NDAQ Electronics Box Front-Panel Interfaces

Table Of Contents

General Information:	3
File Reference:	
Fues:	
Sensor Power / FETs:	
Speed vs NDAQ Cable Lengths:	
NDAQ External Cable:	
NDAQ Cable Power vs Voltage Drop:	
Bulgin Pin Assignments:	
Serial / Analog Panel:	8
Emerald DMM-8 Board Layout / Jumpers	
Sensor Specific Wiring:	
CSAT-3 Sonic	
Garmin GPS	
MaxStream XBee / Xtend Radio Modems	
Niwot08 TelosB PAR-Mote-Box, Tsoil-Mote-Box, Mote-Repeater-Box	
RMY 9101 PropVane Anemometer	
NCAR TRH	
Generic Serial Wiring:	
Power Options	
TVS Use / Shielding	
RS232	
RS422	
RS485	
SIO Interface Panel – Component Current / Power Capacity:	
PCBoard:	
Layout:	
Schematic:	
VIPER CPU Panel:	17
Arcom VIPER Board Layout / Jumpers	17
Device Specific Wiring:	
System Console to PC	
Terabeam EtherAntIII-LR	
Signal Engineering SE12xx GOES Transmitter	
Garmin GPS – With PPS Mapper	19
Viper DIO Interface Mapper	
COM-1:	
COM-2:	
COM-3:	
COM-4:	
COM-5:	
USB Errata:	
USB-1, USB-2 Cabling:	

Ethernet Cabling:	
Ethernet-1	
Ethernet-2	
Layout:	
Schematic:	
Power Distribution Panel:	
Power Panel – Component Current / Power Capacity:	
PCB / Layout:	
Schematic:	
DC-DC Power Option:	

General Information:

File Reference:

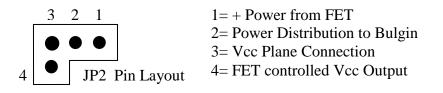
Word Doc: /net/isff/doc/ndaq/Schematics_Layouts_ExpressPCB/NDAQ_Interface_Panels Web Doc: /net/www/docs/rtf/facilities/isff/ndaq/NDAQ_InterfacePanels NDAQ_InterfacePanels_files, Serial2, NDAQ_InterfacePanel1

Power Connections: All boards have both an inner ground and an inner power plane. These are supplied by or are available to 2 types of connectors: a 15-Amp rated Molex (Digikey p/n WM5872-ND, and WM5862-ND) and 8-Amp rated Molex (Digikey p/n WM5624-ND, and WM5605-ND). Each of these connectors has a choke coil between its ground pin and the internal ground plane of the board. All Bulgin connectors have pin-8 (the middle pin) directly connected to the ground plane of the board. Each shield (Bulgin pin-2) can be connected to the ground plane via a jumper. Signal-Ground lines (Bulgin pin-7) are carried to the serial/analog boards via the ribbon header, and have a 1mF coupling capacitor to the ground plane of the board.

Ground Bonding: The ground plane of the boards can be bonded to earth through an aluminum electronics box via the mounting screw hole pads.

Fuses:

Fuses are LittleFuse SMF OmniBlocks. All fuses have internal resistance which provides the selfheating needed to produce failure. Larger fuse sizes have less resistance, and fast-blow have less than slow-blow types. Resistance and thus voltage drop across the fuse is roughly linear until approaching the fuse's rating. Measured voltage drops:


Fuse Size Rating		Voltage Drop - mV
500mA (Fast Blow)	.1	40
	.2	85
	.3	136
	.4	205
	.5	300
1 Amp	.2	30
	.5	88
	.7	141
	.8	173
	.9	215
	1.0	267
3 Amp	.5	44
	.75	66
	1.0	88
	1.5	126

Board Layouts: were done using ExpressPCB software and as the manufacturer. 4-layer board. 3.5"x6.6", 1.25oz copper.

Tests were performed on the boards for current handling and exceeded those expected.

Sensor Power / FETs:

Each Bulgin connector has 2 options to provide +Vcc to the external device. These are enabled by use of jumper Pads JP2 (See panel layouts). *This is true for all external connections on both the Serial/Analog and Viper Interface boards*:

Option 1: None = No Power to Bulgin Pin-1:All JP2 Jumpers RemovedOption 2: Vcc= Continuous Vcc (Battery):Jumper JP2, 2-3Option 3: FET= FET controlled output:Jumper JP2, 3-4, 1-2

When using the FETs, a pullup resistor is used to enable the output. The data system must turn off the FET by pulling the lines low, floating lines will be pulled high. CHECK THESE DEFAULTS WITH ACTUAL BOARDS/CODE! THE REDBOOT SAYS OUT0-2 COME UP AS LOGIC '0'

Sio Board:	Diamond Emerald	
All Ports	Pin-10 (Dio-X) on selected Port	CHECK GM / MANUAL
Viper Board: COM1	PL9 GPIO Connector	
COM1	Pin-11, OUT-0, PXA255 GPIO20	Bootup Default = OFF
COM2	Pin-18, OUT-5, PXA255 GPIO21	Bootup Default = On
COM3	Pin-20, OUT-7, PXA255 GPIO22	Bootup Default = On
COM4	Pin-16, OUT-3, PXA255 GPIO23	Bootup Default = On
COM5	Pin-14, OUT-1, PXA255 GPIO24	Bootup Default = OFF
USB	Pin-15, OUT-2, PXA255 GPIO25	Bootup Default = OFF
Ethernet-1	Pin-19, OUT-6, PXA255 GPIO26	Bootup Default = On
Ethernet-2	Pin-17, OUT-4, PXA255 GPIO27	Bootup Default = On

FET Misc. Info:

IPS521G	Recommended Value	
Max. Continuous Current	1.6A	Most sensors will be well
		below this even, Li7500
High-Level, ie turn-on voltage	4.0-5.5V	
Low-Level, ie. turn-off voltage	-0.3-0.9V	
	Measured Value	
Actual Turn-On Voltage	2.4V	
No-Load Leakage Current	.83mA @ 12.v = 10mW	For one FET. This is what we
w/+5 10K pullup, ie 'On'		need to consider
Leakage with floating input	.016mA = .1mW	Ie FET 'Off'
Leakage with +12 source	.06mA = .7mW	Ie +5 still on, but no Vcc
disconnected		supply
+5V current when 'On'	.055mA = $.3$ mW	To drive gate

Speed vs NDAQ Cable Lengths:

See the notes below about 'NDAQ' serial cable purchased and Ethernet issues in viper section.

Preliminary tests were performed using the SIO interface board and standard cables to observe the signal characteristics for various data rates over both a short and longer-than-expected cable run. Tests were done both with and without addition of an extra .01microFarad filtering capacitor on the PCBoard. The intention of the capacitor was/is to quiet any noise and help reduce spurious resets of the system. At lower speeds the effect of the capacitance is not critical, however *at speeds above 38400bps the capacitor loads the line excessively and should not be used*. This value of capacitance adds approximately 500' (155m) of equivalent cable length to the run. Smaller caps could be used instead (ie .001 microFarad would add ~50' of equivalent cable while retaining some of the filtering capability), but this has not yet been tried.

Tests were performed using Procomm scripts on a PC running through the primary COM1 port:					
RawIOloopbackTest.was Sends an alternating 1/0 character as fast as poss					
	and checks for loop-back receive results.				
MessagePatternSendTest.was	Sends a 12 char message out at nominal message				
	frequencies (~50hz in this case) and checks for				
	loopback receive results.				

Specific Sensors: TRH,CSAT were also examined, powered by a power supply via the interface cable and transmitting data into the PC.

Tests using the Viper CPU board have not been done as of June-05 The title of the images linked below indicates what the conditions were: ie 'with-caps' or otherwise

without; 80m cable length. NOTE because these were loopback tests, an 80m test was actually going through 160m of cable, with 1 leg at 24.6pf and the other at 17pf per foot.

Above 38400, the PC was unable to keep up with the maximum transmit rate (ie bps) and topped out at roughly 47kbps, due primarily to Procomm timer granularity and driver interface latency. Below that rate everything was OK. Tests were also performed using both no flow control, soft (^s^q) and hard (RTS,CTS) flow control. Generally the hard flow control produces less throughput.

NDAQ Cable Capacitance/Length Speed Test Images

The tests roughly indicated in a lab environment: (NOTE I need to confirm these and log the data !!!!)

BPS	<=20m	<=20m	80m	80m WithCaps	80m
		WithCaps		(.01mf)	WithCaps
		(.01mf)		· · · ·	(.001mf)
9600 CSAT	OK	OK	OK	OK	OK
9600 TRH	OK	OK	OK	OK	OK
9600	OK	OK	OK	OK	OK
19200	OK	OK	OK	OK	OK
39400	OK	OK	OK	Data OK,	OK
57600	OK	Data through,	Data through	Data through,	Data through
		lousy signal		lousy signal	
115200	OK	No	Data through,	Nope: yeow!	Data through,
			lousy signal		lousy signal

Background: The following rough Rule-of-Thumb guidelines are primarily for differential signal standards, RS422/485 with cables having 16pF/ft. capacitance. For NDAQ cables which have slightly higher capacitance the performance should be slightly more conservative. Also, for RS232 with higher signaling levels than RS485, the effect would probably be greater, depending upon the performance and threshold level of the transceivers used for specific devices.

- 1) For Short-Cables (<10m): The influence of the wires can be neglected and the limiting factor is the transceiver specifications
- 2) For Medium-Cables (<100m): The wire losses caused by skin effect where current is flowing on the conductor surfaces.
- 3) For Long-Cables (actually all): Speed is limited by the impedance of the lines. The Maximum impedance of the line should be less than 100ohms.

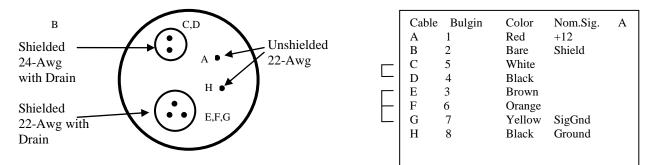
Rule-of-Thumb for Line Capacitance and Speed for RS422/485 (Differential Cabling) *Speed (Mbits/sec) * Cable-Meters <= 10*^8. Ie. a 100-m cable would be able to handle 1-Mbps.

