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Abstract. Sampling errors in eddy correlation flux measurements arise from the small 
number of large eddies that dominate the flux during typical sampling periods. Several 
methods to estimate sampling, or random error in flux measurements, have been 
published. These methods are compared to a more statistically rigorous method which 
calculates the variance of a covariance when the two variables in the covariance are auto- 

and cross-correlated. Comparisons are offered between the various methods. Compared to 
previously published methods, error estimates from this technique were 20 to 25% higher 
because of the incorporation of additional terms in the estimate of the variance. This new 
approach is then applied to define the random error component of representative eddy 
correlation flux measurements of momentum, sensible and latent heat, carbon dioxide, and 
ozone from five field studies, three over agricultural crops (corn, soybean, and pasture), 
and two from towers over forests (deciduous and mixed). The mean normalized error for 
each type of flux measurement over the five studies ranged from 12% for sensible heat 
flux to 31% for ozone flux. There were not large or significant differences between 
random errors for fluxes measured over crops versus those measured over forests. The 
effects of stability, flux magnitude, and wind speed on measurement error are discussed. 

1. Introduction 

Eddy correlation, also known as eddy covariance (EC), mea- 
surements of heat, momentum, and trace gas fluxes are fre- 
quently the most accurate and reliable way to measure ex- 
change processes between the atmosphere and the land or 
water surface. In an EC measurement the flux is the covariance 

of the vertical velocity (w) with the state variable of interest 
(c); that is, flux is equal to w' c', where c can be a scalar such 
as temperature, concentration of a gas, etc., or a vector such as 
horizontal wind velocity, and the prime denotes departure 
from the mean. The advent of more reliable and less expensive 
sonic anemometers, fast response instruments for tempera- 
ture, water vapor, carbon dioxide, and other trace gases, and, 
not least of all, the ready availability of small, cheap, and 
powerful computers for data acquisition, has put the equip- 
ment to make good EC measurements within the reach of 
many researchers. 

Like any other complex measurement, EC measurements 
can be subject to significant bias and random errors. However, 
unlike many measurements, there are no straightforward ways 
to calibrate or audit flux measurements in the field. Aside from 

the obvious issues of instrument calibration and data handling, 
sources of error include possibly invalid assumptions inherent 
in the EC method about the state of the atmosphere, and 
errors that are a by-product of real-world sampling strategies. 

Businger [1986], in a review of the accuracy with which the 
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flux of trace gas measurements can be made, listed and ex- 
plained several possible sources of EC error, including the 
following: (1) errors caused by the buoyancy effects of heat and 
water vapor, (2) sampling error, (3) error due to limited re- 
sponse time of the sensors, (4) error due to separation of the 
sensors, (5) error due to random noise in the system, (6) errors 
due to entrainment, advection, and nonstationarity in the con- 
centration or wind fields, (7) error due to inadequate or ex- 
cessive height of the sampler over the surface, (8) errors due to 
inadequate fetch, (9) errors due to deliquescence of aerosol 
particles, and (10) error due to flow distortion caused by the 
sampling system or tower. Mahrt [1998] also discussed these 
and other possible sources of errors in flux measurements from 
towers. 

This paper deals only with the second of these sources of 
error, sampling error. Error due to sampling cannot be elimi- 
nated by experimental design, but is a consequence of the 
limited number of independent samples that contribute sub- 
stantially to a flux during any fixed sampling period, and of the 
various autocorrelations and cross correlations in the two co- 

variates. Dyer and Bradley [1982] noted the highly variable 
nature of flux measurements in the International Turbulence 

Comparison Experiment (ITCE), indicating the need for sta- 
tistically meaningful samples to achieve repeatable flux profile 
relationships. Shaw et al. [1983] was one of the first to quantify 
the infrequent energy-containing eddies that contribute to a 
flux measurement. Longer sampling periods increase the num- 
ber of independent samples and may reduce sampling error, 
but longer sampling times frequently lead to other problems 
including lack of stationarity in the atmosphere. 

