Free Troposphere Flows and Turbulence

Coordinators: Speakers: Moderators: Rapporteurs: Bart Geerts and Andrew Detwiler Jim Doyle, Pavlos Kollias and Bob Sharman Vanda Grubisic, Bart Geerts and Stan Trier Rosimar Rios, Dave Bodine and Rochelle Worsnop

Mountain winds and turbulence

Main scientific frontiers:

Coupling of waves & BL flows

Prediction and understanding of high-amplitude downslope wind storms

Impact of upwind precipitation, surface heating, and details of terrain (gap flows)

Transition from laminar wave flow to turbulent flow on the lee side

Characterization of low-level wave breaking, boundary-layer separation, turbulence in (sub)rotors

Upper-level (usually UTLS) wave breaking and mixing: causes and fine-scale characteristics

Vertical fluxes by orographic gravity waves

Parameterization of gravity-wave drag in models

Processes in proximity of steep terrain

Turbulence in Clouds

Main scientific frontiers:

Impact of large, coherent eddies and microscale turbulence on cloud microphysics (nucleation, droplet broadening, precip formation)

Large eddies affect RH, coupling strength with underlying surface, entrainment ...

Microscale turbulence affects particle interaction and precip growth

Entrainment and mixing, incl. turbulent transport of aerosols into clouds

Warm clouds: Impact on collision/coalescence

Mixed-phase clouds: impact of turbulence on ice-initiation and on longevity of cloud regime

Ice clouds: Role of gravity waves in ice nucleation and microphysical variability

Measurements: 3D wind and turbulence, cloud microphysics (LWC and IWC, concentration), ice nuclei, water vapor mixing ratio within cloud, rapid cloud-scale radar measurements, surface fluxes, turbulence

Clear-air turbulence (CAT)

Main scientific frontiers:

Direct sources of CAT

How do gravity waves induce turbulence? How does this energy cascade to aircraftinfluencing scale (10 m - 1 km)?

Role of remote deep convection on CAT

Role of jet and tropopause folds on CAT

Global climatology of CAT

CAT predictability? Relevant model diagnostics?

Thorough model diagnostic analysis based on good observational case studies (with dropsondes)

Menory and a Martine literation of the second states of the second second states in the second second

Instrumentation

Available (in LAOF pool or user-supplied) Experimentally available, not thoroughly tested Presently not available (In design or development)

Mountain winds, precip and turbulence: Doppler lidars & radars across complex terrain, profiling airborne radars, radars with rapid-scan capability, disdrometers and gauges, wind profilers

Turbulence in Clouds: Doppler lidars & profiling and polarimetric scanning cloud radars, *in situ* aircraft, airborne phased array radar, rapid scan radar, UAVs, slowly-moving airborne platforms

Clear-air turbulence: radiosondes, driftsondes with a curtain, UAVs, lidars, in-situ observations from aircraft, nano driftsondes (eMotes), EDR measurement on commercial aircraft fleet, laser air motion system (LAMS)

Free troposphere flow and Turbulence: instrument priority: <u>airborne</u>

	Instrument type	orographic	in-cloud	CAT
Aircraft in situ	cloud imaging and size spectra probes		\checkmark	
	3D spatial arrangement of cloud particles (eg Holodec)		\checkmark	
	3D winds and turbulence	\checkmark	\checkmark	\checkmark
	Turbulence on commercial aviation fleet	\checkmark		\checkmark
Aircraft remote	profiling or scanning Doppler radars	\checkmark	\checkmark	
	rapid radars (phased-array or other rapid scan technique)	\checkmark	\checkmark	
	Backscatter lidars (Doppler)	\checkmark		
	water vapor, temperature, LWP (Raman, DIAL, radiometric)			
	3D turbulence near aircraft (e.g., laser air motion system)	\checkmark	\checkmark	

Free troposphere flow and Turbulence: instrument priority: <u>airborne</u>

	Instrument type	orographic	in-cloud	САТ
UAS (lower level, slower than manned A/C)	In situ meteorology	\checkmark		\checkmark
	Other probes (turbulence, cloud microphysics) - better stats in rather small region	\checkmark	\checkmark	
Balloon systems	Radiosondes, dropsondes	\checkmark	\checkmark	\checkmark
	Enhanced radiosondes (LW, video)		\checkmark	
	Zero buoyancy Lagrangian drift sondes (maybe with in situ instruments tethered below)		\checkmark	\checkmark
	Nano drift sondes (e.g., eMotes, Cicadas)	\checkmark		\checkmark

Free troposphere flow and Turbulence: instrument priority: ground-based

	Instrument type	orographic	in-cloud	CAT
In situ	met stations, flux towers	\checkmark	\checkmark	
	precipitation (gauges, parsivel or video-disdrometer,)	\checkmark	\checkmark	
remote	Profiling radars (from mm wave to wind profilers)	\checkmark	\checkmark	\checkmark
	Scanning radars	\checkmark		
	Rapid scan radars (phased array)		\checkmark	
	Water vapor, temperature profiles (Radiometer, AERI,)	\checkmark		
	Profiling lidar, ceilometer		\checkmark	
	Doppler lidars- profiling or scanning	\checkmark		\checkmark