However, one Reference suggests a value roughly 1/3-times the above 'rule'

Speed-bps	1200	56Kbps	128Kbps	256Kbps	512Kbps	1Mbps	2Mbps	
Cable Length Max.	914m	488m	244m	122m	61m	30m	15m	

While another Reference indicated the following far more conservative values: (Note max. length for RS422 specification is 4000')

Speed-bps	4800	9600	19200	38400	57600	115200	
Max. Capacitance	60nf	30nf	15nf	750pf	500pf	250pf	
NDAQ 24ga wire (24.6pf/ft.)	2440'	1214'	310'	30'	20'	10'	Simple math per above
NDAQ 22ga wire (17pf/ft)	3529'	1765'	882'	44'	30'	15'	Simple math per above


Serial Driver Output Voltage Specification Limits:

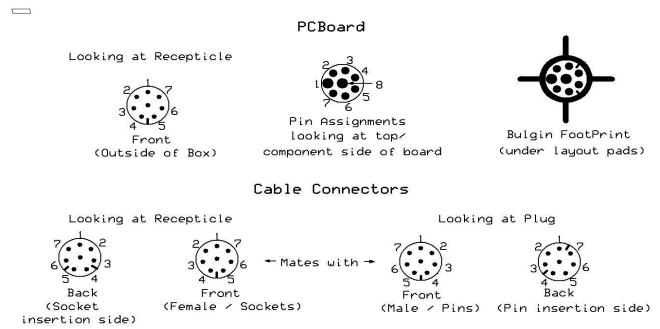
Protocol	Voc Max. Spec.	V-loaded Max Spec.
RS232	+/- 25	+/- 15
RS422	+/- 10	+/-7
RS485	+/- 6	+/- 5

Standard <u>DE-9</u> RS232 Pin Definitions / Signal Directions:

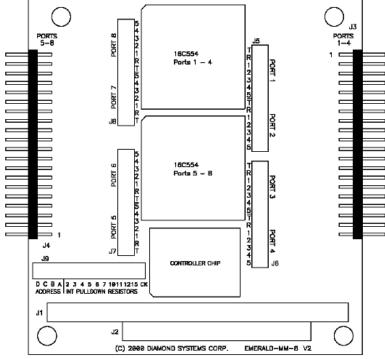
DTE	Signal	DCE - DTE (PC)	DCE=Sensor/Modem
pin			DTE=PC/Computer
1	DCD	\rightarrow	DCE announces that a connection is established
2	Rx	\rightarrow	Data received; 1 is transmitted "low", 0 as "high"
3	Tx	↓	Data sent; 1 is transmitted "low", 0 as "high"
4	DTR	-	DTE announces that it is powered up and ready to
			communicate
5	Gnd		
6	DSR	\rightarrow	DCE announces that it is ready to communicate
7	RTS	ļ	DTE asks DCE for permission to send data
8	CTS	\rightarrow	DCE agrees on RTS
9	RI		DCE signals the DTE that an establishment of a
			connection is attempted

NDAQ External Cable:

Signal Line	Wire Gauge	Capacitance/ft.	Resistance/1000-ft.	
А	22	17.0 pF	18.1 Ohms	+12
В				Shield
С	24	24.6 pF	28.7 Ohms	
D	24	24.6 pF	28.7 Ohms	
Е	22	17.0 pF	18.1 Ohms	
F	22	17.0 pF	18.1 Ohms	
G	22	17.0 pF	18.1 Ohms	
Н	22	17.0 pF	18.1 Ohms	Gnd

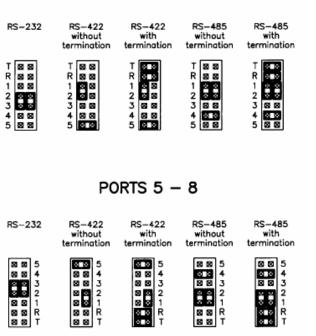

NDAQ cable does not meet specifications for Ethernet 'cat5+' (primarily the 13-17pf/foot capacitance) and as a result works suboptimally if at all for higher distance/speed/loading. It will work straight to the viper/interface panel at 100'. See Ethernet in viper section.

NDAQ Cable Power vs Voltage Drop:


Current Rating of 22AWG used for +/- : 5A absolute max derated by .004/degC and inside jacketing. Resistance for 22AWG copper: ~60ft/ohm at 77degF.

Thus: for 30m cable = 3.28 ohms ... 30*3.28(ft/m) = 98*2 (goes up/down) = 196/60 = 3.28 so for a ~1.2A load and 12.2Vin - 3.8 (IRloss) ~=8.4Volts at licor sensor for example.

Bulgin Pin Assignments:


<u>Serial / Analog Panel:</u> Emerald DMM-8 Board Layout / Jumpers

6.4 Serial Protocol Selection

Jumper blocks J5 through J8 are used to select the protocol for each serial port. Each jumper block configures two ports. Each port may have its protocol set independently of the others. Note that the orientation of jumper blocks J7 and J8 (ports 5 - 8) is rotated 180 degrees from that of J5 and J6 (ports 1 - 4). Configuration drawings are provided below for each group of ports to avoid confusion.

Two configurations are shown for RS-422 and RS-485, with and without line termination.

PORTS 1 - 4

Sensor Specific Wiring:

CSAT-3 Sonic

Note: the CSAT electronics box was modified to bring power out to the CSAT comm./serial connector to avoid using a second connection: the 'factory' power connector.

CSAT-3 Signal	CSAT-3 Connector Pin	Bulgin Pin	Cable-Wire 'GreenJacket'	Cable-Wire 'Thick- Gray (tape color)'
Transmit Data from CSAT to PC	В	5	C = White, with	White
RTS	G	4	D = Black	Purple
CTS	Н	3	E = Brown	Brown
Receive Commands from PC	С	6	F = Orange	Orange
Ground	Е	7	G = Yellow	Yellow
+12 VDC	D	1	A = Red	Red
Ground	F	8	H = Black	Gray
		2	B – no connect	-

Garmin GPS

4800bps for standard NMEA messages.

GPS	Bulgin	Garmin Cable-Wire
Signal	Pin	Color
+12 VDC	1	Red
Shield	2	Bare Shield
1-PPS signal	3	Gray
	4	n/c
Transmit Data-1 from GPS to PC	5	White
Receive Commands-1 from PC	6	Blue
	7	n/c
Ground	8	Black

MaxStream XBee / Xtend Radio Modems

The maxstream will work on the generic sio interface or the Viper ports, per note 'dtr' below.

1 no mu	toucum w	III WOLK OIL THE BELLET		Trace of the viper ports, per note the below.
DE-9	Signal	(Max) DCE -	Bulgin	DCE=Sensor/Modem
Male-		DTE (Viper)	Pin	DTE=PC/Computer
pins				
1	DCD	\rightarrow	n/c	
2	Rx	\rightarrow	5	Radio Output to Viper
3	Tx	-	6	Radio Receive from Viper
4	DTR	\leftarrow	7	Used to Enable Power Down Mode on Radio.
				Note: DTR is only available on Viper ports COM1 and
				COM4. On SioPanels, DTR is on Bulgin pin-3 and
				must be selected by jumper.
5	Gnd		8	
6	DSR	\longrightarrow	n/c	
7	RTS		4	RTS Flow Control, or enter Command Mode of Radio
8	CTS	\rightarrow	3	CTS Flow Control,
9	RI		1	Used for POWER in our application

INIWOLU	5 Telosb	PAK-MOLE-BOX,	1 SOII- N	noie-Box, Moie-Kepealer-Box
MiniDin	Signal	(Max) DCE -	Bulgin	DCE=Sensor/Modem
pins		DTE (Viper)	Pin	DTE=PC/Computer
1	Rx	\rightarrow	5	TelosB Output to Adam
2	Tx		6	TelosB Input from Adam
3,5	+12		1	
	VDC			
4	Gnd		8	
6	Reset		4	RTS, Remove Jumper J9 on Mote-Board to Disable

Niwot08 TelosB PAR-Mote-Box, Tsoil-Mote-Box, Mote-Repeater-Box

RMY 9101 PropVane Anemometer

The sensor has only Serial RS485 or analog speed/direction output. They were programmed to conform to the NCAR – SBUS protocol. For NDAQ, primary use is expected to be with the 1-second continuous data output option; otherwise a polling mechanism for SBUS messages is needed $\#12\text{ODf} \leq \text{EOT} >$ where the 'f' is a checksum equivalent EOT=0x04 and 12 = RMYaddr

Signal	RMY 9101 Pin	Wire	Bulgin	Cable-Wire	Cable-Wire Color
		Color	Pin		'GreenJacket'
RS485-	В	Blk	4	D	Black, bundled with
RS485+	А	Wht	5	С	White
Sig-Gnd	Ref (common)	Yel	7	G	Yellow, bundled with
			3,6	E,F – no connect	Brown, Orange
+12 VDC	Pwr	Red	1	А	Red, non-shielded
Ground	Earth (common)	Blk	8	Н	Black, non-shielded
			2	В	Bare Shield

PORT Connection: ttyS4, Viper Panel COM-5 can be used for the Prop-Vane. Important: Make sure Viper board LK6-7 are in the RS485 position as noted in the ViperCPU photo

RMY9101 Manual.pdf

RMY9101 Old-PAM Notes.pdf

NCAR TRH

Note: Internal Jumpers

The sensor is capable of either RS232 or RS485, however both a jumper wire and a jumper header must be set up to select between these two options inside the TRH.