In field programs carefully designed to avoid the other er- 
rors noted by Businger [1986], sampling error will remain as 
one of the largest sources of uncertainty. It is desirable to 
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3504 FINKELSTEIN AND SIMS: SAMPLING ERROR IN FLUX MEASUREMENTS 

quantify the contribution of this error, in order to answer 
questions such as whether or not any two flux measurements 
are significantly different from each other, whether a particular 
flux measurement is significantly different from zero, and 
whether a flux measurement differs significantly from a model 
result. This paper addresses the need to determine the confi- 
dence limits of an individual or series of EC flux measure- 

ments. 

2. Variance Estimation 

Sampling error can be expressed as the variance of the EC 
measurement, that is, the variance of the covariance. The en- 
semble variance 02 about the ensemble mean of some variable 

c should go to zero as the averaging time T approaches infinity. 
Lumley and Panofsky [1964] express this as 

2c'2,r 
rr 2-•---•0 as T-•o• (1) T ' 

where r is the integral timescale for c. This assumes r can be 
defined for the appropriate scale of measurement. They define 
the percent error of measurement of the variable c as a = 
where a is the coefficient of variation. They show that the 
averaging time needed to achieve a desired accuracy a may be 
expressed as 

2c'2,r 

T- 2a 2 . (2) c 

Wyngaard [1973] points out that the integral timescale can be 
approximated by r = l/U, where l is the size of the dominant 
eddy and U is the mean wind speed. For neutral conditions, l 
can be approximated by the instrument height z. For covari- 
ances, Wyngaard has demonstrated that the averaging times 
can be expressed as 

r• • a-T• u* 4 - 1 
(3) 

z [(w'O') 2 T;O • a• u ,2T ,2 1 , 

where u, is the surface friction velocity, T, is the turbulent 
temperature scale, and u'w' and w'0' are momentum and 
sensible heat fluxes, respectively. 

From fast response data measured by Haugen et al. [1971] in 
the Kansas experiment, Wyngaard [1973] estimated that in a 
neutral atmosphere, longer averaging times are required for 
covariances of heat and momentum than for variances of 0 and 

w. For the unstable case (z/L = -1, where L is the Monin- 
Obukhov length) the error in momentum stress should be 
about 3 times that of heat flux for the same T. On the basis of 

the observed data the momentum stress error increased for 

greater instability, but heat flux error did not. He estimates 
that the bracketed terms in (3) are approximately equal to 20 
for both momentum and heat in the neutral case and are about 

100 and 12, respectively, in an unstable atmosphere. In the 
stable case the bracketed expression is about 5 times higher 
than for the neutral case, or about 100, but I will be smaller. 

Sreenivasan et al. [1978] estimated the accuracy of higher 
moments of u, w, 0, and q (water vapor), and the accuracy of 
the covariances u'w .... q' , w 0 , and w from data taken over 

water at a height of 5 m under near-neutral conditions. They 
used an approach similar to that of Lumley and Panofsky 
[1964], estimating the appropriate integral timescales from the 
autocorrelation functions which were obtained from inverse 

Fourier transforms of the spectral density functions. They also 
derived the integral timescales using assumptions about the 
shape of the probability density functions (PDF) for the dif- 
ferent variables. Comparisons of the two sets of integral time- 
scales showed approximately 30% difference for w'u' and 
w'0', and 70% difference for w'q'. Using their measured 
integral timescales, they found from their data that 

ozz 

82__ - ur (4) 

was a good fit, where e2 is the mean square relative error, z is 
the height of measurement, U is the wind speed, T is the 
duration of the measurement, and a is an empirical constant. 
Note that these measurements were made at one height. From 
their measurements they calculated that a was about 30 for 
momentum flux, 44 for moisture flux, and 64 for heat flux. 

The problem of the variance of a flux measurement has been 
considered more recently by Lenschow et al. [1993a, 1993b] and 
Mann and Lenschow [1994]. Their development differs some- 
what from that of Lumley and Panofsky [1964] in that it defines 
the more standard error variance of the central moment of the 

time series (i.e., the mean is removed). They also defined the 
integral timescale by assuming that the autocorrelation func- 
tion can be modeled by an exponential. The resulting relative 
error is 

+ F = 4c J ' 
where rF is the integral timescale of the flux F and r,• c is the 
correlation coefficient of w and c. Looking at aircraft data, 
they saw large scatter in the results, perhaps due to nonsta- 
tionarity or perhaps, they hypothesized, due to low values of r. 
They showed that including estimates of skewness helps to get 
better estimate of the error variance. 

