \\
\hline 198 & " 1 & " & July 14 & 1430 & 1708 & 11 & - & - & - \\
\hline 199 & " 1 & " & July 14 & 1428 & 1630 & 8 & - & - & - \\
\hline 200 & " 1 & " & July 15 & 1428 & 1758 & 12 & - & -' & - \\
\hline 201 & " 1 & " & July 15 & 1447 & 1715 & 11 & - & - & - \\
\hline 202 & Navy 3 & " & July 17 & 1345 & 2300 & 38 & 1333 & 2255 & 265 \\
\hline 203 & AF 1 & " & July 17 & 1400 & 2230 & 40 & 1355 & 2255 & 309 \\
\hline 204 & " 1 & " & July 17 & 1644 & 1856 & 11 & - & - & - \\
\hline 205 & " 1 & " & July 17 & 1324 & 1750 & 15 & - & - & - \\
\hline 206 & " 1 & " & July 18 & 1426 & 1710 & 12 & - & - & - \\
\hline 207 & " 1 & " & July 19 & 1345 & 2300 & 41 & 1345 & 2300 & 228 \\
\hline 208 & " 1 & " & July 19 & 1531 & 1755 & 11 & - & - & - \\
\hline 209 & ' 1 & " & July 19 & 1430 & 1615 & 8 & - & & - \\
\hline 210 & Navy 6 & " & July 19 & 1345 & 0000 & 42 & 1340 & 0003 & 244 \\
\hline 211 & AF 1 & " & July 20 & 1123 & 1455 & 17 & & - & - \\
\hline 212 & " 1 & " & July 20 & 1703 & 1938. & 12 & - & - & - \\
\hline 213 & Unknown & " & July 21 & 1340 & 1758 & 12 & 1340 & 2015 & 64 \\
\hline 214 & AF 1 & " & July 21 & 1350 & 1615 & 10 & - & - & \\
\hline 215 & " 1 & " & July 22 & 1400 & 2015 & 25 & 1400 & 2030 & 157 \\
\hline 216 & " 1 & " & July 22 & 1525 & 1834 & 13 & - & - & - \\
\hline
\end{tabular}

Table 9-23.--Inventory of RECCO and NAV data contained on magnetic tape No. B3407 (continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Flight No.} & \multirow[b]{2}{*}{Aircraft} & \multirow[b]{2}{*}{BOMEX Observation Period} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Date } \\
\text { (1969) }
\end{gathered}
\]} & \multicolumn{3}{|c|}{RECCO data} & \multicolumn{3}{|c|}{NAV data} \\
\hline & & & & \(\overline{\text { Start }}\) time (GMT) & Stop time (GMT) & No.
of
observations & Start time (GMT) & Stop time (GMT) & No.
of
observations \\
\hline 217 & AF 1 & IV & July 22 & 1723 & 19.29 & 9 & - & - & - \\
\hline 218 & Navy 6 & " & July 22 & 1615 & 0030 & 33 & 1615 & 0030 & 219 \\
\hline 219 & AF 1 & " & July 23 & 1400 & 2015 & 25 & 1400 & 2030 & 192 \\
\hline 220 & " 1 & " & July 23 & 1430 & 1656 & 11 & - & - & - \\
\hline 221 & Navy 6 & " & July 26 & 1015 & 2025 & 40 & 1030 & 2032 & 229 \\
\hline 222 & AF 1 & " & July 26 & 1145 & 1715 & 23 & 1115 & 1727 & 292 \\
\hline 223 & " 1 & " & July 26 & 1538 & 1747 & 10 & - & - & - \\
\hline 224 & " 1 & " & July 26 & 1505 & 1715 & 10 & - & - & - \\
\hline 225 & " 1 & " & July 27 & 1430 & 2015 & 24 & 1430 & 2045 & 109 \\
\hline 226 & " 1 & " & July 27 & 1437 & 1755 & 8 & - & - & - \\
\hline 227 & " 1 & " & July 27 & 1525 & 1621 & 6 & - & - & - \\
\hline 228 & " 1 & " & July 28 & 1500 & 1550 & 3 & - & - & - \\
\hline 229 & " 1 & " & July 28 & 1305 & 1516 & 10 & - & - & - \\
\hline 230 & " 1 & " & July 28 & 1422 & 1721 & 9 & - & - & - \\
\hline
\end{tabular}

\subsection*{9.2.4 Navy and Air Force Radar Photographs and Archive Format}

Radar photographs were taken by an AN/APS-20 radar aboard the Navy WC-121 aircraft, and by an AN/APS-64 radar aboard the Air Force WB-47 aircraft. These photographs are archived on \(35-\mathrm{mm}\) microfilm reels as registered copies of the original film. An inventory is given in table 9-24.

\subsection*{9.3 Supplementary Material Available From the Archive}

\subsection*{9.3.1 RFF Flight Folder}

A folder was prepared for each RFF flight, giving a complete history of the day's operation. It is important that the folder be reviewed when data from a given mission are evaluated. All the RFF Flight Folders are contained on one reel of \(35-\mathrm{mm}\) microfilm, labeled DOC-2 in the BOMEX Permanent Archive.

The following is included in each folder:
Detailed Flight Program - RFF-1 Work Form. Lists date and takeoff and landing times; proposed flight patterns and actual flight patterns; takeoff data from aircraft for comparison with meteorological ground observation; and remarks pertinent to the mission.

Flight Information - RFF-2 Work Form. Contains navigation information and Event Light assignments; and crew list.

Flight Data - RFF-3 Work Form. Equipment log for meteorological and photographic equipment; recorder operations log; and dropsonde data.

Digital Station Log - RFF-4 Work Form. Contains camera operation log; digital operation; Inventory of data outputs; and remarks on interruptions, power outages, etc.

Radar Station Log - RFF-5 Work Form. Log of the operation of all radar equipment and operation, with pertinent remarks.

