- For Rayleigh scattering and in the absence of propagation effects, the true S and Kaband reflectivity values are equivalent
- Measured S and Ka-band radar reflectivity values compared
 - Remove propagation effects
 - Gaseous attenuation
 - Liquid attenuation
 - Ensure Rayleigh scattering
 - Assume well calibrated S-band reflectivity

- Removing propagation effects
 - Use only front edge of cloud (< 0.5 km) to avoid liquid attenuation
 - Compute atmospheric attenuation by inputting sounding P, T and RH into radiative transfer model
 - Computed over layer or layers appropriate for each radar path
 - Use very short paths, i.e. < 20 km (< 10 is better)
 - Typical atm attenuation values around 0.4 dB km⁻¹ (2-way)

• Hand select small 2-D patches of cloud or precipitation echo (10 to 20 range gates)

(Notice the Bragg scatter at S-band)

- Avoid non-cloud/precipitation echoes
 - Bragg scatter (S-band)
 - Ka band doesn't detect much Bragg scatter
 - S-band cloud/precipitation echo > 5 dB stronger than surrounding Bragg echoes
 - Point targets (birds, planes)
 - Ground/sea clutter
 - Correlation of S and Ka band reflectivity > 0.7

- Require Rayleigh scattering approximation valid at Ka-band
 - < 1 mm drops
 - Estimate D₀ from S-band Z and ZDR
 - D_0 must be < 0.5 mm
 - -Z at S-band < 20 dBZ
 - ZDR < 0.4 dB
- Avoid the lee of the island, i.e. "tail" echoes

Comparison results

• Analyzed data from 7 days, resulting in 35 comparisons

dates	Mean difference S – Ka (dB)	Standard deviation (dB)
15, 19, 24 Dec	8.24	0.55
6, 10, 16, 23 Jan	8.47	0.58
All 7 days above	8.41	0.57

Humidity/attenuation relationship for RICO

Results of running radiation model over range of observed T and P at RICO over 0 to 3 km layer

What about the inverse problem?

- Can we retrieve water vapor from estimated Ka-band atmospheric attenuation?
- Need longer paths to minimize errors in estimated attenuation, dB km⁻¹ (> 15 km)
- Use best fit relationship derived from radiation simulations to estimate path-integrated water vapor content

 $SH = 201.40A^3 - 209.60A^2 + 120.55A - 2.25$

(SH is specific humidity (g m⁻³) and A is gaseous attenuation (db km⁻¹))

Creating vertical profiles

Humidity retrieval results

Ka-band data considerations for humidity retrieval

- Corrected Ka-band reflectivity in manner described above
- Avoided periods with documented ghost echoes
- Avoided low SNR ($\leq 5 \text{ dB}$) at Ka-band
- Allow magnetron to fully warm up
 - Only used data more than one hour after Ka-band radar powered up
- Avoided low elevation angles due to partial blockage (< 2.5°)

- Next step: Liquid water retrievals based on differential liquid attenuation
- Available for collaborations with RICO PI's

Questions?

Sources of error

- Radar calibration
 - Errors in reflectivity differences

Method: potential primary rays

Method: creating secondary rays method 2 (not implemented yet)

Method: creating secondary rays method 2 (not implemented yet)

Method: creating secondary rays method 2 (not implemented yet)

