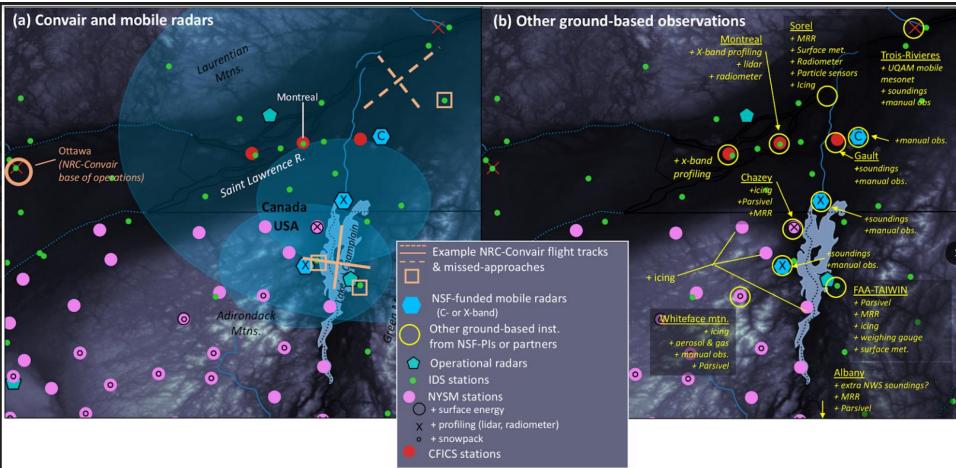


WINTRE-MIX Field Catalog


Winter Precipitation Type Research Multi-scale Experiment

SUMMARY OF WINTRE-MIX FIELD CAMPAIGN: Sorel Supersite

Ismail Gultepe, Zen Mariani, Daniel Michelson

June 14-2022 Workshop Organized by University of Albany

PROJECT AREA

Operational Advanced Mesonet systems

Three advanced networks of automated weather stations operated by the New York State Mesonet (**NYSM**), the Canada Foundation of Innovation Climate Sentinels (**CFICS**), and **NCEI** Integrated Surface Database (IDS) will also be utilized (Fig. 1a).

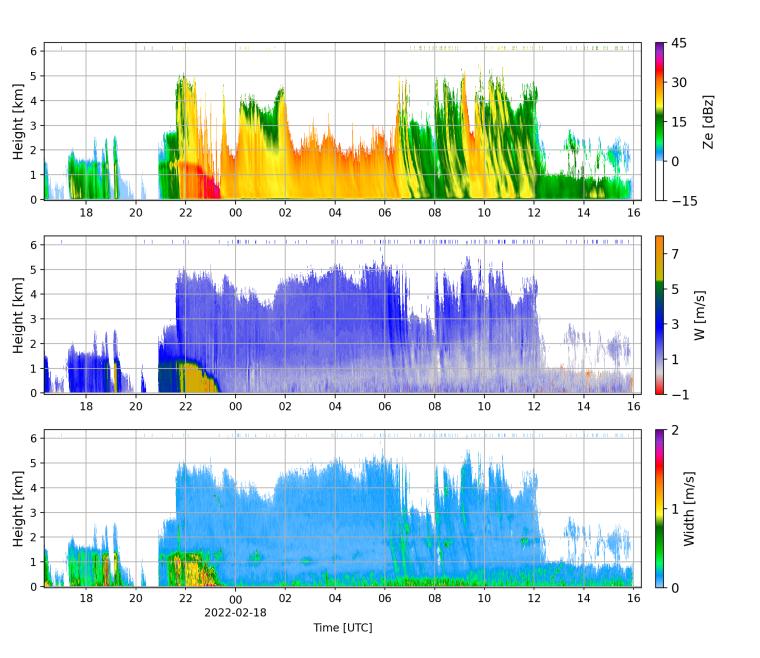
Table 1:	Wintre-Mix IOP summary	Gul	tepe)	
----------	------------------------	-----	-------	--