RFF Time Check Form. Log of data chamber and clock times from radar and cloud cameras versus digital time from digital recorder with corrections for synchronization with total data package.

Electronic Status and Meteorological Systems In-Flight Data Log. Lists electronic outages and malfunctions at beginning, during, and at end of flight.

Event Log. A chronological log kept by the flight meteorologist, reporting mission progress and the time of significant events. (Useful in locating specific information on the NNV tape for programming or special interest.)

Navigation Log. A record of the aircraft position with a Doppler correction record for updating the Doppler to true position. (The corrections have been incorporated into the NNV tape.)

Table 9-24.--Inventory of Navy and Air Force radar photographs
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Reel \\
No.
\end{tabular}} & \multirow[t]{2}{*}{Type of radar} & \multirow[b]{2}{*}{Aircraft} & \multicolumn{3}{|l|}{First frame} & \multicolumn{3}{|r|}{Last frame} \\
\hline & & & \[
\begin{array}{r}
\text { Date } \\
(1969 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& \text { Time } \\
& \text { (GMT) }
\end{aligned}
\] & \[
\begin{array}{r}
\text { Date } \\
(1969 \\
\hline
\end{array}
\] & & \[
\begin{aligned}
& \text { Time } \\
& \text { (GMT) }
\end{aligned}
\] \\
\hline 84 & AN/APS -64 & AF WB-47 & May & 3 & 1411 & May & 3 & 1813 \\
\hline 76 & " & " & & 4 & 1146 & & 4 & 1637 \\
\hline 77 & " & " & & 5 & 1149 & & 5 & 1726 \\
\hline 78 & " & " & & 6 & 1105 & & 6 & 1359 \\
\hline 79 & " & " & & 7 & 1205 & & 7 & 1741 \\
\hline 80 & " & " & & 9 & 1320 & & 9 & 1620 \\
\hline 81 & " & " & & 11 & 1159 & & 11 & 1623 \\
\hline 82 & " & " & & 13 & 1600 & & 13 & 2103 \\
\hline 83 & " & " & & 14 & 1155 & & 14 & 1730 \\
\hline 85 & " & " & & 24 & 0550 & & 24 & 0940 \\
\hline 86 & " & " & & 25 & 1212 & & 25 & 1620 \\
\hline 87 & " & " & & 27 & 1240 & & 27 & 1635 \\
\hline 88 & " & " & & 28 & 1315 & & 28 & 1620 \\
\hline 89 & " & " & & 30 & 1025 & & 30 & 1735 \\
\hline 90 & " & " & & 31 & 1220 & & 31 & 1731 \\
\hline 91 & " & " & June & 1 & 1230 & June & 1 & 1640 \\
\hline 92 & " & " & & 2 & 1150 & & 2 & 1625 \\
\hline 93 & " & " & & 3 & 1135 & & 3 & 1625 \\
\hline 94 & " & " & & 4 & 1150 & & 4 & 1725 \\
\hline 95 & " & " & & 6 & 1239 & & 6 & 1630 \\
\hline 96 & " & " & & 7 & 1200 & & 7 & 1530 \\
\hline 97 & " & " & & 9 & 1140 & & 9 & 1740 \\
\hline 98 & " & " & & 21 & 1425 & & 21 & 1720 \\
\hline 99 & " & " & & 22 & 1220 & & 22 & 1612 \\
\hline 100 & " & " & & 23 & 1305 & & 23 & 1635 \\
\hline 102 & " & " & & 24 & 2305 & & 24 & 0340 \\
\hline 101 & " & " & & 25 & 1200 & & 25 & 1755 \\
\hline 103 & " & " & & 26 & 1255 & & 26 & 1820 \\
\hline 104 & " & " & & 28 & 1210 & & 28 & 1740 \\
\hline 105 & " & " & & 29 & 1240 & & 29 & 1630 \\
\hline 106 & " & " & & 30 & 1140 & & 30 & 1720 \\
\hline 107 & " & " & July & 1 & 1135 & July & 1 & 1735 \\
\hline 109 & " & " & & 13. & 1313 & & 13 & 1708 \\
\hline 111 & " & " & & 15 & 1358 & & 15 & 1710 \\
\hline 112 & " & " & & 19 & 1220 & & 19 & 1829 \\
\hline 113 & " & " & & 20 & 1106 & & 20 & 1448 \\
\hline 114 & " & " & & 23 & 1215 & & 23 & 1740 \\
\hline 108 & " & " & & 26 & 1306 & & 26 & 1724 \\
\hline 115 & " & " & & 28 & 1250 & & 28 & 1527 \\
\hline 117 & AN/APS-20 & Navy WC-121 & & 14 & 1550 & & 14 & 1900 \\
\hline 116 & " & " & & 19 & 1450 & & 26 & 2035 \\
\hline
\end{tabular}

\subsection*{9.3.2 RFF Photographic Quality Review Log}

Following the BOMEX field operations, RFF personnel reviewed all cloud, photopanel, and radar film acquired aboard the RFF aircraft. These log. sheets indicate the quality of the processed film, any discrepancies found, and corrections of such discrepancies for each mission flown. They are archived on the same \(35-\) mim reel of microfilm, DOC-2, as the RFF Flight Folder discussed in the preceding section.

\subsection*{9.4 Material in Temporary Storage}

Material used in the processing of the aircraft data, such as the RFF CONVERT tapes, Navy and Air Force. RECCO punched cards, original flights logs, and the like, has been placed in temporary storage for a period of 3 years. Inquiries concerning this material should be addressed to the Center for Experiment Design and Data Analysis, EDS, NOAA, Washington, D.C. 20235.