For RS232: J3-1 blue wire to Bulgin-4; Jumper header J5: 2-3 (toward sensor end of board) For RS485: J1-1 white wire to Bulgin-4; Jumper header J5: 1-2 (toward connector end of board)

Note: Sensor Setup

The TRH is capable of either 'SBUS' or 'Interactive' operation. With NIDS/NDAQ there is no sbus interaction software. There are 2 ways to enter interactive mode:

1) 'esc-esc-esc' while communicating with an sbus device

2) change the default operation. To setup default interactive mode establish a session on EVE most likely with EVE or else use the sequence in 1 above; then use the following basic command sequence after getting into 'PH' help:

'EE' enter eeprom submenu

'protocol=1' turns off sbus, on interactive mode ('=0' is sbus)

'mode=1' turns on auto output mode ('=0' is polled)

'EE' exit eeprom submenu

'MR' reset TRH Quick Reference

Signal	TRH Berg Pin	Wire	Bulgin	Cable-Wire	Cable-Wire Color
		Color	Pin		'GreenJacket'
RS485+	J1-1, jmp select	Wht	5	С	White, bundled with
RS232 – Tx Data	J3-1, jmp select	Blue	5	С	White bundled with
from TRH to PC	JS-1, Jilip select		5		White, bundled with
RS485-	J1-2		4	D	Black
RS232 – Rx	J3-2		6	F	Orange, bundled with
Cmds from PC	J J J J		0		Oralige, buildled with
			2,3	B,E - no connect	Bare, Brown
SigGnd	J3-3, intern short		7	G	Yellow
Sigoliu	with		/		Tenow
Shield	J1-3		7	G	
+12 VDC	J2-1	Red	1	А	Red, non-shielded
Ground	J2-2	Blk	8	Н	Black, non-shielded

Generic Serial Wiring:

Power Options

Option	Jumpering	FET Status	FET Control
Vcc	JP2: 2-3	FET disabled (JP4 Out)	n/a
FET	JP2: 1-2, 3-4	FET enabled (JP4 In)	DIO-x (for portx) emerald_dio /dev/ttyD5 0,1
None	JP2: all removed	FET disabled (JP4 Out)	n/a

TVS Use / Shielding

Option	TVS Array Used	Shielded Pair 4,5 – C,D	Shielded Triad 3,6,7 –E,F,G
RS232	VS10P15LC	Rx/RTS	Tx/CTS/SigGnd
RS422	VS10P08LC	Tx+/Tx-	Rx+/Rx-/SigGnd
RS485	VS10P08LC	Tx+/-, Rx+/-	SigGnd

RS232

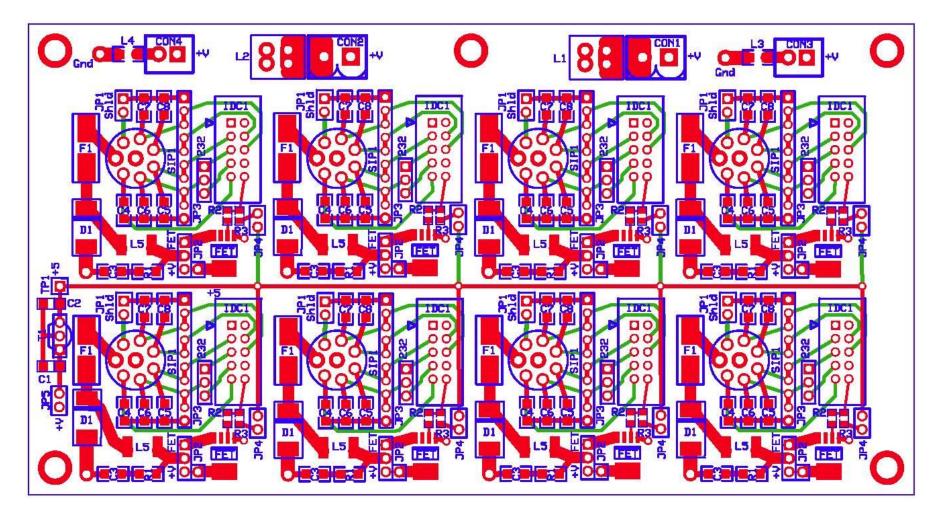
Cable-Wire	Bulgin	Ribbon-10 to PC104 line	Protection / Interface
A = Red	1 (Power +Vcc)		TVS SMC, RLC Choke/Filter -Gnd
B = Bare	2 (Shield)		Jumper to Ground Plane
H = Black	8 (Ground)		Direct connect to Ground Plane
		1 = DCD, 2 = DSR, 8 = RI (n/c)	
C = White	5	3 = Rx (Input data to PC)	TVS array, .01mF Filter CapGnd
D = Black	4	\cdot 4 = RTS	TVS array, .01mF Filter CapGnd
F = Orange	6	5 = Tx (Jmp-3 Select '232')	TVS array, .01mF Filter CapGnd
E = Brown	3	6 = CTS	TVS array, .01mF Filter CapGnd
		7 = DTR (n/c Jmp-3 De-select)	
G = Yellow	7 (SigGnd)	9 = Gnd	1mF Filter CapGnd
		10 = DIO (FET power ctrl)	

RS422

Cable-Wire	Bulgin	Ribbon-10 to PC104 line	Protection / Interface
A = Red	1 (Power +Vcc)		TVS SMC, RLC Choke/Filter -Gnd
B = Bare	2 (Shield)		Jumper to Ground Plane
H = Black	8 (Ground)		Direct connect to Ground Plane
		1,2,8 = (n/c)	
C = White	5	3 = Tx +	TVS array, .01mF Filter CapGnd
D = Black	4	4 = Tx-	TVS array, .01mF Filter CapGnd
		5 = Gnd (n/c Jmp-3 De-select)	
E = Brown	3	6 = Rx-	TVS array, .01mF Filter CapGnd
F = Orange	6	7 = Rx + (Jmp-3 Select '422')	TVS array, .01mF Filter CapGnd
G = Yellow	7 (SigGnd)	9 = Gnd	1mF Filter CapGnd
		10 = DIO (FET power ctrl)	

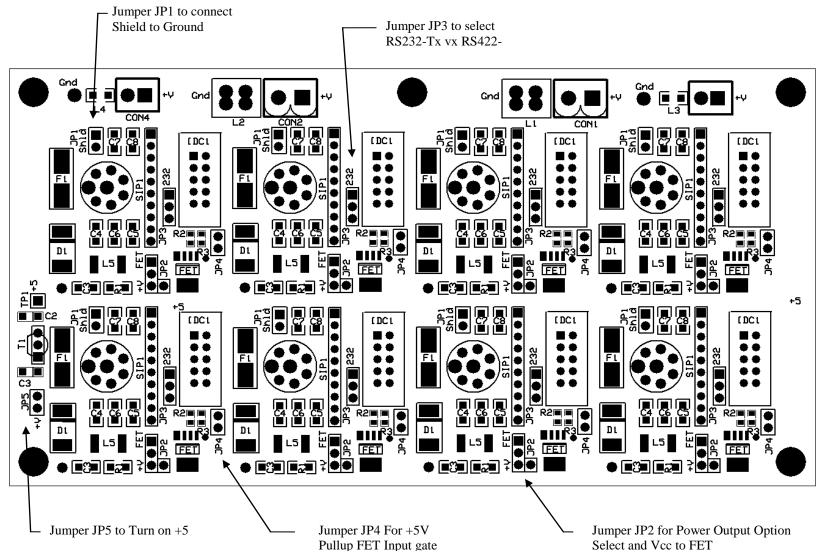
RS485

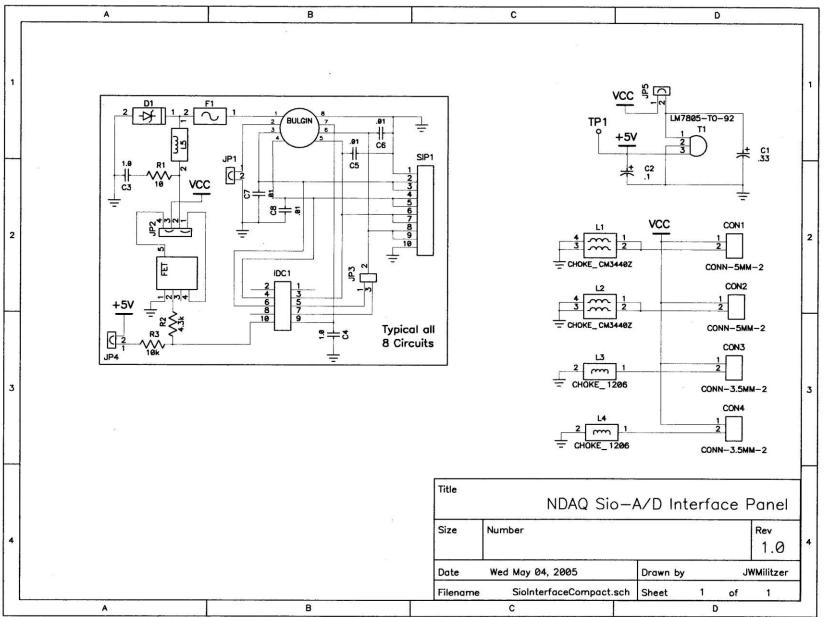
Cable-Wire	Bulgin	Ribbon-10 to PC104 line	Protection / Interface
A = Red	1 (Power +Vcc)		TVS SMC, RLC Choke/Filter -Gnd
B = Bare	2 (Shield)		Jumper to Ground Plane
H = Black	8 (Ground)		Direct connect to Ground Plane
		1,2,8 = (n/c)	
C = White	5	3 = Tx + / Rx +	TVS array, .01mF Filter CapGnd
D = Black	4	4 = Tx - / Rx -	TVS array, .01mF Filter CapGnd
		5 = Gnd (n/c Jmp-3 Removed)	
E = Brown	3 (Available)	6 = (n/c)	TVS array, .01mF Filter CapGnd
F = Orange	6 (Available via jumper)	7 = (n/c) (Jmp-3 Removed)	TVS array, .01mF Filter CapGnd
G = Yellow	7 (SigGnd)	9 = Gnd	.01mF Filter CapGnd
		10 = DIO (FET power ctrl)	


SIO Interface Panel – Component Current / Power Capacity:

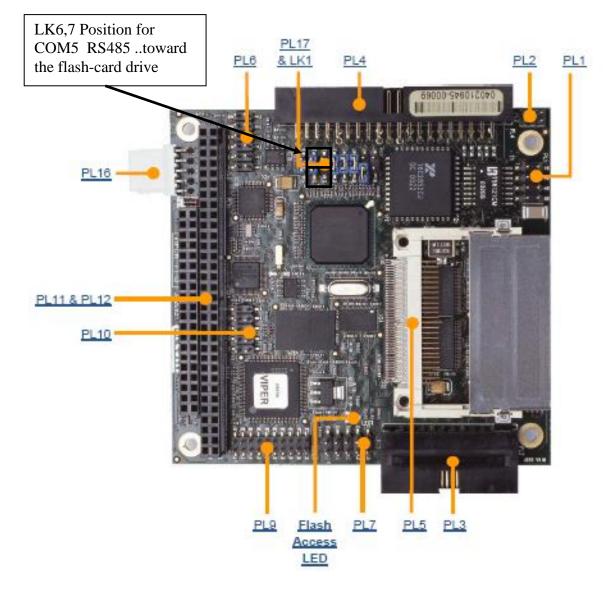
Current capacity of the board is dictated by various components on it and the power distribution from the main 'dc-dc' panel.