Wesely and Hart [1985] derived an expression for the vari- 
ance of flux measurements which broke up the variance into an 
instrument noise as well as sampling error, and estimated each 
separately. They showed that 

rrw-W-d; c, (1 -- R2wc + b2)l/2O'wO'c 

Fc = (•_) -•/2 , (6) Fc 

where 

= ' . (7) 
O'w O' c 

Their expression for sampling error can be shown to be equiv- 
alent to that of Wyngaard [1973]. 

Even in stationary periods, an exponential decay model for 
the autocorrelation function for typical meteorological vari- 
ables is frequently a poor model, as will be shown in section 
3.2. Note that in (3) the auto- and cross-covariance terms 
between the two time series are disregarded, while (5) includes 
rE instead of the cross covariance and does not consider the 
auto covariance. Disregarding these terms can, and frequently 
will, result in an underestimate of the variance. An approach 
that does not ignore these terms, or make any a priori assump- 
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FINKELSTEIN AND SIMS: SAMPLING ERROR IN FLUX MEASUREMENTS 3505 

Table 1. Integral Timescales •- of the Indicated Covariate Autocorrelation Function a 

Julian Local 

Day Time w' U' w' T' w' O• w'H20' w'CO• 

203 1600 0.9 0.5 1 
208 0830 5.1 2.8 1.8 4.3 

208 0930 2 0.1 1.8 2.8 

208 1430 1.1 0.6 0.7 0.9 

208 1500 1 1 0.6 1 

208 1600 0.6 0.8 0.3 0.7 
212 1230 1 0.5 0.4 0.8 

212 1330 0.8 0.8 0.5 0.8 

212 1500 0.6 0.4 0.4 0.8 

212 1530 0.7 0.8 0.5 1 

0.9 

3.4 

3.2 

0.9 

1 

0.7 

0.6 

0.8 

0.8 

1.1 

aTimescales are in seconds. 

tions about the data, the boundary layer, or the autocorrelation 
function, is desirable and is presented below. 

The following mathematically rigorous expression for the 
variance of a covariance, from a theorem developed by Fuller 
[1976], presented by Bendat and Piersol [1966], and used by us 
in the work of Meyers et al. [1998], which includes the auto- and 
cross-covariance terms for atmospheric fluxes, meets these cri- 
teria. (The notation follows that of Fuller, with •/x,y = x'y'.) 

•1___[ m m var (•/x,y) = • •/J,J(P ) •/y,y(P ) + • •/x,y(P ) •/y,x(P ) , 
p = -m p = -m 

(8) 

where •x,• is the variance of x estimated from data, •x,y is the 
estimated covariance of x and y; where x and y are measured 
variables (e.g., vertical velociff and concentration of ozone), n 
is the number of samples in the data set (i.e., 18,000 for 30 min 
of 10 Hz data), and m is a number of samples sufficiently large 
to capture the integral timescale. Summing from -m to m is 
done for computational convenience and is equivalent to the 
sum from -n to n assuming that from m to n the correlations 
are approximately zero. In practice we have used an m of 200 
(20 s). Tests on sample data sets showed that the results varied 
by only 1-2% for m be•een 100 and 400. At times longer than 
400 the results do not change as long as there is no time trend 
in the data. The variance of the covariance estimate for each 

sample time series, (8), may be evaluated by computing sample 
estimates for the auto covariance, •x,x, and cross covariance, 
•x,y, of lag h, using 

n-h 

1 • (Xt - •) (Xt+h -- •) (9) x,x(h) : = 
t=l 

and 

n-h 

1 E (Xt--•)(rt+h = = - 
t=l 

(lO) 

3. Comparison of Sampling Error 
Estimation Techniques 

Three analytical techniques for estimating sampling error 
will be compared: that developed from Wyngaard [1973] in (3) 
(denoted as Wyn), Mann and Lenschow [1994] (M-L) in (5), 
and that presented above in this work (F-S) in (8)-(10). A 

comparison of estimates using the three approaches with a 
small sample of data follows. 