\section*{10. DROPSONDE DATA SET}

Dropsonde observations were made during reconnaissance flights by USAF Air Weather Service WC-130 aircraft operated by the 53rd Weather Reconnaissance Squadron, Ramey Air Force Base, Puerto Rico. During the first three BOMEX Observation Periods, day and night missions were flown along the flight path shown in figure 10-1. On each flight, eight dropsondes were released from an altitude of \(20,000 \mathrm{ft}\) at the positions indicated in the figure. Dropsonde release times were nominally between 0130 and 0600 GMT at night and between 1300 and 1830 GMT during the, day. In addition, on May 6, 13, and 28, June 26, and July 1, 1969, eight daytime soundings at 30 -min intervals were made over position DELTA, the station of the NOAA ship Mt. Mitchell, for comparison with the ship rawinsonde observations.

During BOMEX Period IV, the drop positions, flight altitudes, and observation times varied with the objective of each day's mission. The WC-130 flight tracks for Period IV are shown in BOMEX. Field Observations and Basic Data Inventory (BOMAP Office, National Oceanic and Atmospheric Administration, Rockville, Md., 1971).

Of a total of 488 soundings, 438 could be recovered and were processed. The remaining 50 soundings were not processed because of bad, missing, or noisy data resulting from instrument or recorder malfunctions, interference, or weak signals.

\subsection*{10.1 Instrumentation}

The system used consisted of an AN/AMT-6 radiosonde; a radiosonde receptor, \(A N / A M R-1\) or \(A N / A M R-3\), on which the signals were recorded; a D-12/. AMT-6 radiosonde dispenser for ejecting the sonde from the aircraft; and a baseline-check set AN/GMM-2 for preflight calibration of the temperature and humidity sensors.

\subsection*{10.2 Data Processing}

\subsection*{10.2.1 Conversion to Meteorological Units}

Tolerances used for selection of significant levels were that no point on the temperature or humidity traces could depart from a straight line between significant levels by more than 0.7 ordinate (about \(0.4^{\circ} \mathrm{C}\) ) or 5 percent RH. Data at all significant levels were read to the nearest 0.1 ordinate. Further significant levels were inserted between two validated levels when the pressure difference between levels was more than 70 mb . It is believed that the great majority of interpolated points had a precision of the order of \(\pm 0.25 \mathrm{C}\) and \(\pm 3\) percent RH . This procedure proved useful in later interpolation routines. Pressure contacts at significant levels were interpolated to two decimal places--usually to the nearest 0.05 contact (about 0.6 to 1.2 mb ).


Figure 10-1.--WC-130 flight track for dropsonde observations.

After the significant levels had been chosen, ordinate values for temperature, relative humidity, and low reference and pressure contact were read off and transcribed onto a set of punched cards. Gross errors were eliminated by ensuring that temperature, relative humidity, and low reference were within the proper range of values. The pressure contact was checked to make sure that it was in proper sequence.

A second set of punched cards was then prepared, containing such basic information as time of flight, date, position, serial number of the dropsonde, flight-level temperature, pressure and radar altitude, and interpolated sealevel pressure. Baseline information was also: included, after having been checked to ensure that the reported baseline relative humidity was compatible with observed dry- and wet-bulb temperatures. If not, the recomputed humidity was used. If a gross discrepancy occurred, as with transposition of digits, corrections were made based on comparison with baseline information on the other seven dropsondes released during the same mission.

The baroswitch pressure calibration information was transcribed onto a third set of punched cards. An error check was made by finding the difference in pressure between successive contacts for groups of 11 dropsondes. If any of the 11 values deviated significantly from the average, that value was rechecked.

The three atmospheric variables sampled by the dropsonde instruments. were pressure, temperature, and relative humidity. The values obtained from the strip charts were converted to meteorological units in the following manner:
(a) The baroswitch calibration chart for each dropsonde gives a pressure in millibars for each whole contact number. A pressure for a contact that lies between two whole contacts was obtained through linear interpolation.
(b) The transfer equation used for temperature follows Inter-Range Instrumentation Group (IRIG) standards:
\[
[\mathrm{T}(\mathrm{I})+170.0]=[\mathrm{TB}+170.0] *\left(\frac{1 / \mathrm{BASORD}-\mathrm{Cl}}{1 / \mathrm{TORD}(\mathrm{I})-\mathrm{Cl}}\right)^{0.19}
\]
where
\[
\begin{array}{ll}
\mathrm{T}(\mathrm{I}) & =\text { temperature in }{ }^{\circ} \mathrm{C} \text { at the } \mathrm{I} \text {-th significant level, } \\
\mathrm{TB} & =\text { baseline temperature in }{ }^{\circ} \mathrm{C} . \\
\mathrm{TORD}(\mathrm{I}) & =\text { temperature ordinate at the I-th level, } \\
\mathrm{BASORD} & =\text { baseline temperature ordinate, and } \\
\mathrm{C} 1 & =0.0105288 .
\end{array}
\]
(c) The CP-223B/UM Humidity-Temperature Computer was used as the standard for relative humidity evaluation. A routine for reproducing the CP-223B/UM by a computer program was supplied by Douglas R. Soule, NOAA Air Resources Laboratory, Las Vegas, Nev. It was concluded that this approach agrees with the \(\mathrm{CP}-223 \mathrm{~B} / \mathrm{UM}\) evaluator to within 0.4 percent for relative humidities greater than 20 percent.

Once the soundings had been fully worked up in meteorological units, further checks showed that the sensors had inherent errors in them, as opposed to purely random errors, such as reading and transcription.

The recorded splashdown pressures sometimes differed from interpolated rawinsonde pressures by as much as 30 mb . This can be attributed to a variety of causes. Correction was made by forcing agreement with the interpolated ship pressure by adding a correction to the splashdown contact reading.

The thermistor was subject to thermal lag error because of its inability to respond to rapid changes in the ambient-air temperature. The hygristor was affected by both thermal lag and by solar radiation heating. The methods used in correcting these errors are discussed below.