Date/Time	IOP	Location	Aircraft <u>fits</u>	Weather	Objective	Notes
UTC	#			type		
2022-02-02/03	1	St. Chaplain-	NRC-CV	Clipper	RN/SN mixed	-
020000		N-NY region	0200-0630Z(F03) SE flight	system	precip event	
2022-02-09	2	St. Lawrence	na	SW-Low	LRN/SN	IMPACTS
224300		Valley CA		Pressure		
2022-02-11/12	3	St. Lawrence	NRC-CV	Clipper	Wide area SN	TWAIN
000000		Valley.CA	NE-flight pattem 0021-0506Z(F12)	system	precipitation	
2022-02-17/18	4	S-QE/N-NY	NRC-CV	Long	RN to FRZRN	IMPACTS
163000			S-flight pattern	duration		
			0320-0704Z(F18)	mix precip		
2022-02-22/23	5	NW St.	NRC CV	Mix precip	FRZRN FRZ,	Cold air
160000		Lawrence	NE-flight pattem	IP, Cross	RN along St.	erosion at
		Valley, CA	2344-0342Z(F22)	valley legs	Lawrence	surface/adv
					Valley	
2022-02-25	6	Champlain V	NRC-CV	Clipper	Mix-Precip.	TWAIN/
090000		N-NY	1456-1948Z(F25)	system	generating	IMPACTS
			Syracuse area		cells, melting	
					layer	
2022-02-29/01	7	Champlain V	NRC-CV	Cold	Convergence	-
160000		St. Lawrence	SE-pattern, 2045-	Clipper	zone and mix-	
		V	0108Z(M02)	system	precip	
2022-03-05	8	Sorel/Gault	NRC-CV	Low	FRZRN and	-
100000		Great Lakes	N-St. Lawrence	pressure	FRZDRZ	
			River	system		
2022-03-06	9	Southern half	NRC-CV	Multiscale	SN-FRZRN/IP	-
201500		of the project	SE and NE-flights,	mix-precip	to RN-SN	
		area	1310-1712Z(M06)			
2022-03-07	F09	Southern half	NRC-CV; SE flight	Cyclone/C	Early mixed	
161100		of the project	1611-1903Z(M07)	old front	precip, and	
2022 02 12	10	area	2140-0139(M08)	later	cold front later	
2022-03-12	10	Border area of	NRC-CV	Weak low	Light Mix-	-
000000		project	SE-flight pattern	pressure	Precip/HSN	
2022 02 11/12		location	0346-0751Z(M12)	system	BSN	
2022-03-14/15	11	Plattsburgh	na	Frontal	RA/SN; short	-
000000		Project area		band	transition	

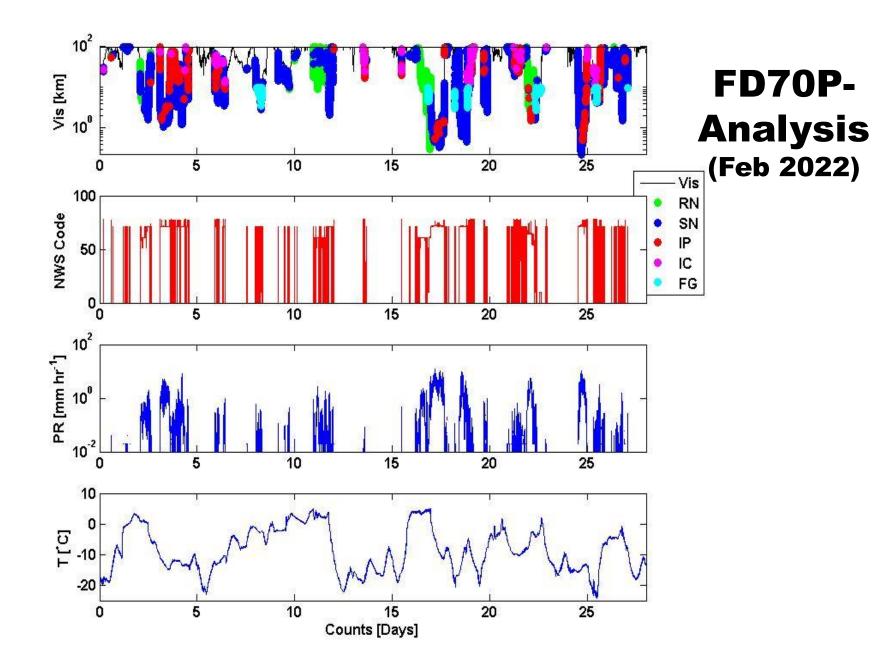
Ground based obs at Sorel (9 IOPs)