3.1. Data for the Comparison 

Data for this comparison were taken from a field study 
conducted near Plymouth, North Carolina, in the summer of 
1996. Measurements of wind speed, temperature, water vapor, 
carbon dioxide, and ozone were taken with fast response sen- 
sors and recorded at 10 Hz. The instruments, or their intakes, 
were mounted 5 m above the ground on a tower located in a 
large, flat, soybean field. The fetch was approximately 1 km in 
a 180 ø arc centered pointing south. Details of the instrumen- 
tation system, calibration, quality control techniques, and data 
handling are presented by Meyers et al. [1998]. Ten periods, 
each one-half hour long, with somewhat different meteorology 
and fluxes, were selected for this comparison. The day and time 
of each example case are given in Table 1. 

3.2. Integral Timescales 

The M-L approach requires the estimation of the integral 
timescale of the covariates, •',,,c, = *F' They suggest that ß can 
be estimated from the spectra of the flux; however, this can be 
quite imprecise because of its noisy nature from any one half- 
hour observation period. Kaimal and Finnigan [1994] suggest 
estimating the integral timescale from a plot of the autocorre- 
lation function, assuming that it can be estimated as 

p(t) = e -t/•, (11) 

where t is the time step. This model did not, however, give a 
satisfactory fit for many of the data used in this study. Figure 1 
is an example plot of an autocorrelation function for w' u', 
with the best fit model from (11), and a best fit model for an 
exponential with t 1/2 as given in (12), 

p(t): e- 4•/b (12) 

In looking at several cases from Table 1, using the more gen- 
eral form 9 = exp (- t"/b), where a is a fitting parameter, it 
was found that the range of a was between 0.4 and 0.7. Thus 
0.5 is a reasonable estimate for the model if raw data are not 

available. However, a much simpler approach is to integrate 
the area under the autocorrelation curve, and not depend on a 
model of the autocorrelation function. Since the computed 
autocorrelation functions are an estimate of the ensemble 

mean, as in Figure 1, they frequently remain at a constant small 
positive value for an extended period of time. This analysis 
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Figure 1. An example of the autocorrelation function p(h) 
versus lag time h for w' u'; showing the data, the best fit to exp 
(-h/r), and exp (-X/•/a). For this example, r = 0.5, and 
a = 0.75. 

fractional flux sampling error (FFSE). The mean FFSE tends 
to fall in the 10 to 20% range. The Wyn and M-L methods are 
approximately equivalent, with an average over all measure- 
ments of close to 11%, and less than the estimates using the 
F-S method with an average of approximately 14%. This is not 
unexpected, since the F-S approach takes into account the 
effect of the autocorrelation and cross correlation. These are 

not accounted for by the other techniques which inherently 
assume independence between variables and no autocorrela- 
tion. Autocorrelation and cross correlation usually increase the 
variance. Comparing the average levels of error across all 
fluxes for these examples, the autocorrelation and cross- 
correlation terms account for approximately 25% of the sam- 
pling error. This will obviously vary from case to case. 

The range of sampling error, even over this very limited set 
of example cases, is quite large, suggesting that care must be 
used in interpreting any one flux measurement. Because the 
F-S model accounts for factors not considered in the other 

approaches and should be more inclusive in the estimation of 
sampling error, it will be used in subsequent analyses of this 
study. 

truncated the integration when the range, defined as a small 
approximately constant, or stationary value, is reached. This 
imprecision introduces little error into the process. The calcu- 
lated integral timescales for each of the 10 example cases and 
5 fluxes are given in Table 1. Note that *w,% is usually shortest, 
while rw,u, 1'w,H20, and 1'w,CO 2 are notably longer. No reason 
for these differences are apparent at this time. 