\subsection*{10.2.2 Correction for Thermal Lag and Radiation Effects}

One cause of the thermal lag error was found to lie in deficiencies in the design of the duct in which the hygristor was mounted. The duct opening and the semitranslucent plastic cover permitted solar radiation to penetrate, internally reflect, and heat the carbon-coated hygristor. The positioning of the duct opening and the shape of the duct were such as to reduce the airflow at the sensor to about 30 percent of the ascent rate, giving the hygristor a large thermal lag constant and causing its temperature to lag behind the ambient temperature during ascent by about \(1{ }^{\circ} \mathrm{C}\), even at night.

The hygristor is assumed to measure correctly the relative humidity of an adjacent thin layer of air that has reached thermal equilibrium with the hygristor. Thus, with a given ambient vapor pressure, if the hygristor temperature is higher than ambient, the measured relative humidity will be less than the true humidity of the air sample at its true ambient temperature. If the temperature of the hygristor is known, the true ambient relative humidity can be determined.

A second cause of the difference between the hygristor and ambient air temperatures was that, in almost all the daytime soundings, the hygristor was warmer than the ambient air at launch time. This was mainly the result of solar radiation, either by direct heating of the hygristor or by pre-launch heating of the ship's deck. A third, and major, cause was the fairly steady daytime heating of the hygristor by solar radiation after launch, depending on the amount of cloud cover.

The heat transfer properties of the hygristor itself are such that the boundary layer of air between the hygristor and the ambient air largely controls the heat-transfer process. This means that Newton's law of cooling accurately describes this transfer. Applying the law to this case, one can state the rate of cooling for the hygristor is proportional to the difference in temperature between the hygristor and the atmosphere. Five-second values of temperature and relative humidity were generated in processing the BOMEX rawinsonde data (sec. 5). Making the plausible assumption that heating by radiation and the rate of change in the ambient temperature are approximately constant during a 5 -s interval, we can use the law of cooling in the following form:
\[
\begin{align*}
{\left[T_{H}(t+\Delta t)-T_{A}(t+\Delta t)\right] } & =\left[T_{H}(t)-T_{A}(t)\right] * e^{-\Delta t / \tau(t)} \\
& -\tau(t) * \frac{\left[T_{A}(t+\Delta t)-T_{A}(t)\right]}{\Delta t} *\left(1-e^{-\Delta t / \tau(t)}\right)  \tag{1}\\
& +T_{R}(t) *\left(1-e^{-\Delta t / \tau(t)}\right),
\end{align*}
\]
where
```

    t = time after launch (s),
    T
TA
\Deltat = time interval between sounding points (5 s),
\tau(t) = thermal lag constant (s), and
TR
and the ambient air caused by solar radiation heating ( }\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ ).

```

Eq. (1) is used in a recursive manner to find the hygristor temperature profile. Knowing \(\left[T_{H}(t)-T_{A}(t)\right], \tau(t),{ }^{-} \Delta T_{R}(t)\), and the ambient temperature at time \(t\), one can calculate \(\left[T_{H}(t+\Delta t)-T_{A}(t+\Delta t)\right]\), the total difference between the hygristor and ambient air temperatures, from eq. (1). Since \(T_{A}(t+\Delta t)\) is known from thermistor measurements, \(T_{H}(t+\Delta t)\) is obtained. The total temperature difference at time \(t+\Delta t\) is then reinserted into eq. (1) to yield the total difference at time \(t+2 \Delta t\), and so on.

The initial level for which knowledge of the hygristor temperature is needed is the level reached 5 s after launch. This temperature value was inferred as follows. During BOMEX it was often observed that immediately after launch the rawinsonde would descend for a short time and then begin its ascent. Approximately 5 s after release it should therefore have sampled the same water-vapor content as the psychrometer used aboard ship, and the assumption was made that the specific humidity at the \(5-s\) level was the same as the psychrometric reading. This means that
\[
\begin{equation*}
e^{\prime}=e_{s}(\text { ship }) * R H(s h i p)=e_{s}(5 \text { seconds }) * R H(5 \text { seconds }), \tag{2}
\end{equation*}
\]
where
```

e = the vapor pressure (mb),
e
RH = the relative humidity (percent).

```

The quantities \(e_{s}(s h i p)\), RH(ship), and \(\mathrm{RH}(5\) seconds) were recorded. Thus the
saturation vapor pressure that the rawinsonde must have sensed, e (5 seconds), can be obtained. Since the saturation vapor pressure depends only on temperature, a unique temperature can be found by inverting the saturation vapor pressure equation. Teten's formula (Handbook of Meteorology, McGrawHill Book Company, N.Y., 1945, p. 343) was used:
\[
e_{s}(T)=6.11 * 10^{\frac{7.5 * T}{237.3+T}}
\]
where. \(T\) is measured in \({ }^{\circ} \mathrm{C}\). The final result for the hygristor temperature 5 s . after launch, \(T_{H}(5\) seconds), is
\[
T_{H}(5 \text { seconds })=\frac{237.3 * \log _{10}\left[e_{s}(5 \text { seconds }) / 6.11\right]}{7.5-\log _{10}\left[e_{s}(5 \sec 0 n d s) / 6.11\right]}
\]
where \(e_{s}(5\) seconds) is calculated from eq. (2). Typical temperature differences at the 5-s level are approximately \(6{ }^{\circ} \mathrm{C}\) at midday and \(2^{\circ} \mathrm{C}\) at night. This term can be evaluated for each sounding individually.

The second term on the right of eq. (1) represents the lag of response to changing ambient temperature during ascent. Theory suggests that the thermal lag constant \(\tau(t)\) is a function of ventilation rate and ambient air density. Based on BOMEX data, it was found that a reasonable expression for the lag constant in seconds is given by
\[
\tau=34.9(\rho \mathrm{~V})^{-0.4}
\]
where
\(\rho=\) ambient air density \(\left(\mathrm{kg} \mathrm{m}^{-3}\right)\), and
\(V=\) the ventilation rate of the hygristor \(=0.3 *\) ascent rate \(\left(\mathrm{m}^{-1}\right)\).
This gives values for the time constant of the order of 30 s near sea level. At ascent rates of 4 to \(5 \mathrm{~m} / \mathrm{s}\), the 1 lag constant is about 45 to 50 s at the level of \(p^{*}=500 \mathrm{mb}\). (The levels referred to here are the ones used in the analysis of the BOMEX Core Experiment, or the sea-air interaction program, which is based on a \(p^{*}\) coordinate system, where \(p^{*}\) is the position on the vertical axis in terms of pressure relative to sea level, i.e., \(p^{*}=0\) at sea level and 500 mb at the top of the BOMEX atmospheric volume.)

