CCN and INP Abilities of Aerosol Particles Measured during HIWC-2022 and CPEX-CV campaigns

*Narihiro ORIKASA¹, Masataka MURAKAMI^{2,1}, Ayumi IWATA¹, Atsushi MATSUKI³, Masayuki TODA³, and HIWC Science Team (NASA/FAA)

¹ Meteorological Research Institute, Tsukuba, Japan

² Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan

³ Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan

HIWC-2022 Special Topics Meeting 29-30 Nov. 2023, @NCAR 1

Outline

1. Introduction

- 2. Instrumentation, methods, and data
- 3. CCN ability and aerosol properties
- 4. INP ability (#1) measured with Raman spectroscopy (by Mr. Toda)
- 5. INP ability (#2) measured with TEM analysis (by Dr. Iwata)
- 6. Summary

Aerosol-cloud interactions

Fig. 1. Clouds in the presence of anthropogenic haze over the equatorial Indian Ocean. Picture taken on 24 February 1999 at 0.5°N, 73.3°E during the Indian Ocean Experiment campaign. The brownish haze originates from South Asia (see Web fig. 1 for a photo of thick brownish haze over lower Himalayas). The haze reaches close to the top of cumulus clouds located around 5 km in this picture.

Anthropogenic aerosols may alter precipitation patterns and surface temperature structures. [*Ramanathan et al., 2001*]

Figure 2. Simplified representation of the impact of anthropogenic aerosol emissions on the Earth system in (a) the preindustrial and (b) the present-day atmosphere. A schematic representation of known processes relevant for the effective radiative forcing of anthropogenic aerosol is summarized for present-day conditions in panel (b), but the same processes were active, with different strengths, in preindustrial conditions. Processes where the impact on the effective radiative forcing remains qualitatively uncertain are followed by a question mark. C_{liquid} and C_{ice} denote liquid and ice cloud fractions, respectively. LWP and IWP stand for liquid and ice water path, respectively. INP stands for ice nucleating particle.

CCN an INPs are important in climate systems via indirect effects on cloud radiative forcing and on precipitation. [*Bellouin et al., 2019*]

CCN concentrations

Table 2. Summary of the Me	easurements in Comparison	CN Conc.	CCN Conc.		
Authors	Location	N_{CN} , cm ⁻³	$N_{\rm CCN}, {\rm cm}^{-3}$		
<i>Kim et al.</i> [2005]	Gosan	2800-5600			
Song and Yum [2004]	Yellow Sea and the South Sea of Korea	1000 (maritime), 2000 (continental)			
	west coast of the Korean Peninsula 🔰 🎽		\neg		
Yum et al. [2005]	west coast of Korean Peninsula	4000-8300	2400–5300 at 1% S		
Adhikari et al. [2005]	remote southwest island of Japan	_3000-5000	■ 800–2000 at 0.3% S		
Hudson and Yum [2002]	Indian Ocean	361	176 at 1% S		
Hoppel and Frick [1990]	central Pacific	150 - 300			
Roberts et al. [2006]	eastern Pacific (pristine-anthropogenic)	<100-10000	20-350 at 0.3% S		
Yum and Hudson [2002]	eastern Pacific	252-325	112–157 at 0.6% S		
Hudson and Yum [2001]	off the coast of Florida	1200 (maritime), 3600 (continental)	360 (maritime), 1400 (continental) at 1% S		
Hoppel et al. [1990]	American Atlantic coast, center of Atlantic,	2000, 200, 2000, 10000			
	African Atlantic coast, pollution plume in Atlantic				
Yum and Hudson [2002]	eastern Atlantic	41 -364	126–131 at 0.6% S		
Chuang et al. [2000]	eastern Atlantic	tiantic	27–267 at 0.1% S		
O'Dowd et al. [2001]	eastern Atlantic coastal site in Mace Head	400-600 (maritime), 600-1500			
		(modified maritime air)			
Jennings et al. [1998]	eastern Atlantic coastal site in Mace Head		76-203 at 0.5% S (marine air),		
			369-1428 at 0.5% S (polluted air)		
Eleftheriadis et al. [2006]	coastal site on a remote island in eastern Mediterranean	1300 (background), 3400–4000 (polluted)			
Bates et al. [2000]	Southern Ocean and northeastern Atlantic	300 - 500			
Yum and Hudson [2004]	Southern Ocean	260 - 298	32–191 at 1% S		
Yum and Hudson [2001]	Artic Ocean	45-497	41-290 at 0.8% S		

Northeast Asia

Northeast Asia, polluted in Northern Hemisphere

- CN Conc. : O(~10^3)
- CCN Conc. : (High SSw) O(~10^3)

...