3.3. Comparison of Methods for Estimating Sampling 
Error 

Using the integral timescale for the covariances from Table 
1 in the M-L method, and calculating directly from the raw, 10 
Hz data for the Wyn and F-S methods, Figure 2 illustrates the 
mean fractional normalized sampling error of the 10 test cases 
for the 5 fluxes and 3 methods. In each case the square root of 
the variance of the covariance, or the error estimate, has been 
divided by the flux, or total covariance, to give a normalized 

0.18 

0.16 

0.14 

LIJ 

0.12 

0.10 

0.08 

0 0 

U T 03 H20 CO 2 
VARIABLE 

O WYN 

ß M-L 

A F-S 

Figure 2. Mean value of the fractional flux sampling error 
(FFSE) for the models of Wyngaard [1973] (Wyn), Mann and 
Lenschow [1994] (M-L), and this work (Finkelstein and Sims 
(F-S)) for flux measurements of momentum U, sensible heat 
T, ozone (03), latent heat (H20), and carbon dioxide (CO2). 
Each point is the average of the error from 10 sample cases as 
given in Table 1. 

4. Characteristics of EC Sampling Error 
EC sampling errors computed using 10 Hz data from half- 

hour sampling periods, taken during several recently con- 
cluded field experiments, are described and characterized, in 
the expectation that they will be illustrative of the sampling 
errors in flux measurements from similar field programs. They 
should represent typical values of EC sampling error at a 
variety of locations. Because field campaigns differ in size, 
instrumentation, meteorology, and other details, the observa- 
tions reported here may not be applicable to other studies, but 
enough commonality exists to give one an idea, or rule of 
thumb, in estimating sampling error for EC field measure- 
ments for which no direct computation is possible. 

4.1. Data 

Representative samples of EC flux measurements were se- 
lected from five field programs. These field programs included 
studies over a corn field near Bondville, Illinois, a pasture in 
Sand Mountain, Alabama, a soybean field near Nashville, Ken- 
tucky, a deciduous forest near Kane, Pennsylvania, and a 
mixed (deciduous and coniferous) forest in the Sand Flats 
State Forest in the Adirondack region of New York. Each of 
these sites had uniform fetches of at least 1/2 km to usually 
more than 1 km in the sampling sector. At the three agricul- 
tural sites, flux measurements were taken at 4 to 5 m above the 
tops of the crops. These agricultural sites, and the flux instru- 
mentation, data collection, and QA, are described by Meyers et 
al. [1998]. At the two forest sites the flux measurements were 
taken on top of a walk-up tower, 12-15 m above the canopies, 
which were about 22-25 m high. The forest sites and instru- 
mentation are described by Finkelstein et al. [2000]. 

For this analysis, fluxes of momentum, sensible heat (made 
using virtual temperature), ozone, latent heat, and carbon di- 
oxide are considered. The same set of instruments was used at 

each of the studies. The wind speed and virtual temperature 
were measured with an ATI sonic anemometer, the ozone was 
measured with a fast response ozone analyzer which employs 
the chemiluminescent reaction of ozone with eosin-Y dye [Ray 
et al., 1986], and the water vapor and carbon dioxide concen- 
trations were measured with a Licor LI-6262 infrared absorp- 
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FINKELSTEIN AND SIMS: SAMPLING ERROR IN FLUX MEASUREMENTS 3507 

Table 2. Mean Value and Statistics on Fractional Flux Sampling Error (FFSE) Averaged 
Over All Cases and the Five Sites 

Standard 

Flux Mean Deviation Maximum Minimum Skewness N 

U 0.19 0.14 1.01 0.02 2.92 114 

T 0.12 0.05 0.31 0.04 1.62 94 

03 0.31 0.21 1.16 0.10 2.39 108 
H20 0.20 0.20 1.57 0.08 4.39 99 
CO2 0.25 0.32 2.43 0.07 4.37 116 

tion analyzer. Samples for trace gas analysis are drawn from 
very close to the sonic anemometer through a draft tube and 
delivered to the analyzers that are housed in an air- 
conditioned shelter on the ground. Instruments were cali- 
brated once per day, and all data were screened very carefully. 