It is also dependent upon overall board and component temperature. In general current capacity goes down with temperature for lans/wire, but improves for components that are limited on internal junction temp/heat sinking.


Component	Rating	Comment
Bulgin Pins	5A	Max for Pins/Sockets (p/n 3347 and 3348)
22AWG Wire for +/-	5A	Absolute max derated by .004degC and inside jacketing
to Sensors		
AWG Wire for +/- to		
board from Power		
Panel		
Board Connectors	15A	5mm Black 2-pin Molex (wm5872-nd, wm5862-nd)
	8A	3.5mm Black 2-pin Molex (wm5624-nd, wm5605-nd)
PCB Total	8A ?	Measured once at room temp but should redo at cold
		(lower capacity). Board has internal power/ground
		planes, so 'really big lan'.
Board LANs	~0.7A@-10degC	.080" x 1.25 Oz./ft ² copper trace through coil, fuse to
	~1.5A@0degC	Bulgin connector. Tested to much more temporarily at
	~2.0A@10degC	room temp.
	~4.0A@45degC	
FET	1.4A @ 125degF	IRL IPS521G part. Max continuous current is dictated
	2.0A @ 75degF	by Junction Temperatures. These improve with lower
	2.6A @ 25degF	ambient temps. and better heat sinking on chip or lan.
	10A peak	The NDAQ board was not designed with any special heat
		sinking capabilities.
Coil, power choke.	3.4A @ 45degC	Panasonic (pcd1362ct-nd). Dependant on part temp.
Pin on +12 Distrib.	3A	Sullens .1" breakaway (s1011-35-nd)
Shunts on PowerPin	3A	Sullens .1" (s9000-nd)
DC-DC converter	1.8A	For providing +15VDC to board, used for Ethernet on
		viper in particular. (20W module)



14/41



VIPER CPU Panel:

Arcom VIPER Board Layout / Jumpers Connectors, LEDs and jumpers

The following diagram shows the location of the connectors, LEDs and jumpers on the VIPER:

Device Specific Wiring:

System Console to PC

Note: This is a 'null modem' for PC to Viper, COM1 = /dev/ttyS0.

The same wiring would work on the other ports as well, however, to connect a true DCE such as a sensor you need to swap 5-6 (Tx/Rx) and 3-4 (RTS/CTS) and the Viper becomes the DTE.

DE-9	Signal	(Viper) DCE -	Bulgin	DCE=Sensor/Modem
pin		DTE (PC)	Pin	DTE=PC/Computer
1	DCD	\rightarrow	n/c	
2	Rx	\rightarrow	6	
3	Tx		5	
4	DTR	\rightarrow	7	Note: DTR is only available on Viper ports COM1 and
				COM4. Don't connect this on other ports because pin-7 is used for siggnd which could harm PC
5	Gnd		8	
6	DSR	\rightarrow	n/c	
7	RTS	+	3	
8	CTS	\rightarrow	4	

Terabeam EtherAntIII-LR

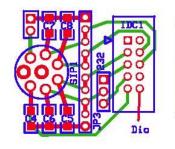
Note: This is an ethernet Cross-Over cable for the Viper, Eth1 port

Cable-Wire 'GreenJacket'	Bulgin EantIII (xover)	Bulgin TPOP (straight)	Signal	Switchcraft Connector (SC1163-ND)	Protection / Interface
				(EtherAnt)	
A = Red	1	1	Power +Vcc	5	
B = Bare	2	2	Shield		Jumper to Ground Plane
C = White	3	5	Tx+	1 (has dot)	
D = Black	6	4 .	Tx-	2	
F = Orange	4	6	Rx -	4	
E = Brown	5	3	Rx+	3	
G = Yellow	7	7	Optional		
			LANGnd		
H = Black	8	8	Ground	6	Connection to Ground Plane

Signal Engineering SE12xx GOES Transmitter

Note: This works for Viper COM4, or the generic Emerald RS232 panel. RTS/CTS are required. DCD/DTR/DSR/RI not needed.

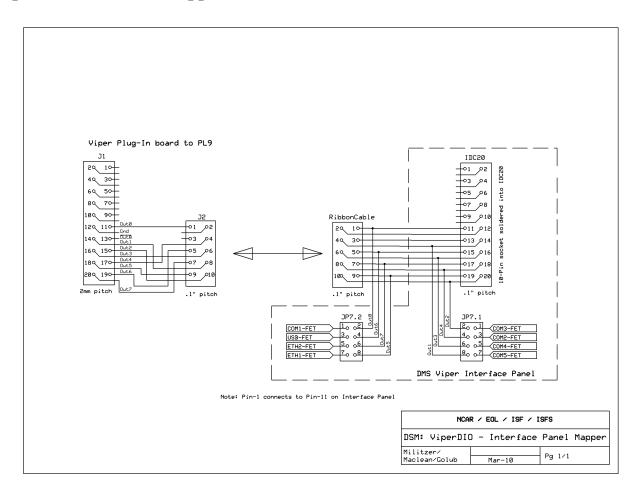
Note: For ADAM-Box Internal Wiring use 'FrontPanel-Ribbon10' to 'Goes Ribbon14 or 10'.

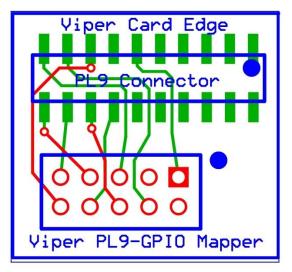

Signal	(Viper) DCE - DTE	Bulgin	Front Panel: Viper/	Ribbon-14,	Ribbon-10
	(PC)	Pin	Emerald	SE120 or	OmniSat
			Ribbon-10	SE1200	
Rx	From GOES to PC	5	3	14	3
	'Viper/Diamond'				
Tx	To GOES from PC	6	5 (via JP3)	13	5
Gnd		8	9	2,4,6	9,10
RTS	To GOES from PC	4	4	11	4
CTS	From GOES to PC	3	6	12	6

Garmin GPS – With PPS Mapper

GPS	Bulgin	Garmin	Ribbon-10	Ribbon-10 on	Viper PL4 –
Signal	Pin	Cable-	on Viper	Mapper board	COM4
		Wire	Panel	CTS-DCD	
		Color	COM4		
+12 VDC	1	Red			
Shield	2	Bare Shield			
1-PPS signal	3	Gray	6 = CTS	1=DCD	21
	4	n/c			
Transmit Data-1	5	White	$3 = \mathbf{R}\mathbf{x}$	3=Rx	23
from GPS to PC	5	white			
Receive			5 = Tx	5=Tx	25
Commands-1	6	Blue			
from PC					
	7	n/c			
Ground	8	Black			

00


4800bps for standard NMEA messages.



RS232 pinouts

DCD	00	DSF
R×	00	RTS
T×	00	CTS
DTR	00	RI
Gnd	00	Die

G	arı	nin -	Bul	lgin Pins			
B	alg	gin	Rit	obon-10	1	1aj	os-To
1	=	+12	=	fuse			
2	=	shie	ld				
3	=	PPS	=	6 (CTS)	=	1	(DCD)
4	=	n/c					
5	=	Tx	=	3	=	3	(Rx)
6	=	Rx	=	5 via jmp	=	5	(Tx)
7	=	n/c					
8	=	Gnd	-	board layer			

Viper COM-Ports: The Viper has 5 COM ports available on a 40-pin , .1" IDC header named PL4. These are split out into 4 individual 10-pin receptacles for distribution to the interface board headers.

COM-1: Console: RTS/CTS/DTR; /dev/ttyS0

TVS Array	FET Power Control	Shielded Pair	Shielded Triad				
		4,5 – C,D	3,6,7 –E,F,G				
PLCDA15C-6	OUT-0 (Viper PL9-11)	Rx/RTS	Tx/CTS/DTR				
Notes: SigGnd wir	Notes: SigGnd wire 'stolen' to provide protection for DTR on Bulgin pin-7						

Cable-Wire Bulgin **Ribbon-10** Viper **Protection / Interface** 'GreenJacket' PL4 A = Red1 (Power +Vcc) TVS SMC, RLC Choke/Filter -Gnd B = Bare2 (Shield) Jumper to Ground Plane 1 = DCD (n/c)31 2 = DSR(n/c)32 C = White 5 3 = Rx33 TVS array, .01mF Filter Cap.-Gnd D = Black4 4 = RTSTVS array, .01mF Filter Cap.-Gnd 34 TVS array, .01mF Filter Cap.-Gnd F = Orange 6 5 = Tx35 3 6 = CTS36 TVS array, .01mF Filter Cap.-Gnd E = BrownG = Yellow7 7 = DTR37 TVS array, .01mF Filter Cap.-Gnd 8 = RI (n/c)38 H = Black8 (Ground) 9 = Gnd39 Direct connection to Ground Plane 10 = (n/c)40

COM-2: RTS/CTS; /dev/ttyS1

TVS Array	FET Power Control	Shielded Pair 4,5 – C,D	Shielded Triad 3,6,7 –E,F,G
VS10P15LC	OUT-5 (Viper PL9-18)	Rx/RTS	Tx/CTS/SigGnd