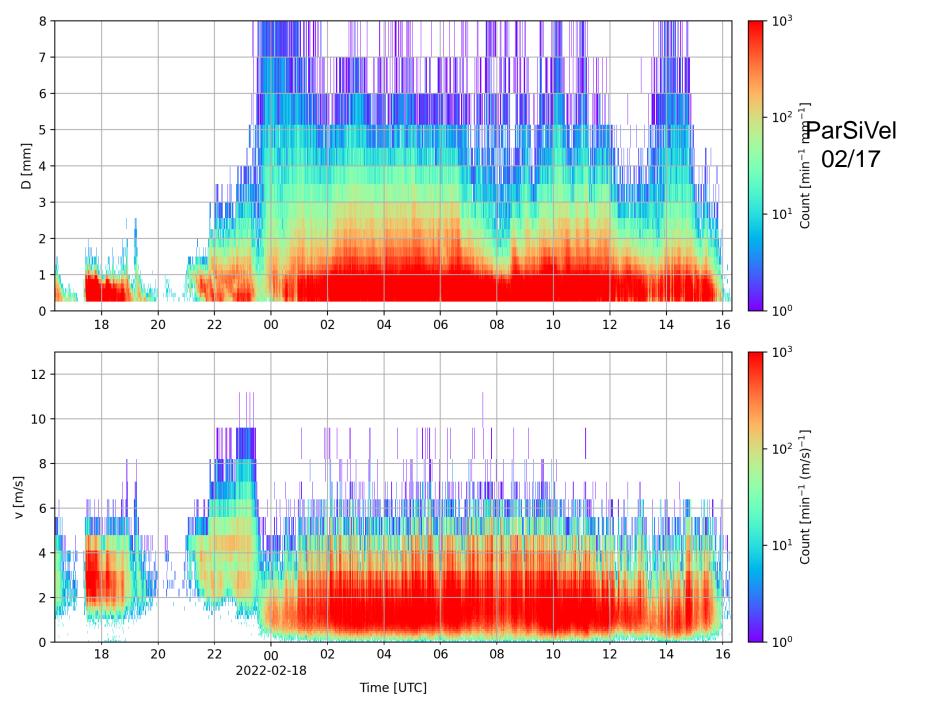
IN-SITU OBSERVATIONS (Sorel Supersite)

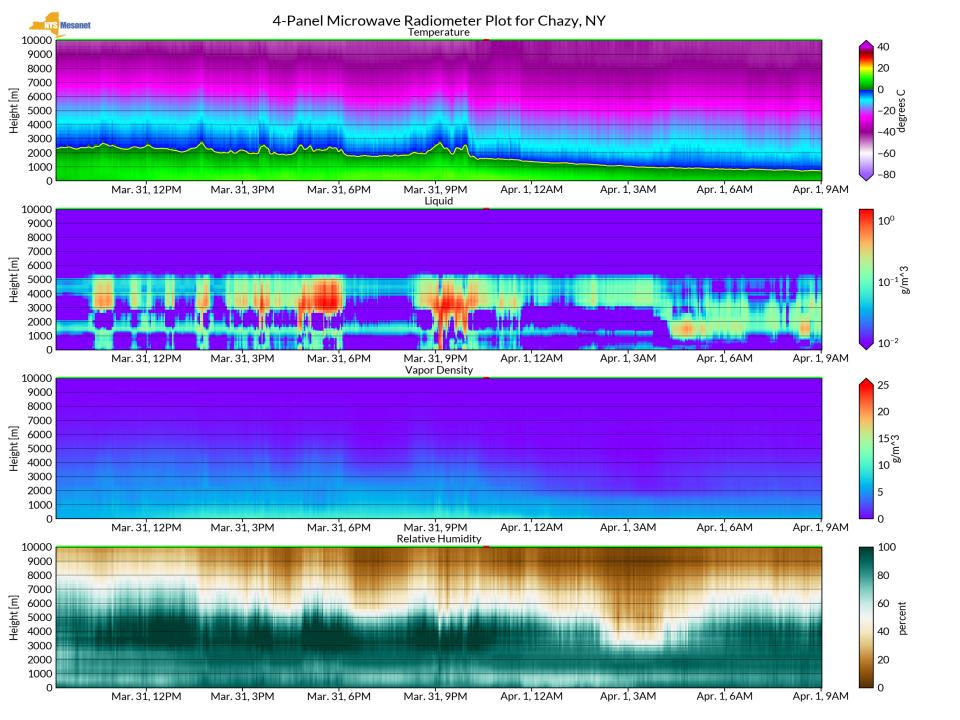
- -Precipitation amount/rate/type (FD70/ParSiVel/Pluvio)
- -Manual particle measurements (UQAM)
- -PSD (FD70/ParSiVel)
- -Visibility and DSD (FD70)
- -Met parameters (WXT50)
- -Wind/Turbulence (WXT50)