For nighttime rawinsonde flights, the hygristor temperature difference stems mainly from this lag in response to changing atmospheric temperature, and is on the order of \(1^{\circ} \mathrm{C}\). In the moist layer, this difference produces relative humidities that are 4 to 6 percent RH too low.

The radiation term presented a problem because radiation measurements at times of individual rawinsonde ascents were not available. An indirect method based on 7 -day average data was therefore used. This means that the
effects of varying cloudiness are ignored, and that other heating effects, those due to sonde electronics, for example, will be included in the radiation term. The 7-day averages were derived from data collected during BOMEX Observation Period III, June 19 to July 2. Since there was little variation in solar zenith angle during the other observation periods, the results are considered equally applicable to all BOMEX data.

The aim was to obtain a simplified radiation correction term, \(\Delta T_{R}(t)\), which depends only on \(p^{*}\) and the time of day. For every \(p^{*}\) level, the time after launch, \(t\), is known, The assumption was made that the daytime ambient vapor pressure of the 7 -day averages at each level was equal to the vapor pressure at the same level computed from the nighttime ( 0000 to 0730 GMT ) average temperatures and average relative humidities, the latter having been corrected for the effect of lag in response to changing ambient temperatures. All evidence from surface observations, data obtained with the Boundary Layer Instrument Package (BLIP), and aircraft measurements suggests that the diurnal variation of vapor pressure is nearly zero. Thus,
\[
\begin{equation*}
\overline{\mathrm{RH}}_{\mathrm{N}} * \mathrm{e}_{\mathrm{s}}\left(\bar{T}_{N}\right)=\mathrm{RH}_{\mathrm{D}} * e_{\mathrm{s}}\left(\mathrm{~T}_{\mathrm{D}}\right), \tag{2a}
\end{equation*}
\]
where
\(e_{s}=\) the saturation vapor pressure (mb),
\(\overline{\mathrm{RH}}_{\mathrm{N}}=\) the average nighttime relative humidity (percent),
\(\mathrm{RH}_{\mathrm{D}}=\) the daytime relative humidity (percent),
\(\bar{T}_{N}=\) the average nighttime ambient temperature ( \({ }^{\circ} \mathrm{C}\) ), and
\(\mathrm{T}_{\mathrm{D}}=\) the daytime hygristor temperature ( \({ }^{\circ} \mathrm{C}\) ).
Since \(\overline{R H}_{N}, \bar{T}_{N}\), and \(R H_{D}\) are known, \(T_{D}\) can be computed from eq. (2a), level by level, at each observation time. The hygristor temperature difference caused by radiation is then obtained by subtracting the ambient temperature from \(T_{D}\).

The temperature differences were averaged vertically at each observation for examination of the average diurnal variation \(\Delta T_{R}\), and these vertically averaged data were then closely fitted by the function \(\sin ^{2}(\theta)\), where \(\theta=10 *[\) Hour (GMT)-6.5], covering the \(18-\mathrm{hr}\) period from 0630 to 0030 GMT. This same shape function was used at each level to find an amplitude term that depended on the \(p^{*}\) level. The radiation term is expressed as
\[
\begin{equation*}
\Delta T_{R}\left(p^{*}, \theta\right)=A\left(p^{*}\right) * \sin ^{2}(\theta) . \tag{3}
\end{equation*}
\]

Estimates of the amplitude at each \(10-\mathrm{mb}\) level were obtained by dividing every \(\Delta T_{R}\) by the appropriate \(\sin ^{2}(\theta)\) for each daytime observation and by averaging at each level. This vertical profile was found to be fitted by the function
\[
\begin{aligned}
A\left(p^{*}\right) & =3.8 & & \left(0 \leq p^{*} \leq 320 \mathrm{mb}\right) \\
& =3.8+c^{*} \log _{e} \frac{[1016-320]}{1016-p^{*}}, & & \left(p^{*}>320 \mathrm{mb}\right)
\end{aligned}
\]
where \(c=13.03\). The value 1016 was taken as typical of the sea-surface pressure in millibars.

By use of eq. (3), \(\Delta \mathrm{T}_{\mathrm{R}}\) was found and substituted in eq: (1), yielding the hygristor temperature \(T_{H}\). Based on the assumption that the air sampled by the hygristor has the same vapor pressure as the ambient air, the true relative humidity, \(R H_{T}\), was found from the measured relative humidity, \(R H_{M}\), by the formula
\[
\begin{equation*}
R H_{T}=R H_{M} * \frac{e_{S}\left(T_{H}\right)}{e_{S}\left(T_{A}\right)} \tag{4}
\end{equation*}
\]

From the corrected values of the basic measured variables -- pressure, temperature, and relative humidity -- 10 atmospheric variables were generated: saturation vapor pressure, ambient vapor pressure, specific humidity, dewpoint temperature, potential temperature, virtual temperature, mean virtual temperature, layer thickness, geopotential height, and geometric height. These were computed by standard procedures.

For purposes of comparison with other BOMEX data and for the convenience of users, three different sets of interpolated data were generated:
(a) Data interpolated at every 10 mb in pressure from the sea surface to 500 mb above the surface within the \(\mathrm{p}^{*}\) coordinate system.
(b) Data interpolated at every 50 mb in pressure, beginning with the \(1,000-\mathrm{mb}\) level. These include the standard mandatory pressure levels.
(c) Data interpolated at heights of \(1,000,4,000,7,000\), and 10,000 ft, the nominal flight levels of NOAA's Research Flight Facility aircraft during BOMEX.

