Precip Initiation Studies

Colleen Henry (PhD), Jen Bewley (MS), Sonia Lasher-Trapp (tenure)

FSSP Data Analysis of Giant Aerosol

 Average FSSP concentration from "circles"

• Appearance of 3 regimes

 Consistent with near surface wind speed

Preliminary Radar Analysis

- 6 days identified to investigate
 - 10 Dec, 20 Dec, 11 Jan, 14 Jan, 18 Jan, & 23 Jan

	10 Dec	20 Dec	11 Jan	14 Jan	18 Jan	23 Jan
Max dBZ	-5 to 5	0 to 5	-5 to 0	15 to 20	0 to 5	0 to 5
Lifetime	Long (?)	30-40 min (?)	15 -30 min	Short (10 min)	Long	Long (~ 30 min)

 High GA concentration → high initial reflectivity, short lifetime, & high maximum reflectivity

• Looking for "anomalous" GA behavior

Future Work

• 3 of these appear to have "anomalous" GA behavior

- 10 Dec, 20 Dec, 11 Jan
- 10 Dec \rightarrow variation in GA throughout the day

• More quantitative analysis of radar data

• Cloud evolution, lifetime, initial reflectivity, ZDR

• Pinpoint "anomalous" days to investigate

- Survey environmental characteristics
- Cloud modeling

Influence of Entrainment-- obs

- Focus on precip initiation in smaller trade wind cu (not lines or deeper clouds), and perform analysis wrt shedding thermal model
- Take statistical approach to representing features of "typical" cloud behavior on each day of interest
 - Drop size distribution evolution
 - Relating to environmental characteristics
 - Radar echo evolution

adapted from Blyth, Cooper, Jensen (1988)

Potential Cases

- Flight days were selected based upon:
 - Sampling smaller trade wind cumulus
 - Differences in environmental soundings
 - Differences in precipitation amounts
- 10 Dec vs. 20 Dec (RF04,09)
 - Similar environmental soundings (drier) but less precip on 20 Dec (1 L⁻¹ vs. 0.03 L⁻¹ on 2D-P)
- 16 Dec. vs. 20 Dec (RF06, 09)
 - Different environmental soundings (16th-- drier, 20th more moist) but similar amounts of precip (0.03 L⁻¹ on 2D-P)

Entrainment-- modeling

- Model cloud "typical" of each day of interest, at high spatial resolution
- Investigate effects of entrainment and mixing on drop size distributions and precip evolution
 - run parcel model along trajs through simulated cloud
 - extend calcs to coalescence
- Compare with clouds in drier environments-- New Mexico cumulus

Lasher-Trapp et al. (2005)

Workshop Collaborators

- Alan Blyth, Jason Lowenstein, Justin Peters (Univ. of Leeds)
 - Data analysis, entrainment, numerical modeling of DSD along trajectories
- Patrick Chuang and Jen Small (UC Santa Cruz)
 - Analysis of large drop data from PDI (phase Doppler interferometer) wrt thermal circulation
- Charlie Knight (NCAR)
 - Modeling of giant aerosol growth in RICO clouds and comparison to ZDR radar echo evolution
- Bjorn Stevens (UCLA)
 - Hierarchy of LES