Samples from each site were selected that had easily mea- 
surable fluxes without any significant trends or nonlinearities in 
concentration or other sampling anomalies, and that repre- 
sented a variety of stabilities and magnitudes of flux. Because 
these samples were selected somewhat subjectively for "good" 
flux measurements that were not "too" small, some bias toward 
lower average FFSE probably has been introduced. This bias 
would result from the fact that small fluxes frequently occur 
during the night, due to increased stomatal and atmospheric 
resistance. The very small nighttime fluxes usually have larger 
sampling errors since the frequency of significant eddies that 
contribute to the flux transport decreases. The results below 
should be interpreted in that light. 

4.2. Analysis and Results 

The FFSEs for each type of flux measurement are given in 
Table 2, along with the number of observations, the minimum 
and maximum value, the standard deviation, and the skewness. 
Except for sensible heat flux sampling error, which was 12%, 
the mean sampling errors for the other measurements were in 
the 20-30% range. Minimum values were quite small for mo- 
mentum and sensible heat flux, but were closer to 10% for the 
gases. Maximum values were over 100% for all but sensible 
heat. Scatter in the sampling error of flux measurements is 
considerable, ranging from _+5% for sensible heat to _+32% for 
CO2. 

To show the utility of normalizing the standard deviation of 
the covariance by the absolute value of the flux to produce the 
FFSE, Figure 3 is a plot of FFSE against the flux for sensible 
and latent heat. As can be seen, the error is proportional to the 
flux magnitude, as most of the points lie on a straight line with 
zero slope. For sensible heat flux there is very little scatter. For 
latent heat flux there is more, especially for small fluxes where 
a few points are quite large. The other fluxes behaved similarly. 
It is not unreasonable to expect that the average FFSE for a 
sample of flux measurements from a field study will well rep- 
resent the random sampling error over the full range of flux 
measurements, excluding those near zero. 

Table 3 gives the mean value of the FFSE for each mea- 
surement variable and site. Figure 4 shows the mean FFSE for 
each site and flux measurement with _+ 1 o- error bars. No clear 

pattern emerges from this table and figure with regard to site 
differences. No site has consistently higher or lower sampling 
error for all flux measurements. Instead, the highest and lowest 
values of sampling error are scattered among each of the sites. 

One hypothesis tested was that there would be a difference 

between the agricultural sites, in which the canopy is short, the 
surface is smooth, and the flux measurements are close to the 
surface, and the forest sites, in which the canopy is much 
higher, the roughness layer may be deeper, and the samplers 
are farther above the top of the canopy- in what may or may not 
be a constant flux layer. We can see this difference to some 
extent for momentum and sensible heat fluxes. On the basis of 

the Newman-Keuls post hoc test [Casella and Berger, 1990] 
only the flux errors for sensible heat from the forest sites are 
significantly (5%) different from the agricultural sites. On av- 
erage, the sampling errors are lower for the agricultural sites 
for momentum and sensible heat fluxes, but there are excep- 
tions, such as Sand Mountain for momentum and Kane for 
sensible heat. On the other hand, the trace gas fluxes show no 
consistent pattern at all. When considering all fluxes, it would 

1.6 

1.2 

0.8 

0.4 

0.0 

A 

-200 -lOO 0 100 200 

HEAT FLUX (watts/m 2) 

3OO 4OO 

1.6 

1.2 

0.8 

0.4 

0.0 

-100 0 100 200 300 400 500 600 700 

Latent Heat Flux (watts/m 2) 

Figure 3. FFSE versus flux of (a) sensible heat and (b) latent 
heat for all sites. The almost constant value of FFSE through- 
out the range of flux indicates the utility of using the flux to 
normalize the error in covariance measurements. 
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3508 FINKELSTEIN AND SIMS: SAMPLING ERROR IN FLUX MEASUREMENTS 

Table 3. Mean Value of the Fractional Flux Sampling Error at Each Site for Each 
Measure a 