PROFILING AND RADARS

- -Radiosonde Balloons (UQAM)
- -MWR (UC)
- -MRR (Vd, Ze)
- -HALO lidar (Vd & Backscattering) Zen Mariani
- -Ceilometer (cloud base/top height)
- -S-band radar (Ze, PR) (Daniel Michelson) (CASBV: Blainville operational weather radar)


ECCC SOREL SITE


Instruments/P-type/Radiosonde; FEB17 2230 UTC RN+FG IOP4



SOREL 02/18 MRR

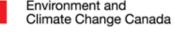
Zen Mariani (HALO LIDAR)

Doppler Lidar: winds and aerosols

- Autonomous, ground-based scanning lidar that measures the Doppler shift of aerosols in the lower atmosphere.
- Processes Doppler shift to provide Doppler velocity • measurements, which are used to generate vertical wind speed & direction (u, v, w) profiles.
- MRD has 7 HALO Doppler lidars currently deployed (MSC • has 3 Leosphere lidars with similar specs as below):

Essential Parameters

Meteorological parameter measured	Vertical Resolution	Highest Temporal Resolution	Maximum Vertical Range	Measurement accuracy (+/-)
Wind Profile (UU, VV)	3 m	5 min (customizable)	2 - 4 km	< 0.3 m/s
Vertical Velocity (WW)	3 m	2 sec	2 - 4 km	< 0.3 m/s
Aerosol backscatter (Beta)	3 m	2 sec	10 km	N/A
Cloud microphysics (depolarization ratio %)	3 m	5 min (customizable)	2 - 4 km	N/A



Environnement et Changement climatique Canada

Lidar Scan Modes

- All scan modes are fully customizable (can increase temporal resolution):
- Stare scan (zenith-viewing)
 - Vertical updraft/downdraft velocities up to the Planetary Boundary Layer (PBL)
 - Depolarization ratio
- Plan Position Indicator (PPI)
 - Horizontal scan produces wind maps
 - Scan at specified elevation (near the surface)
- Range Height Indicator (RHI)
 - Vertical scans (vertical slice of the atm.)
 - Scan at specified azimuth
- Wind Profiles
 - 3D wind profile above the Lidar up to the PBL
 - Velocity-azimuth display (VAD) technique

Page 11 – July 11, 2022

Environnement et Changement climatique Canada

Scans during WINTRE-MIX

- 4° PPI
- Over-the-top RHI at 215° (along the valley) and 305° (across the valley) AZ
- ~10-min Vertical wind velocity (w)
- Vertical wind profile VAD scan (u, v)
- 15 min repeat cycle

Page 12 – July 11, 2022

Data Format

- Data management
 - 1 file produced per scan type
 - Data and processing codes (python) available
 - Can produce & FTP quicklook plots in real time
- 1. Raw data files (.txt)
 - Each file is ~1-30 MB (depending on scan)
 - Totals ~9 GB / day / Lidar
 - Provides wind speed, SNR, backscatter, etc.
 - Not quality-controlled
- 2. Quality-controlled processed products
 - Images are small .png files (< 1 MB / image)
 - Files are text or netCDF format
 - Text files are ~20 KB / profile
 - Totals ~ 80 MB / day / Lidar
 - Processed products can be customized and Page 13 – July 11 delivered in near-real time

Environment and

Environnement et Climate Change Canada Changement climatique Canada

Raw file

```
Altitude of measurement (center of gate) = (range gate + 0.5)
Gate length
Data line 1: Decimal time (hours) Azimuth (degrees) Elevation
(degrees)
f9.6,1x,f6.2,1x,f6.2
Data line 2: Range Gate Doppler (m/s) Intensity (SNR + 1)
Beta (m-1 sr-1)
i3,1x,f6.4,1x,f8.6,1x,e12.6 - repeat for no. gates
11.314028 360.00 5.00
 0 0.0586 1.028371 1.278988E-6
 1 0.0204 1.022436 1.011577E-6
  2 -0.0560 1.050414 2.273369E-6
    -0.1325 1.093190 4.202924E-6
 4 -0.2089 1.079488 3.585568E-6
 5 -0.4000 1.087576 3.951063E-6
 6 -0.6675 1.077326 3.489277E-6
 7 -1.0115 1.068448 3.089220E-6
 8 2.0843 1.062682 2.829522E-6
  9 2.5048 1.062351 2.815147E-6
```

Processed file						
		ht [m], 28 28 28 29 29 29 29 29 29 29 29 29 29 30 29 30 29 30 30 30			vel[m/s]	