
DSM DASHBOARD
A Web based Interface for Real-Time NIDAS Data Quality Monitoring and Visualization

Ameen Hussain
Department of Computer Science & Department of Mathematics, Colorado State University

NCAR Earth Observing Laboratory SUPER Internship Program

ahuss12@rams.colostate.edu

The NCAR Earth Observing Laboratory (EOL) deploys the Integrated Surface Flux System (ISFS),
a network of advanced weather stations used in remote scientific field campaigns.
At the heart of each station is the Data Sampling Module (DSM), a ruggedized, field-deployable
computer running the NCAR In-situ Data Acquisition Software (NIDAS). The reliability and perfor-
mance of its monitoring dashboard are crucial for mission success.Critical functions include:

•Data Acquisition: Collects high-frequency data from a wide array of scientific instruments and
sensors.

•Real-time Processing: Processes, calibrates, and quality-controls the incoming data streams
on the fly.

•Data Serving: Serves the processed data and system status information via a web interface for
real-time monitoring by scientists and technicians in the field.

Fig. 1: ISFS Tower at M2HATS (left) and the interior of a DSM (right).

Background: What is a DSM?

•Decomposed Data Delivery: Replaced the legacy single, monolithic JSON file with a decou-
pled system of multiple, smaller, targeted files (manifest. Json, problems. Json, sensor-specific
data).

• Independent Polling: The frontend now polls these lightweight files independently, fetching
only the necessary data and improving performance.

• Frontend: Utilized react, material-ui and highcharts for various new frontend features.

Fig. 2: Network requests showing efficient fetching made possible through data decomposition.

Methods: A Modern Architecture

The new architecture dramatically reduces the initial and subsequent data fetches, leading to sig-
nificantly faster page load times as shown below.The myriad of ui improvements has also greatly
increased reliability and accessibility. Future works might include:

•Hardware Port Control: Implement controls within the UI to remotely toggle power to specific
hardware ports, aiding in remote troubleshooting.

•User Authentication: Introduce a login system to secure the dashboard and provide a founda-
tion for user-specific permissions and settings.

•Manual Data Ingestion: Allow technicians in the field to manually add contextual notes or
supplementary data points directly through the interface.

Fig. 3: Performance comparison showing the dramatic reduction in initial data load with the new on-demand fetching

model.

Conclusions

• Improve Performance: Drastically reduce page load times and improve data refresh speeds by
re-architecting the backend data delivery.

• Enhance User Interactivity: Replace the static interface with a dynamic one, allowing users
to actively filter and explore system problems.

• Increase Data Visibility: Display crucial, context-rich metadata—such as device port and
installation height—directly in the main interface.

•Modernize the User Experience: Develop a professional, branded, and fully responsive user
interface that is functional on desktop and mobile devices.

Objectives

The new dashboard provides a fast, robust, and intuitive interface for real-time monitoring. Key
results include a dramatic reduction in initial load time, interactive data filtering, hardware status
bar, ability to compare variables, and the display of critical real-time status indicators that were
previously unavailable.

Fig. 4: The main desktop UI (top) and the responsive mobile view (bottom).

Results: The Modernized Dashboard

I would like to extend my sincere gratitude to my mentor Gary Granger for his invaluable guidance
and support throughout this project. Thank you to the entire EOL-ISF team and the SUPER
program coordinators for this incredible opportunity.

Acknowledgements

Fig. 5: Core frontend technologies used in development.

Tools and Technologies


