The Production of Warm Rain in Tropical Cumulus Clouds

Jason Lowenstein, Alan Blyth

RICO Meeting: Boulder, Colorado January 2006

OBJECTIVE:

- To **quantify** the production of **warm rain** in shallow **cumulus clouds**.
 - Examine relative importance of (1) aerosols and (2) entrainment and mixing on spectral broadening.

Platforms:

- Microphysics probes onboard NCAR C130, BAE146 and Wyoming King Air
- SPolKa Radar

Modeling:

- Stochastic Coalescence Model (Cooper et al. 1997) initialized with **observed**:
 - Sub-cloud aerosol distribution.
 - Cloud-base temperature and pressure.
 - Cloud updraft speeds.
- Modified Parcel Model (Lasher-Trapp et al. 2005) with entrainment and mixing.

Aerosol Size Distribution from PCASP and FSSP, Averaged over 750 s @ ~100 m above MSL (14 Jan '05)

Comparison of Observed and Model-Produced DSDs ~ 880 m Above Cloud-Base (14 Jan '05)

DSD Observed:

- Slightly Below Cloud-Top
- In Max. Updraft (4.7 ms⁻¹)

SPolKa Radar- Time Height Diagrams

Objective: Compare increases in radar reflectivity with parcel model and aircraft obs.

Future Work: Collaboration with Sonia Lasher-Trapp

Straka 3-D Cloud Model

Modified Parcel Model w/ Entrainment and Mixing

Compare DSDs from Modified Parcel Model with **Observations**

5600