Only the basic variables of pressure, temperature, and relative humidity were interpolated; the other parameters were derived as described above.

As noted earlier, significant levels on the strip chart were selected so that the temperature and relative humidity ordinate values are nearly linear between the levels chosen. Conversion of the strip-chart ordinate values to meteorological units showed the temperature and relative humidity values themselves to be approximately linear. Since the strip-chart speed is constant, this also means that these values vary linearly with time between significant levels.

The ascent velocity of radiosondes is approximately constant. The height varies linearly in time, and the appropriate interpolation variable for radiosondes therefore is the height. The descent velocity of the BOMEX dropsondes, however, was not constant, decreasing with time. However, examination of 53 BOMEX soundings showed that, on the average, the dropsonde traveled across equal pressure intervals in equal times. The pressure was therefore chosen as the appropriate interpolation variable.

\subsection*{10.3 Archive Format and Data Inventory}

The final BOMEX dropsonde data are available on magnetic tape and microfilm. The magnetic tape contains five separate data sets for each sounding. Information about the tape itself, the content of each set and the format used to place it on tape are given in the first file (see fig. 10-2). A subroutine for reading the rest of the files is also included in this first file, which contains records that are 80 -column card images. The first data set for each sounding contains data for the significant levels, without pressure contact or thermal lag correction. This was done in order to preserve the "raw," uncorrected data so that the user might apply a correction scheme of his own if desired. The second data set contains the same data with corrections applied for baroswitch contact error, and thermistor and hygristor thermal lag errors. The last three data sets contain the three types of interpolated data discussed earlier.

The microfilm output contains both plotted data, consisting of plots of temperature, dew point, and relative humidity on a pseudo-adiabatic chart, and tabular data. There are four tabular data sets for each sounding: (1) data for the significant levels without correction, (2) data with corrections, (3) data interpolated at \(10-\mathrm{mb} \mathrm{p}^{*}\) intervals, \(0 \leq \mathrm{p}^{*} \leq 500 \mathrm{mb}\), and (4) data interpolated at mandatory pressure levels.

An inventory of the dropsonde data is given in table 10-1.

\subsection*{10.4 Material in Temporary Storage}
llard-copy material, consisting of original manual logs, computer printouts, and the like, has been placed in temporary storage for a period of 3 years. Inquiries concerning this material should be addressed to the Center for Experiment Design and Data Analysis, EDS, NOAA, Page Bldg. 2, Hashington, D.C. 20235.
1. TAPE INFORMATION
a. The tape numher is b-8106
B. THE TAPE IS A COC, 7-TRACK, STRANGER TAPE, WRITTEN IN BCO, EVEN PARITY, WITH A DENSTIY OF 556 RPI.
C. THE FNO OF DATA IS SIGNIFIED HY A DOUBLE END OF FILE (EOF).
D. \(\triangle L L\) dFCONOS ARE 130 Character physical records, and all eofs are physical eni of file marks.
C. MFTEODOLOGICAL INFURMATION

FATH DATA BLOCK CONTAINS A NUMRER OF DIFFFRENT LEVELS AT WHICH
INFORMATION HAS HEEN PROCESSED. FOR EACH LFVEL, PDESSURE, TEMPFRATUKE AND relative humioity plus 10 other atmospheric vakiabies have reen computed. the variables and their units ake--
1. PREGSURE (MH) 2. TEMPERATURE (DEG C) 3. RFLATIVE HUMIDITY (PERCFNT)
4. SATIFATION VAPOR PRESSURE (MB) 5. AMBIENT VAPOR PRESSURE (MB)
6. SPECIFIC MUMIDITY(GRAMS/KILOGRAM) 7. DEW POINT (DEG C)
8. POTFNTIAL TEMPEFATURE (OEG K) 9. VIKTUAL TEMPERATUFE (DEG K)
10. MEAN VIRTHAL TEMPERATURE (DEG K) 11. THICKNESS (GEUPOTENTIAL METERS)
12. GENPOTENTIAL HEIGHT (GEOPOTENTIAL METERS) 13. GFOMETRIC HEIGHT (METERS)
FOR EACH UROPSONDE THERE ARE 5 DIFFERENT WORKUPS. CONTAINING P, T, h ano thf other 10 variables.
A. UNCOPRECTED SIGNIFICANT LEVEL DATA. P,T. AND H ARE OBTAINED FROM the sthip charts, using a preliminary enit. the 10 othek variarles are generated foom thfse. alkCraft readingis of \(P\) and \(t\) are useo at the top LEVFL. H AT THF AIrCRAFT LEVEL WAS NOT OBSFRVEO SO IT WAS SET EGUAL TO H AT THE TOP SIGMIFICANT LEVEL OF SOUNDING.
B. Cordected siginficant level datia. this data has a thermal lag COKRECTION APPLIED TO THE GELATIVE HUMIDITY ANO A DRESSURE CONTACT CORRECTION. a thermal lag correction to the temperature. is also applien. ' the pressure CONTACT CORDECTION ADJUSTS THE CALIBRATION PRESSURF AT THE SPLASH CONTACT TO THF SEA-LEVEL PDESSURE at the dROP POSITION, WHICH has feen interpolated from SHIF DATA.
C. po rorkfeteu and interpolated 10 mb levfl mata. the homex core ANALYSIS USFS A PRESSURE SYSTEM (P*) wHICH ASSIGNS J.O MB TO THE SUKFACE AND
 the analysic. thf interpolation scheme assumes that t and h vary linearly WITH P RFTWFFN SIGMIficant Levels.
D. MANNATORY CORRECTED AND INTERPOLATED 50 MB LEVEL DATA. THE LEVELS START AT 1000 MB AND OCCUR EVERY 50 MH UP TO THE 500 MH LEVEL.
E. MANNATOLY HEIGHT CORRECTED AND INTERPOLATED DATA. THE HEIGHT LEVELS PRE AT \(1000,4000,7000\), AND 10000 FEFT FOR COMPARISON WITH AIRCRAFT DATA.
--- AN FRKOR IS KNOWN TO EXIST IN THE DAYTIME HIJMIDITIES DUE TU SOLAR HEATING OF THE HUMIDITY SENSOR. WE HAVE NOT CORRFCTED FOR THIS ERROR ON THIS tape. IN gFNERAL IT CAUSES THE HUMIDITIES TO READ TOO LOW..--C
```

3. FORMAT OF DATA
```