Cable-Wire 'GreenJacket'	Bulgin	Ribbon-10	Viper PL4	Protection / Interface
A = Red	1 (Power +Vcc)			TVS SMC, RLC Choke/Filter -Gnd
B = Bare	2 (Shield)			Jumper to Ground Plane
H = Black	8 (Ground)			Direct connection to Ground Plane
		1 = Tx3	11	
		2 = Rx3	12	
C = White	5	3 = Rx2	13	TVS array, .01mF Filter CapGnd
D = Black	4	4 = RTS2	14	TVS array, .01mF Filter CapGnd
F = Orange	6	5 = Tx2	15	TVS array, .01mF Filter CapGnd
E = Brown	3	6 = CTS2	16	TVS array, .01mF Filter CapGnd
		7 = Gnd	17	
		8 = Gnd(n/c)	18	
G = Yellow	7 (SigGnd)	9 = Gnd	19	.01mF Filter CapGnd
		10 = (n/c)	20	

<u>COM-3:</u> Tx/Rx Only; /dev/ttyS2

TVS Array	FET Power Control	Shielded Pair 4,5 – C,D	Shielded Triad 3,6,7 –E,F,G
VS10P15LC	OUT-7 (Viper PL9-20)	Rx	Tx/SigGnd

Cable-Wire 'GreenJacket'	Bulgin	Ribbon-10 (with COM2)	Viper PL4	Protection / Interface
A = Red	1 (Power +Vcc)			TVS SMC, RLC Choke/Filter -Gnd
$\mathbf{B} = \mathbf{B}\mathbf{are}$	2 (Shield)			Jumper to Ground Plane
H = Black	8 (Ground)			Direct connection to Ground Plane
F = Orange	6	1 = Tx3	11	TVS array, .01mF Filter CapGnd
C = White	5	2 = Rx3	12	TVS array, .01mF Filter CapGnd
		3 = Rx2	13	
D = Black	4 (n/c)	4 = RTS2	14	
		5 = Tx2	15	
E = Brown	3 (n/c)	6 = CTS2	16	
G = Yellow	7 (SigGnd)	7 = Gnd	17	.01mF Filter CapGnd
		8 = Gnd(n/c)	18	
		9 = Gnd	19	
		10 = (n/c)	20	

<u>COM-4:</u> RTS/CTS/DTR; /dev/ttyS3

3

7

TVS Array		FET Power Control		Shielded Pair		Shielded Triad	
				4,5	– C,D	3,6,7 –E,F,G	
PLCDA15C-0	5	OUT-3 (Viper PL9	9-16)	Rx	/RTS	Tx/CTS/DTR	
Notes: SigGn	d wir	e 'stolen' to provi	de prot	tection for	r DTR on B	ulgin pin-7	
Cable-Wire		Bulgin	Rib	bon-10	Viper	Protection / Interfa	ace
'GreenJacket'					PL4		
A = Red	1 (Po	ower +Vcc)				TVS SMC, RLC Choke	/Filter -Gnd
B = Bare	2 (Sh	ield)				Jumper to Ground Plane	9
			1 = D	OCD (n/c)	21		
			2 = D	OSR (n/c)	22		
C = White	5		3 = R	lx	23	TVS array, .01mF Filter	r CapGnd
D = Black	4		4 = R	RTS	24	TVS array, .01mF Filter	r CapGnd
F = Orange	6		5 = T	Х	25	TVS array, .01mF Filter	r CapGnd

26

27

28

29

30

6 = CTS

7 = DTR

9 = Gnd

10 = (n/c)

8 = RI (n/c)

<u>COM-5:</u> RS485 (half-duplex) /422; /dev/ttyS4

8 (Ground)

E = Brown

G = Yellow

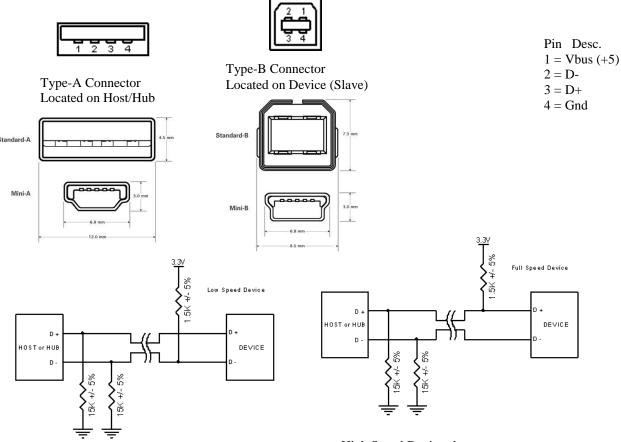
H = Black

TVS array, .01mF Filter Cap.-Gnd TVS array, .01mF Filter Cap.-Gnd

Direct connection to Ground Plane

Note: DC-DC Auxiliary Power An additional *Sensor Power Option is available* via CON5 intended to feed to and back from a separate DC-DC converter. Note that because of this, *2 jumpers are needed to provide power* to the external device/s

Note: Viper Setup for Half-Duplex RS485


Viper Jumper selections: LK6,LK7 to position A=RS485, to position B=RS422 (see figure above or technical manual)

Note: See <u>TRH</u> Setup Above for Interactive Mode / RS485. See <u>RMY9101</u> for more about wiring.

TVS Array	FET Power Control	Shielded Pair	Shielded Triad
		4,5 – C,D	3,6,7 –E,F,G
VS10P08LC	OUT-1 (Viper PL9-14)	Tx+/- (RS422)	Rx+/-,SigGnd (RS422)
		Tx+/-,Rx+/- (RS485)	SigGnd (RS485
Sensor Power	Jumpering		
Option			
Vcc	CON5: 1-2	FET disabled	JP4 Out
VCC	JP2: 2-3	I LI disabled	51 4 Out
	CON5: 1-2		
FET	JP2: 1-2, 3-4	FET enabled	JP4 In
	JP2: 1-2		
+15SubModule	JP2: 2-3	FET disabled	JP4 Out
None	JP2: all removed	FET disabled	JP4 Out

Cable-Wire	Bulgin	Ribbon-10	Viper	Protection / Interface
'GreenJacket'			PL4	
A = Red	1 (Power +Vcc)			TVS SMC, RLC Choke/Filter -Gnd
B = Bare	2 (Shield)			JP1, Jumper to Ground Plane
H = Black	8 (Ground)			Direct connection to Ground Plane
		1 = n/c	1	
		2 = n/c	2	
		3 = n/c	3	TVS array, .01mF Filter CapGnd
		4 = n/c	4	TVS array, .01mF Filter CapGnd
C = White	5	5 = Tx + (422)	5	TVS array, .01mF Filter CapGnd
		Tx+/Rx+ (485)		
D = Black	4	6 = Tx - (422)	6	TVS array, .01mF Filter CapGnd
		Tx-/Rx- (485)		
F = Orange	6	7 = Rx + (422)	7	
E = Brown	3	8 = Rx - (422)	8	
G = Yellow	7 (SigGnd)	9 = Gnd	9	C4 - 1mF Filter CapGround Plane
		10 = Gnd	10	

USB Errata:

Low Speed Devices have a pull-up resistor on D- to identify themselves to a host

High Speed Devices have a pull-up resistor on D+ to identify themselves to a host. USB-2 = 480Mbits/sec

Operating Speeds:

Low Speed = 1.5 Mbps (can use non-shielded cable)

Full Speed = 12 Mbps (USB1.1, requires shielded cable)

High Speed = 480 Mbps (USB2.0 and above)

This includes overhead so actual rates will be slightly lower.

Speed Identification

Devices identify to a host whether they are slow or full by pulling one of the data lines. These are also used by the host to identify when a device is connected.

Full speed: pulls up D+ to 3.3

Some devices use programmable pull-ups so that they can initialize themselves before notifying the host of their presence.

Electrical

Differential Data transmission, NRZ1 with bit stuffing Low/full speed devices: 1 has D+=>2.8V, D-=<.3V; 0 has D+=<.3V,D-=>2.8 Receiver needs differential '1' as D+ 200mV>D- and vis-versa Signal polarity reversed based on speed of bus: 'J'=logic levels and for low speed 'J' is differential 0, in high speed 'J' is a differential 1

Power: +5V operation

VIPER CPU Interface Panel -

System Configuring: All devices include internal information specifying various parameters including the amount of power they'll consume from the bus.

Voltage, operating = 4.75 - 5.25V

Max. voltage drop = 0.35

Min. config voltage = 4.4 (min. voltage to send config. On bus but other functions don't need to be operating at that low a value)

- Low, Bus Powered functions 100mA max. (1-unit load) for between 4.4-5.25V, device draws all power from bus.
- High, Bus Powered functions 100mA max at startup, 500mA max. After startup/configure period, it may draw up to 500mA, or less depending upon what it declares in it's descriptor.

Self Powered functions100mA max., device draws all remaining power internally.Suspend Mode.5mA max. Note, implementation is complicated by the
pull-up identifying resistors in the design.

Cabling / Lengths:

Shielding:should only be connected to ground at Host! No device should do it.Shielded Cable:28AWG twistedPower:20-28AWG non-twistedMax. Length:28 = .8m26 = 1.3m24 = 2.1m22 = 3.3m20 = 5m

Decoupling Capacitance: 1microF recommended between Vbus-Gnd in a device. This relates to limited specification of in-rush current. The maximum for a device is 10microF.

USB-OTG: On-The-Go

Supplement to the Specification released Dec-2001.

Introduces idea of devices being allowed to be sometimes a host or slave in order to permit connectivity without the need for a main PC host. Example: digital cameras talking directly to a printer

Connectors added: Mini-A, Mini-B, and Mini-AB (for dual-role devices)

Wireless USB-OTG: big emerging market

2.4Ghz, DSSS, much less complex than Blue-Tooth or Zigbee

Not a multi-tiered net, small packet data, doesn't require periodic net sync.