Yum et al. (2007) JGR

Spracklen et al. (2008) GRL

Figure 2. Surface CCN concentrations (cm⁻³) at (a) 0.2% and (b) 1.0% supersaturation. Model results (background, average for March–May 2000 without BL particle formation) are compared against observations (circles) from Cape Grim (0.23%, March–May) [*Ayers et al.*, 1997], Atlantic Ocean (0.16%, May 1997) [*Hoppel*, 1979], Indian Ocean (0.23%, February–March 1998) [*Cantrell et al.*, 2000], southern Africa (0.3%, March–April 2001) [*Ross et al.*, 2003], Amazonia (0.3% and 1%, May 1999) [*Roberts et al.*, 2003] and Korea (1%, May 2004)[*Yum et al.*, 2005]. Ratio of simulated

Hygroscopicity (*k*)

 κ -Köhler theory

Petters and Kreidenweis, 2007

S: saturation ratio a_w : water activity ρ_w : water density M_w : molecular weight of water σ : surface tension (solution/air) R: universal gas constant T: absolute temperature D: droplet diamter V_w : vol. of water V_s : vol. of dry particulate matter *i*: van't Hoff factor **k**: hygroscopicity parameter

Fig. 1. Annual mean distribution of κ at the surface simulated by EMAC.

Fig. 2. Annual mean distribution of κ at the altitude of the planetary boundary layer.

Table 1. Simulated global and regional annual mean κ values (and standard deviation (St Dev)) at the surface and at the simulated PBL height under present day conditions. Standard deviation is calculated for the year from 5-hourly average data. S_c is the critical supersaturation, calculated using the regional mean κ at PBL height. Area column gives total land area for land sites, and marine area for marine sites.

Region	Area (10^{13} m^2)	Mean κ Surface	St Dev Surface	Mean κ PBL height	St Dev PBL height	S_c (%) $D_p = 60$ (nm)	S_c (%) $D_p = 120$ (nm)
Global (Continental)	14.4	0.27	0.21	0.27	0.20	0.48	0.17
Global (Marine)	37.0	0.72	0.24	0.60	0.25	0.33	0.11
N. America	1.61	0.30	0.15	0.29	0.14	0.47	0.17
S. America	1.90	0.17	0.14	0.18	0.13	0.59	0.21
Africa	3.48	0.15	0.12	0.17	0.11	0.61	0.22
Europe	1.14	0.36	0.16	0.33	0.15	0.44	0.15
Asia	3.64	0.22	0.15	0.22	0.13	0.54	0.19
Australia	0.87	0.21	0.16	0.23	0.15	0.52	0.19
N. Atlantic	1.25	0.59	0.18	0.47	0.18	0.37	0.13
Southern Ocean	1.56	0.92	0.09	0.80	0.17	0.28	0.10

- Evaluated by simulations, but sparce observations.
- Requires more study on sizedependency of CCN ability.

Pringle et al. (2010) ACPS

INP concentrations

- More diverse concentrations at any supercooled T in real atmospheric conditions, compared to specific conditions or events.
- Complicated chemical composition and mixing state in real atmospheric conditions.
- Observed INP Conc. do not differ greatly from site to site, in spite of diverse geographical climates, transport patterns, aerosol characteristics, and anthropogenic impacts.
- Short-term variability overwhelms long-term trends and/or seasonality.
- Spatio-temporal distributions of INPs are still poorly understood. 6

Ice Nucleation Active Surface-site (INAS; n_s) density

INAS

Connoly et al. 2009; Hoose and Möhler 2012; Kanji et al. 2017; etc.

TABLE 1-1. Definitions of metrics used to summarize and discuss ice nucleation results presented in this chapter.