THEFE ARE 5 FILES PER FLIGHT, UPON WHICH ARE WRITTEN RAW, CORPECTED. PA AND 2 MANDATORY DATA BLOCKS AS EXPLAINED IN SECTION 2. AT THE BEGINNING OF E.ACH FILE IS A HEADER GIVING DROP NUMBER, POSITIUN. LATITUDE ANO LONGITUDE, DATE, TIME, FLIGHT PRESSURE AND ALTITUDE. THIS HFADER CAN BE READ AS 10 PHYSICAL RECORDS, EACH OF WHICH CONTAINS 130 ALPHANUMERIC CHARACTERS. AFTFR the heaner comes the meteorological data. the 13 values at the first level are placed on the tape as one 130 character physical record. then the 13 VARIABLES AT THF SECOND LEVEL, ETC. AFTER THE LAST LEVEL A PHYSICAL EOF IS placed. thf 5 files from one sounding follow immfoiately after the 5 files from the prfvious sounding, until the last sounding is reached.. for example, IF THERE ARF 100 SOUNDINGS THEKE WOULD AE 500 FILES, WITH A UOU日LE EGF AFTE! FILE 500. THE FORMAT FOR THE 13 VARIARLES IS--
C
FORMAT(1X.1(2x,F7.2).2(3x,F6.2),3(3x,F5.2),4(3x,F6.2), 1(2x,F7.2),2(3x,F7.2).13x)
C
C
4. GENERAL INFORMATION
    a. Thic is bomex period l jropsonde data. thf data covers the
PERIOD FROM MAY 3,1969 TO MAY 13,1969 OR JULIAN DAYS 123-133.
    B. THEPE ARE DROPS AT Y DESIGNATED POSITIONS INSIDE THE BOMEX ARRAY.
    C. THEPE ARE A TOTAL OF 87 SOUNDINGS (DROPS 1-10I). DURING PERIOD
1 THERE WERF also lG COMPAKATIVE dKOPS at the Ship mt. mitchell. these
ARE AVAILABLE ON ANOTHER GOMEX TAPE.
    D. THIS DATA WAS PROCESSED 8/20/73.
----there wfre a few more soundings made in period 1 but the data were
EITHFR INCOMPLFTE OR INACCURATE----
C
```

5. SUBROUTINE FOR READING THE REST OF TAPE
THF FOLLOWING SUBROUTINE HAS BEEN CHECKED AND WILL READ EACH INDIVIDUAL
FILE ON THE TAPE. THE FIRST 10 RECORDS IN A FILE ARE ALWAYS ALPHANUMERIC.
EACH RECORD CAN BE READ BY THE FORMAT (26A5). THE 10 RECORDS ARE STORED IN
THE MÁTRIX JHEADR, WHICH HAS 26 COLUMNS AND }10\mathrm{ ROWS.
THF NUMBER OF NUMERICAL.DATA RECORDS (LINES OF DATA) IN THE FILE
VARIES WITH the SOUNDING. ThIS NUMBER IS GIVEN BY the COUNTER NLEV, WhICH
IS INCREMENTED AY I EVERY TIME A RECORD IS READ. THE NUMERICAL DATA IS READ
INTO A MATRTX NAMED ARRAY(I;J). THE MATRIX CONTAINS 13 COLUMNS AND NLEV ROWS.
NLEV WILL NFVER BE GREATER THAN 60.
WHFN A SINGLE EOF IS ENCOUNTERED AFTER THF NUMERICAL DATA, THE
SUBROUTINE SETS THE COUNTER NDFILE = 1 aND RETURNS TO THE MAIN PROGRAM.
WHEN A DOUBLE EOF IS ENCOUNTERED AFTER THF NUMERICAL DATA, THE
SUBROUTINE SETS THE COUNTER NDFILE = 0 AND RETURNS TO THE MAIN PROGRAM.
the end Of mata has NOW beEN reached.
AN ALTERNATIVE METHOD WOULD BE TO ONLY CALL THE SUBROUTINE
5\#(NUMBER OF SOUNDINGS) = 435 TIMES.
C
C
C SUBROUTINE READER(NDFILE,NLEV,IHEADR,ARRAY)
C
DIMENSION IHEADR(26,10) , ARRAY(13,60)
C
5000 FORMAT(26A5)
5010 FORMAT(1X,1(2X,F7.2),2(3X,F6.2),3(3X,F5.2),4(3X,F6.2),1(2X,F7.2),
12 2(3x,F7.2),13x)
6000 FORMAT(1X,26A5)
C
C
C THE MAGNETIC TAPE IS READ IN ON LOGICAL DEVICE 5.
C THE DRINTED OUTPUT IS ON LOGICAL DEVICE 6.
C NDFILE = O MEANS SINGLE EOF ENCOUNTERED.
C NDFItE = 1 MEANS END OF DATA ENCOUNTERED.
C IHEANR CONTAINS TIME, DATE, LOCATION, ETC.
```