Site U T 03 H20 CO2 

Sand Flat (f) 0.24 0.20 0.23 0.23 0.31 
Kane (f) 0.27 0.16 0.31 0.24 0.26 
Sand Mountain (ag) 0.28 0.13 0.27 0.35 0.15 
Bondville (ag) 0.13 0.11 0.32 0.14 0.26 
Nashville (ag) 0.16 0.09 0.33 0.22 0.26 

aForest sites are denoted as (f), and agricultural sites are denoted as (ag). 

seem to be hard to show from these data that flux measure- 

ments taken over the forest are inherently less accurate than 
those taken close to the ground over a smooth surface. This 
suggests that the eddy structure over the forests was not dif- 
ferent enough from the agricultural sites to impact the accu- 
racy of the flux measurements since sampling error is a func- 
tion principally (3_i::' the eddy structure and instrumentation, but 
the instrumentation was the same at all sites. 

One could also speculate that there might be differences 
between fluxes that were directed toward the ground (e.g., 
momentum, ozone, and carbon dioxide) and those that were 
directed up (e.g., sensible and latent heat). However, the sum- 
maries in Tables 2 and 3 and Figure 4 show that this hypothesis 
is not supported. 

If atmospheric stability impacts flux sampling error, as sug- 
gested by Wyngaard [1973], that effect is rather small, as can be 
seen in Figure 5. In all cases but heat flux there is variability 
with stability, but no strong pattern. Sampling errors for heat 
and ozone flux show almost no effect. Momentum and carbon 

dioxide fluxes seem to have a larger sampling error at extreme 
stability and instability, but there are few samples in these 
groups, so that those points should be interpreted with caution. 
Wyngaard noted that the sampling error should be 2 to 3 times 
greater for momentum flux than sensible heat flux when the 
atmosphere is unstable; that is, z/L -• -1. We note that 
sensible heat FFSE is indeed lower than that for the other 

fluxes by a factor of 2 to 4, but for all stabilities, and not just in 
the unstable region, although the differences are smaller be- 
tween heat and momentum in near-neutral stability; that is, 
z/L - O. 

The methods of Wyngaard [1973] and Sreenivasan et al. 
[1978], (3) and (4), would also suggest that FFSE would be 
inversely proportional to the square root of wind speed. The 
FFSE results of the F-S method, when plotted against 1/X/-•, 
Figure 6, show that this hypothesis is not supported. Momen- 
tum flux has only a weak relation with the wind speed, while 
sensible heat has almost none. While not shown in the figure, 
this held true for the other fluxes as well. 

5. Conclusions 

The direct calculation of the variance of the covariance is a 

powerful and inclusive method for calculating the random 
sampling error in EC measurements. It takes into account 
sources of error not considered by previously published ap- 
proaches and, as a consequence, tends to produce larger esti- 
mates for the error. For the approximately 100 samples taken 
from a variety of field programs over both low agricultural 
crops and forests, the normalized sampling error, FFSE, 
ranged from approximately 10% for sensible heat to 25-30% 
for trace gases. These rather large sampling errors in flux 
measurements should be kept in mind when considering prob- 
lems related to closing the energy balance, CO2 budgets, or 
comparing deposition model results to measurements. 

Since there is no absolute standard or more precise method 
for measuring fluxes, these methods cannot be checked against 
a standard, but they could be evaluated if multiple indepen- 
dent observations were made in one place. We hope that data 
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Figure 4. FFSE by site with _+ 1 o- error bars. The fluxes are 
as given in Figure 2. Sites that are in forests or agricultural 
lands are denoted. 
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Figure 5. FFSE for various stability classes, as denoted by 
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ends have very few datum points making up the average and 
should be interpreted cautiously. 
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Figure 6. FFSE plotted against !/X/-• for momentum and 
sensible heat fluxes. Data from all sites are combined. The 

least squares best linear fit to the data are shown. 

from past or future studies which have such a design could be 
made available so that these methods could be tested. 

The autocorrelation function for covariances is frequently 
assumed to fall off as an inverse exponential of time, but it is 
better modeled as an inverse exponential of the square root of 
time. Using this approach, a better estimate of the integral 
timescales would be available. Integral timescales for the day- 
time test cases evaluated in section 3.2 are very short, ranging 
from approximately 0.5 to 3 s. 
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