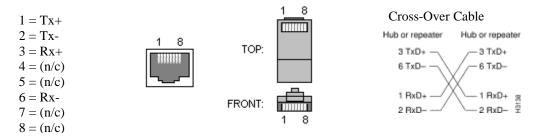
Cable replacement, up to 62.5kbps

10-50m

Cypress Semiconductor developed this capability and offers starter devel. Kits., SPI intf. to micro

USB-1, USB-2 Cabling:

The Viper has 2 USB ports. Both are routed to the interface panel but only 1, USB-2 is taken to the outside via the Bulgin connector. This decision allowed the power supply circuit to still be available on the Bulgin connector rather than having both USB's on it instead.


TVS Array	FET Power Control	Shielded Pair 4,5 – C,D	Shielded Triad 3,6,7 –E,F,G
SRV05-4	OUT-2 (Viper PL9-15)	DNEG-2/DPOS2	VBUS2/Gnd

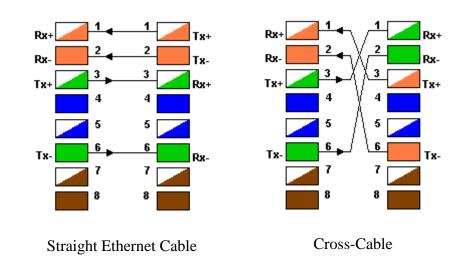
Notes:

Cable-	Bulgin	Ribbon-10 -	Protection / Interface	On-Board USB
Wire		Viper PL7		Type-A Conn.
A = Red	1 (Power, +Vcc)		F1, TVS SMC, RLC Choke/Filter -	
			Gnd	
		1 = VBUS-1	TVS/Diode array1, 1mF CapGnd	USB-1, Pin-1
E =	3	2 = VBUS-2	TVS/Diode array2, 1mF CapGnd	USB-2, Pin-1
		3 = DNEG-1	TVS/Diode array-1	USB-1, Pin-2
C =	5	4 = DNEG-2	TVS/Diode array-2	USB-2, Pin-2
		5 = DPOS-1	TVS/Diode array-1	USB-1, Pin-3
D =	4	6 = DPOS-2	TVS/Diode array-2	USB-2, Pin-3
H = Black	8 Ground Plane	7 = Gnd	C4 - 1mF Filter CapGnd Plane	USB-1, Pin-4
G =	7	8 = Gnd	C4 - 1mF Filter CapGnd Plane	USB-2, Pin-4
F =	6 (n/c)	9 = Shield		
$\mathbf{B} = \mathbf{Bare}$	2 (Shield jump to ribbon)	10 = Shield		

Ethernet Cabling:

Twisted-pair Ethernet (10BASE-T, 100BASE-T, or 1000BASE-T) uses an RJ-45 connector, which is an eight-pin modular connector




CrossOver: Two Ethernet stations can be directly attached to each Other but the cabling will be wired differently than a normal 10BASE-T Ethernet network connection. The 802.3 specification refers to this direct connection between two stations as a crossover function. The crossover function is accomplished by simply wiring the receive pins to the transmit pins as shown above.

CAT6 essentially obsoletes the CAT5 standard and will obsolete the CAT5e standard. CAT6 was introduced with the publication of the TIA standard 568-B2-1 (June 20, 2002). The bandwidth is more than doubled from 100MHz to 250MHz and the connector insertion loss and the crosstalk is improved.

CAT 5: 4 Twisted Pairs at 24 AWG

pair 1: blue pair: 2 orange pair: 3 green pair: 4 brown (twisted about 3 times per inch)

Ethernet uses only pair 3 (green, on pins 1 and 2), and pair 2 (orange, on pins 3 and 6).

EIA/TIA specifies RJ-45 (ISO 8877) connectors for UTP cable (unshielded twisted pair). Impedance: 100 Ohms Max length of a segment: 100 meters/330 feet Frequency rating: 100MHz Capacitance 13.5 to 17 picofarads per foot Attenuation 23 to 67dB per 1000 feet Crosstalk 32 to 51 dB at 1000 feet

CAT 5 Cable Specifications:

Frequency	Max. Attenuation per 1000 ft/ 304 m	Resistance per 1000 ft/ 304 m	Capacitance	Impedance
4 MHz	13 dB	28,6 ohms	14 pF/ft	100 ohms
10 MHz	20 dB	28,6 ohms	14 pF/ft	100 ohms
20 MHz	28 dB	28,6 ohms	14 pF/ft	100 ohms
100 MHz	67 dB	28,6 ohms	14 pF/ft	100 ohms

CAT 3, 4, 5, 5e, 6, 7 Cable Specifications:

Category	Туре	Spectral B/W	Length	LAN Applications	Notes
Cat3	UTP	16 MHz	100m	10Base-T, 4Mbps	Telephone Cables
Cat4	UTP	20 MHz	100m	16Mbps	Rarely Used
Cat5	UTP	100MHz	100m	100Base- Tx,ATM, CDDI	LAN
Cat5e	UTP	100MHz	100m	100Base-T	LAN
Cat6	UTP	250MHz	100m	1000Base-T	LAN
Cat7	ScTP	600MHz	100m	1000Base-T	LAN

CAT 5, 5e, 6 Detailed Cable Specifications:

	CAT 5	CAT 5e	CAT 6
Frequency	100 MHz	100 MHz	250 MHz
Attenuation (Min. at 100 MHz)	22 dB	22 dB	19.8 dB
Characteristic Impedance		100 ohms ± 15%	100 ohms ± 15%
NEXT (Min. at 100 MHz)	32.3 dB	35.3 dB	44.3 dB
Return Loss (Min. at 100 MHz)	16.0 dB	20.1 dB	20.1 dB

Cat5 Wiring Standards, Listed

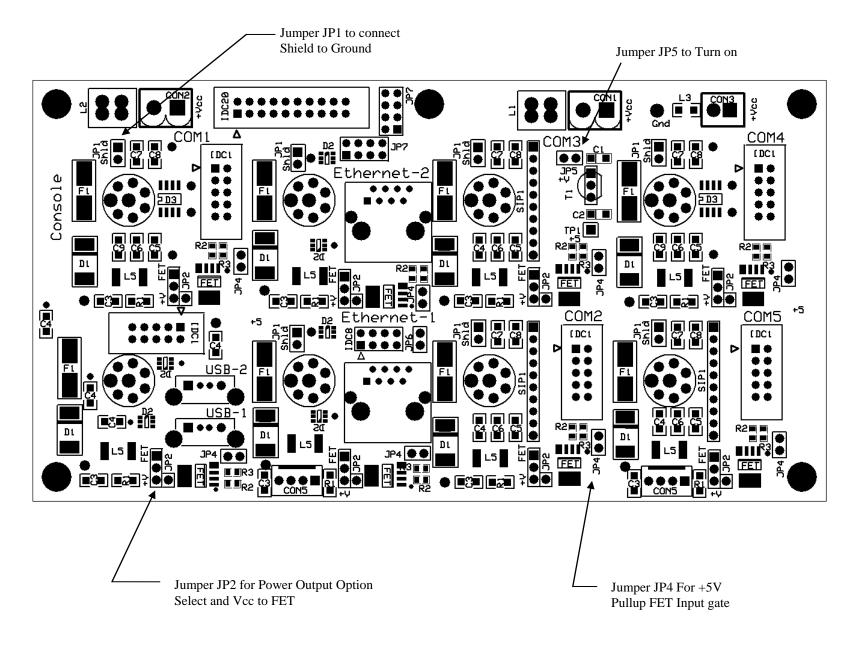
Pin	EIA/TIA 568A	AT&T 258A, EIA/TIA 568B	Т	100Base- TX 100Mbps Cat5	T4	T2	1000Base- T 1Gbps Cat5+
1	white/green	white/orange	TX+	TX+	TX D1+	BI DA+	BI DA+
2	green/white	orange/white	TX-	TX-	TX D1-	BI DA-	BI DA-
3	white/orange	white/green	RX+	RX+	RX D2+	BI DB+	BI DB+
4	blue/white	blue/white	na	na	BI D3+	na	BI DC+
5	white/blue	white/blue	na	na	BI D3-	na	BI DC-
6	orange/white	green/white	RX-	RX-	RX D2-	BI DB-	BI DB-
7	white/brown	white/brown	na	na	BI D4+	na	BI DD+
8	brown/white	brown/white	na	na	BI D4-	na	BI DD-
	BI=BI d	irectional data	n RX=R	eceive Dat	a TX=Tr	ansmit Dat	a

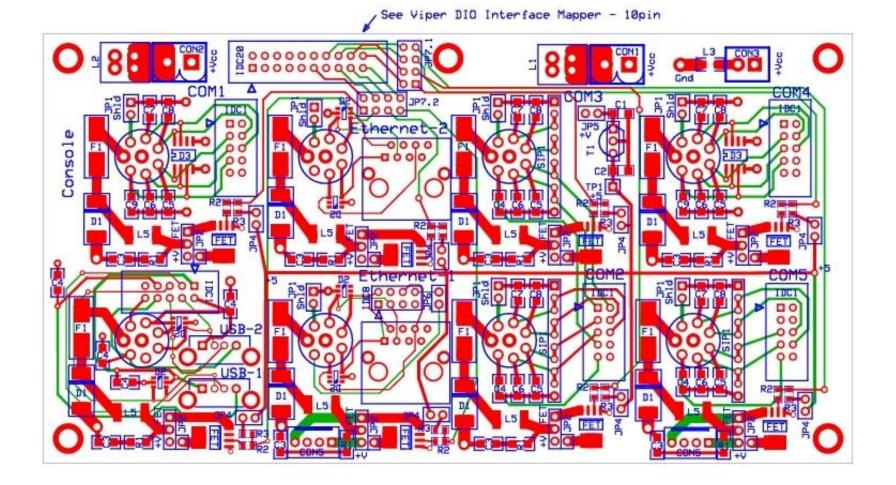
	10BaseT and 100BaseT Cross Cable					
Pin	Color Code	Color Code	Pin			
1	White/Orange	White/Green	1			
2	Orange	Green	2			
3	White/Green	White/Orange	3			
4	Blue	Blue	4			
5	White/Blue	White/Blue	5			
6	Green	Orange	6			
7	White/Brown	White/Brown	7			
8	Brown	Brown	8			