C ARRAY CONTAINS VALUES OF 13 METEOROLOGICAL VARIABLES.
\(C\) NLEV IS THE NUMBER OF LEVELS ACTUALLY fillen in array.
    \#\#\#\#\# IF NO PRINTOUT IS NEEDED, REPLACE THE WRITE COMMANDS IN
    \#\#\#\# STATEMENTS 100 AND 400 BY CONTINUES.
        DO 200 JROW=1, 10
        \(\operatorname{READ}(5,5000)(1\) HEADR (I, JROW), \(I=1,26)\)
        IF (FOF(5)) 950,100
    100 WRITF 0,6000 ) (IHEADR(I, JROW), \(I=1,26\) )
    200 CONTINUE
C
    NLEV \(=0\)
    \(300 \operatorname{READ}(5,5010)(\operatorname{ARRAY}(1, \operatorname{NLEV}+1), I=1,13)\)
    IF (FOF(5)) 900,400
    400 WRITF(6,5010) (ARRAY(I,NLEV+1), I=1,13)
    NLEV \(=N L E V+1\)
    go TO 300
C
    900 NDFILF \(=0\)
        GO Tn 999
    950 NDFIIE \(=1\)
C
    999. RETURN
        END

Figure 10-1.--Inventory of BOMEX dropsonde data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Magnetic \\
tape No.
\end{tabular}} & \multirow[t]{2}{*}{Microfilm reel No.} & \multicolumn{3}{|c|}{Date (1969)} & \multicolumn{8}{|c|}{Drop position} & \multirow[t]{2}{*}{Night total} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Day } \\
\text { total }
\end{gathered}
\]} & \multirow[t]{2}{*}{Combined total} \\
\hline & & Calendar & date & Julian day & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8. & & & \\
\hline \multicolumn{16}{|c|}{BOMEX Observation Period I} \\
\hline B-8106 & DR-1 & May & 3 & 123 & - - & - D & - - & - - & - D & - D & - D & - - & 0 & 4 & 4 \\
\hline " & " & & 4 & 124 & N D & N D & N D & N D & N D & N D & N D & N D & 8 & 7 & 15 \\
\hline " & " & " & 5 & 125 & N D & N D & ND & 0 D & ND & N D & \(N \mathrm{D}\) & N D & 7 & 6 & 13 \\
\hline " & " & " & 6 & 126 & N D & N D & N D & \(M \mathrm{D}\) & N D & N - & N D & N - & 7 & 5 & 12 \\
\hline " & " & May & 10 & 130 & - D & - D & - D & - D & - D & - D & - D & - D & 0 & 7 & 7 \\
\hline " & " & " & 11 & 131 & - D & N D & N D & N D & N \({ }^{\text {d }}\) & N D & N D & - D & 6 & 6 & 12 \\
\hline " & " & " & 12 & 132 & N D & N D & N D & * D & N D & N D & N D & N D & 6 & 8 & 14 \\
\hline " & " & " & 13 & 133 & N D & N D & N D & * - & N D & N - & N - & N \({ }^{\text {d }}\) & 6 & 4 & 10 \\
\hline & & & & & & & & & & & od I & tals: & 40 & 47 & 87 \\
\hline \multicolumn{16}{|c|}{BOMEX Observation Period II} \\
\hline B-8105 & DR-2 & May & 25 & 145 & - D & - D & - D & - D & - D & - D & - D & - D & 0 & 7 & - 7 \\
\hline " & " & & 26 & 146 & N D & N D & N D & N D & N D & N D & N D & \(N \mathrm{D}\) & 8 & 8 & 16 \\
\hline " & " & " & 27 & 147 & H D & N D & M D & * & N D & M D & A D & N D & 3 & 6 & 9 \\
\hline " & " & " & 28 & 148 & N. D & N D & N D & N D & N \({ }^{\text {d }}\) & N D & N D & N D & 8 & 7 & 15 \\
\hline " & " & May & 31 & 151 & - D & - b & - D & - D & - D & - D & - D & - \(\quad\) b & 0 & 5 & 5 \\
\hline " & " & June & 1 & 152 & N D & N D & N D & N D & H & N D & N D & N D & 7 & 8 & 15 \\
\hline " & " & " & 2 & 153 & N D & N D & N D & N D & N D & N D & N - & N D & 8 & 7 & 15 \\
\hline " : & " & " & 3 & 154 & N D & N D & N D & ND & N \(D\) & - D & - b & - \(\quad\) b & 5 & 2 & 7 \\
\hline " & " & " & 4 & 155 & N D & N D & N D & N D & N D & N D & N - & N - & 8 & 6 & 14 \\
\hline B-8107 & DR-3 & June & 7 & 158 & - D & - D & - D & - D & - \(\quad\) b & - D & - D & - D & 0 & 7 & 7 \\
\hline " & " & " & 8 & 159 & N D & N D & N D & - D & - D & N D & N D & N b & 6 & 5 & 11 \\
\hline " & " & " & 9 & 160 & N - & N D & N D & N D & N D & - D & N D & * D & 6 & 7 & 13 \\
\hline \multirow[t]{2}{*}{"} & " & & 10 & 161 & N - & N - & N- & H- & N - & N - & N - & N - & 6 & : 0 & 6 \\
\hline & & & & & & & & & & \multicolumn{3}{|r|}{Period II totals:} & 65 & 75 & 140 \\
\hline
\end{tabular}

Table 10-1.--Inventory of BOMEX dropsonde data (continued)


\section*{Table 10-1.--Inventory of BOMEX dropsonde data (continued)}

- = No sounding made, or unsuccessful drop.
\(\mathrm{N}=\) Nighttime soundings.
D = Daytime soundings.
/ = Sounding not processed due to bad, missing, or noisy data.
Drop Positions: \(1=13.0^{\circ} \mathrm{N} 57.9^{\circ} \mathrm{W} ; \quad 2=14.3^{\circ} \mathrm{N} 57.0^{\circ} \mathrm{W} ; \quad 3=15.7^{\circ} \mathrm{N} 56.0^{\circ} \mathrm{W} ; \quad 4=17.0^{\circ} \mathrm{N} 55.1^{\circ} \mathrm{W}\);```


[^0]:    * Wind direction and windspeed acquired as slant range and azimuth. **Parentheses indicate inclusion of instrumentation for radiation.