Ethernet-1

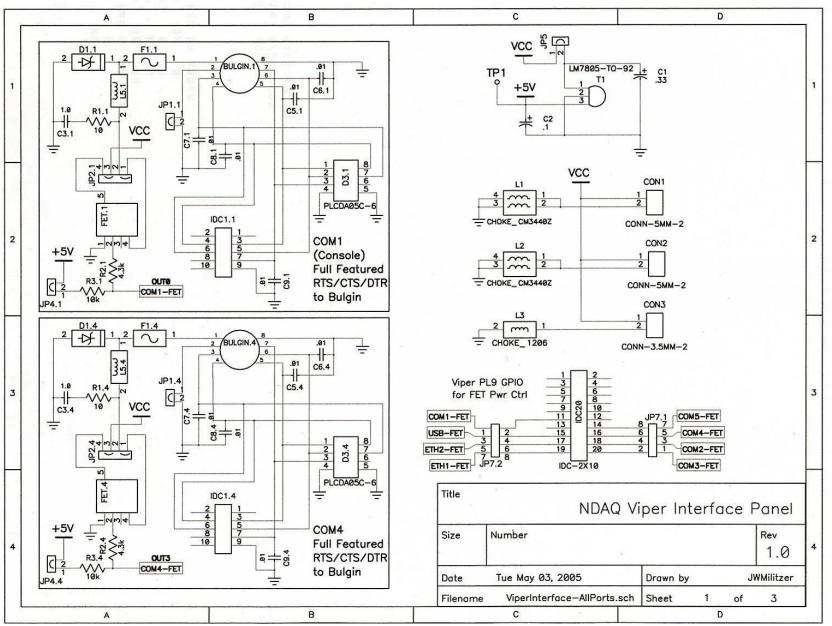
Note: An additional Sensor Power Option is available via CON5 intended to feed to and back from a separate DC-DC converter.

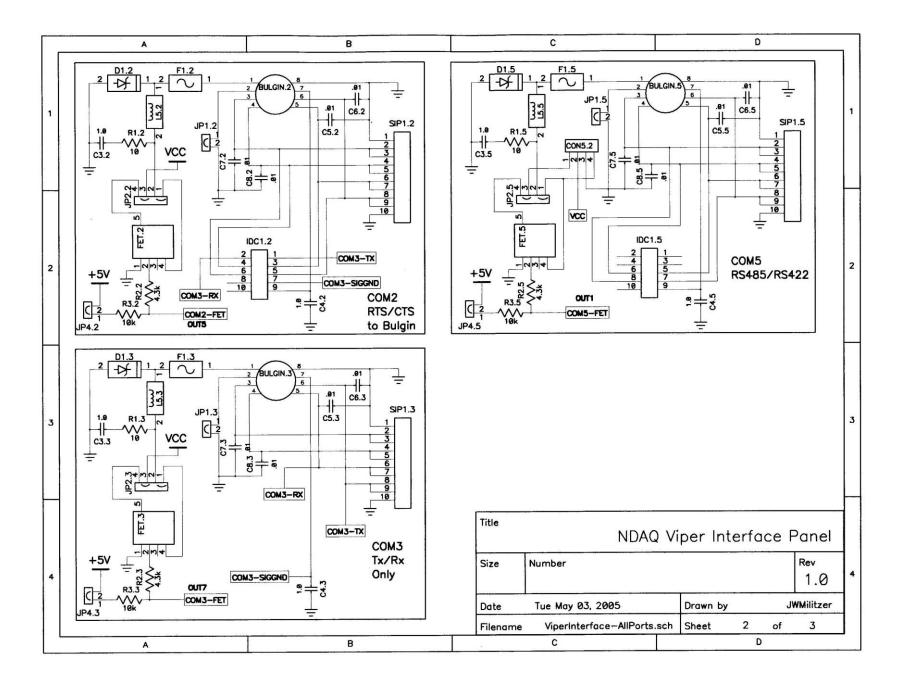
TVS Array	FET Power Control	Shielded Pair	Shielded Triad 3,6,7 –
		4,5 – C,D	E,F,G
SRV05-4	OUT-6 (Viper PL9-19)	Tx+/-	Rx+/-,LANGnd
Sensor Power	Jumpering		
Option			
Vcc	CON5: 1-2 JP2: 2-3	FET disabled	JP4 Out
FET	CON5: 1-2 JP2: 1-2, 3-4 JP2: 1-2	FET enabled	JP4 In
+15SubModule	JP2: 2-3	FET disabled	JP4 Out
None	JP2: all removed	FET disabled	JP4 Out

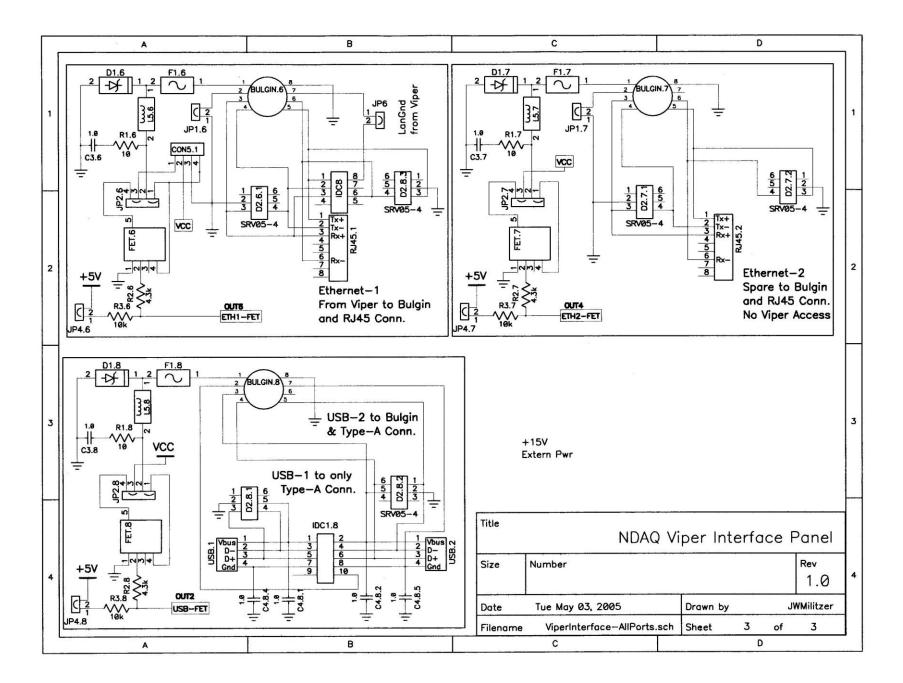

Cable-Wire	Bulgin to External	Ribbon-8 -	Protection / Interface	On-Board Eth.
'GreenJacket'		Viper PL1		Modular Jack
A = Red	1 (Power +Vcc)		F1, TVS SMC, RLC Choke/Filter -	
	1 (FOWEI + VCC)		Gnd	
B = Bare	2 (Shield: jumper to gnd)		JP1, Thermal Pad to Ground Plane	
H = Black	8 Ground Plane		Thermal Pad to Ground Plane	
C = White	5	1 = Tx +	TVS/Diode array1	ETH1, Pin-1
D = Black	4	2 = Tx-	TVS/Diode array2	ETH1, Pin-2
E = Brown	3	$3 = \mathbf{R}\mathbf{x} + \mathbf{C}\mathbf{x}$	TVS/Diode array-1	ETH1, Pin-3
		4 = RJ-2		
		5 = RJ-2		
F = Orange	6	$\cdot 6 = Rx$ -	TVS/Diode array-2	ETH1, Pin-6
G = Yellow	7 (JP6 jump to Gnd)	8 = LANGnd		


Ethernet-2

TVS Array	FET Power Control	Shielded Pair 4,5 – C,D	Shielded Triad 3,6,7 -E,F,G
SRV05-4	OUT-4 (Viper PL9-17)	Tx+/-	Rx+/-


Cable-	Bulgin to External	Ribbon-8 -	Protection / Interface	On-Board Eth.
Wire		Viper PL1		Modular Jack
A = Red	1 (Power +Vcc)		F1, TVS SMC, RLC Choke/Filter -Gnd	
$\mathbf{B} = \mathbf{B}\mathbf{a}\mathbf{r}\mathbf{e}$	2 (Shield: jumper to gnd)		JP1, Thermal Pad to Ground Plane	
H = Black	8 Ground Plane		Thermal Pad to Ground Plane	
C =	5		TVS/Diode array1	ETH2, Pin-1
D =	4		TVS/Diode array2	ETH2, Pin-2
E =	3		TVS/Diode array-1	ETH2, Pin-3
F =	6		TVS/Diode array-2	ETH2, Pin-6
G =	7 (n/c)			


Layout:



Schematic:

Power Distribution Panel:

Description: This board was laid out for interfacing the NDAQ to the external station power cabling using AMP 4-pin CPC series connectors. These were selected to be compatible with existing PAM-III cabling.

4-layer board.1.25oz copperExpressPCB layout and manuf.

3.5"x4.0"

Nominal Current Capacity for various trace sizes. The table below gives rough guidelines of how wide to make a trace for a given amount of current. Elevated temperatures reduce trace capacity.

0.010" 0.3 Amps 0.015" 0.4 Amps 0.020" 0.7 Amps 0.025" 1.0 Amps 0.050" 2.0 Amps 0.100" 4.0 Amps 0.150" 6.0 Amps

When placing a trace, it is very important to think about the space between the trace and any adjacent traces or pads. You want to make sure that there is a minimum gap of 0.007" between items, 0.010" is better. Leaving less blank space runs the risk of a short developing in the board manufacturing process. It is also necessary to leave larger gaps when working with high voltage.

Power Connections: The board has both an inner ground and an inner power plane. These are supplied by or are available to 6 connectors: 3-each 15-Amp rated Molex (Digikey p/n WM5872-ND, and WM5862-ND) and 2-each 8-Amp rated Molex (Digikey p/n WM5624-ND, and WM5605-ND). These connectors do not have a choke coil between its ground pin and the internal ground plane. Power to the board is routed through AMP connector labeled "MAIN", through a TVS array, Choke and filter to another Molex connector to a 8A rated M-Series Breaker / Switch from Carling Technologies (MD1-B-34-460-1-A16-2-C).

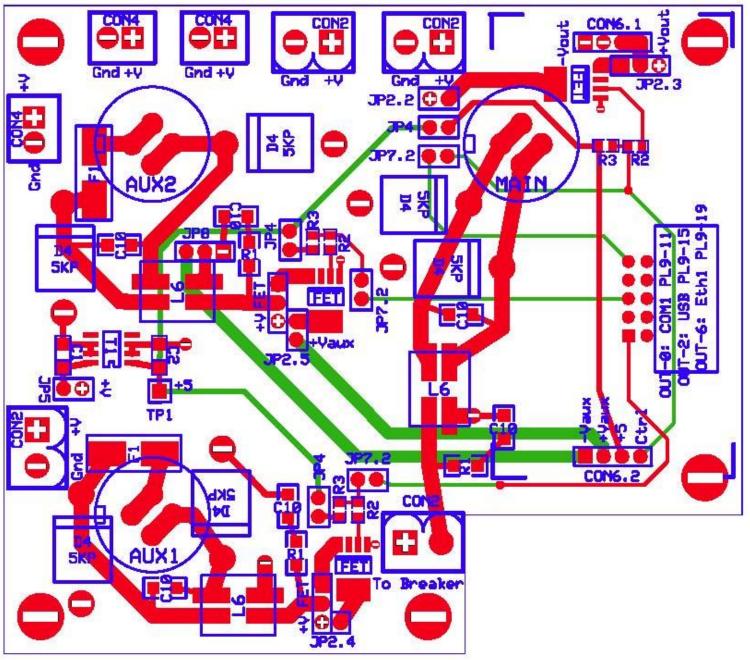
High current ferrite-beads are used as common-mode chokes on both ground and +Vout to suppress noise and assist the TVS protection.

Ground Bonding: The ground plane of the board can be bonded to earth through an aluminum electronics box via the 5 mounting screw hole pads.

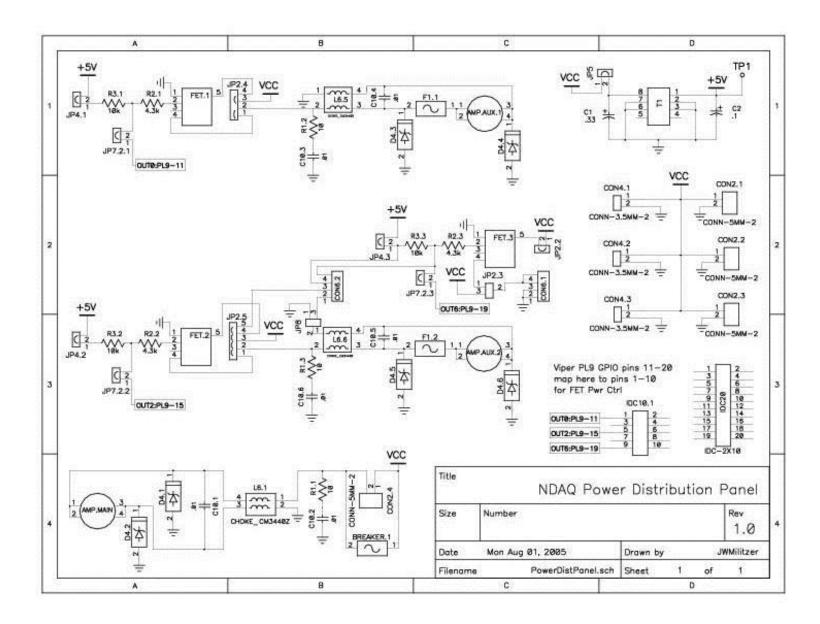
PORT	Supply Power Option	Jumpering			Viper Control
AUX1	Vcc	JP2: 2-3	FET disabled	JP4, JP7 Out	
	FET	JP2: 1-2, 3-4 JP4: 1-2	FET enabled	JP7 =	OUT-0
AUX2	Vcc	JP2: 2-3	FET disabled	JP4, JP7 Out	
	FET	JP2: 1-2, 3-4 JP4: 1-2	FET enabled	JP7 =	OUT-2

Auxiliary Outputs for external equipment: AUX1, AUX2

+15SubModule	JP2: 2-3, 4-5 JP4: 1-2	FET enabled	JP4	
Module Ctrl:				OUT-6


Power Panel – Component Current / Power Capacity:

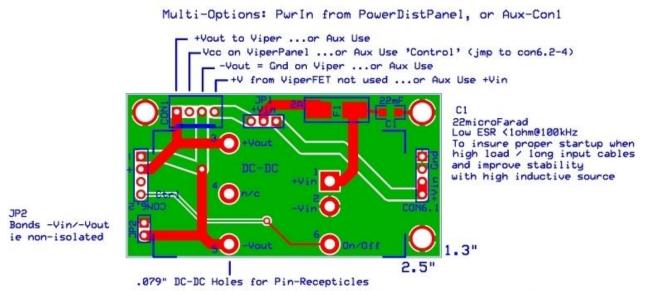
LIMITATION: Board LANs from 'Main-In' to the internal power plane.


It is also dependent upon overall board and component temperature. In general current capacity goes down with temperature for lans/wire, but improves for components that are limited on internal junction temp/heat sinking.

Component	Rating	Comment
AMP Pins	13A? per pin *2	Mentioned on one note in digikey catalog
16AWG Wire for +/-	13A per wire	Note temp./insulation deratings reduce these
to board from Power		
Panel		
Board Connectors	15A	5mm Black 2-pin Molex (wm5872-nd, wm5862-nd)
	8A	3.5mm Black 2-pin Molex (wm5624-nd, wm5605-nd)
PCB Total	See LAN	Board has internal power/ground planesneed to
		measure.
Board LANs	~0.7A@-10degC	.080" x 1.25 Oz./ft^2 copper trace through coil, fuse to
THIS IS THE	~1.5A@0degC	Bulgin connector. Tested to much more temporarily at
PROBLEM from	~2.0A@10degC	room temp.
Main thru Switch to	~4.0A@45degC	
Power Plane		
Power Switch/Brkr	8A	Rated
FET for Aux1,2	1.4A @ 125degF	IRL IPS521G part. Max continuous current is dictated
	2.0A @ 75degF	by Junction Temperatures. These improve with lower
	2.6A @ 25degF	ambient temps. and better heat sinking on chip or lan.
	10A peak	The NDAQ board was not designed with any special heat
		sinking capabilities.
Power Choke on	20A	L6, Stewart Ferrite (240-2186-1-nd)
Input and Aux		
Pin on +12 Distrib to	3A	Sullens .1" breakaway (s1011-35-nd)
dc-dc submodule.		
Shunts on PowerPin	3A	Sullens .1" (s9000-nd)

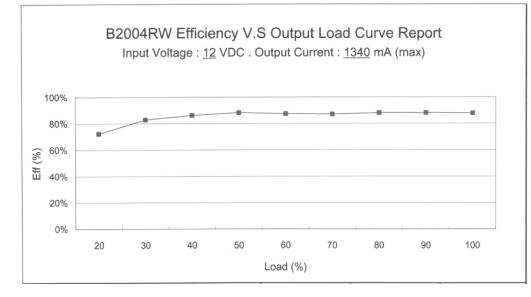
PCB / Layout:

Schematic:

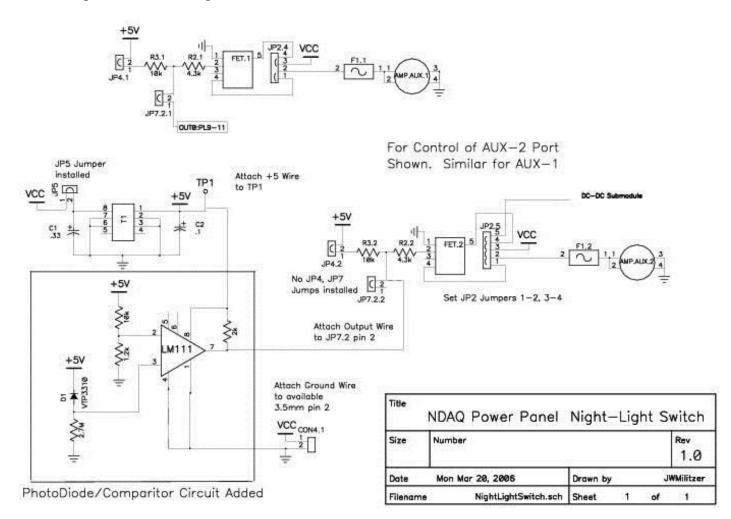

DC-DC Power Option:

A sub-module can be stacked on top of the power distribution board to provide a regulated voltage supply. Its output is routed to both its 'CON5' connector and to CON6.2 on this board and 'AUX2' via JP2.5. The initial purpose is to operate the wireless Ethernet antennas at optimum power setting. The commercial converter used is a 20W unit with wide input range from MicroPowerDirect (www.micropowerdirect.com), model B2004. It has a reasonable efficiency as shown in the diagram below.

The DC sub-module obtains power from either:


- CON6 on this board via FET control. Insert JP2, JP7 and JP4 jumpers located adjacent to the 'Main' input. Control is provided via Viper OUT-6 signal.
- CON4 on this board, the 2-pin power connector would plug into pins 1,2 on CON1 of the DC-DC sub-module.
- CON1 on the submodule via the 'CON5' connectors on the Viper CPU panel Ethernet1 or COM5

DC-DC Sub-Module:


Efficiency:

EVE-NDAQ Adaptor Panel

PhotoDiode 'Night-Light' Switch:

For the TREX project a photo-diode based switch was built to turn on a tower beacon at night and turn it off in the daytime using either the Aux1 or Aux2 external power ports. The PerkinElmer diode VTP3310 available from www.newarkinone.com was used through a LM111 comparitor to drive the standard FET switch to control the output power. Shown below is a modified version of the NDAQ power distribution panel for clarification.