Metric	Definition				
AF Activated Fraction	$AF = N_{ice}/N_{tot}$, where N_{ice} = no. of ice crystals, N_{tot} = total particle no.				
<i>F</i> _{ice} Frozen Fraction	$F_{\rm ice} = N_{\rm ice} / (N_{\rm ice} + N_{\rm droplets})$, where $N_{\rm droplets}$ is no. of unfrozen drops				
n_s and n_m monodisperse aerosol experiments	$n_s(\# \text{ cm}^{-2}) = -\ln(1 - \text{AF})/A(\text{cm}^2); \qquad n_m(\# \text{mg}^{-1}) = -\ln(1 - \text{AF})/m_{\text{INP}}(\text{mg}); A = \text{surface area of 1 particle} \qquad m = \text{mass of 1 particle}$				
n_s and n_m approximation for experiments with polydisperse aerosol valid for AF < 0.1	$-\ln(1 - AF) \cong AF; \text{ for } AF < 0.1,$ $\Rightarrow n_s(\# \text{ cm}^{-2}) = \frac{AF}{A(\text{cm}^2)} = \frac{N_{\text{ice}}}{N_{\text{tot}} \times A(\text{cm}^2)} = \frac{N_{\text{ice}}}{A_{\text{total}}(\text{cm}^2)}$ $A_{\text{total}} = \text{SA of polydisperse size distribution}$ For n_m , A_{total} is replaced with the equivalent mass distribution				
Ice onset	Defined variably, ranging from first appearance of ice to AF of 1 Typical values include $AF = 10^{-4}$, 10^{-3} , 10^{-2} , and 10^{-1}				

- Various INP ability in each aerosol type.
- Higher INAS in dust and biogenic aerosols.

```
Murray et al. (2012)
```

Ice crystal icing (ICI) occurrence

High-level ice clouds sometimes consists of many small ice crystals, which contain high ice water content (HIWC)

Not detectable for airborne weather radar

Incidents have frequently occurred under such conditions. Engine icing Instrument icing

Objectives

(1) HIWC2022 Flight Campaign (2022/Jul/5-Aug/1, FL, USA)

- Understanding of the actual HIWC conditions in subtropical West Atlantic region
- Investigating of the impact of high concentrations of aerosols on the HIWC conditions
- Microphysical properties of aerosols and clouds in towering cumulus and in marine boundary layers
- (2) HIWC Supplementary Campaign (CPEX-CV Flight Campaign) (2022/Sep/5-Sep/30, Cabo Verde)
- Understanding of the interactions between large-scale environmental forcings and lifecycle and properties of convective cloud systems in tropical East Atlantic region
- Assessing the impact of observations (winds, thermodynamics, clouds, aerosols) on prediction of tropical weather systems
- Validation of remote-sensing observations via spaceborne sensors vs airborne ones
- Understanding of the actual HIWC conditions in tropical East Atlantic region
- Microphysical properties of aerosols and clouds in high aerosol conditions (Saharan dust layers etc.)

Overview of NASA DC-8 with HIWC-2022 Instrumentation

- UH Inlet and supporting aerosol instrumentation
- Aerosol : PCASP, SMPS(3080+3081), OPC(KC-01E), CCN-200, Impactors(for TEM grid, Silicon Wafer grid), Membrane Filter sampler

Strapp et al. 2016

RDR-4000 Wx Radar

.

Configuration of Aerosol Rack

OPC

Laptop PC for OPC & SMPS Laptop PC for IN Counter (INC)

Inlet Pressure Control for CCN Counter (CCNC)

Electrostatic Classifier (EC), Differential Mobility Analyzer (DMA)

Bypass valve to keep isokinetic sampling

CCNC Rack

A/D Converter

Membrane Filter (MF) holder sampler

Laptop PC for two Impactors

Impactor#1Impactor#2(AS-TEM)(AS-SW)

Monitor & Keyboard for M300

M300

CPC

Sampling diagram from inlet to exhaust

CCN counter

(Continuous-Flow Streamwise Thermal-Gradient Chamber)

DMT CCN-200 (dual-column version)

 $\begin{array}{l} \text{Column-A:} \\ \text{SSw} = 0.5\% \text{ (fix)} \end{array}$

Column-B: SSw = 0.1 (11), 0.3 (4), 1.0 (5min)%

- water supersaturation in chamber with wetted wall and longitudinal thermal gradient

(Thermal diffusivity < Molecular diffusivity of water vapor)

- some aerosols acivated to water droplets, counted with OPC

Aerosol Sampling Devices

<u>Impactor sampling (2 types)</u>

cutoff size: 0.7, 0.2 μm

Silicon wafer cutoff size: 1 µm

Filter sampling

Sartorius PTFE filter (φ47 mm, pore size 0.45 μm)

Method & Analysis (INP) #1

Individual Droplet Freezing Method (IDFM)

Iwata and Matsuki, 2018

Method & Analysis (INP) #1 Single INP identification and analysis

Si wafer+ Water repellent material Pump 0.5 l/min LN_2 Cold stage

*ATD freezes at -22°C

Spectrometer systems

INP Nanofinder[®] HF Raman : chemical compounds SEM-EDX : morphology, elemental composition^{Instruments)}

Method & Analysis (INP) #2

cf. Price et al., 2018

• place an array (~100 #) of ultrapure water droplets (1 μL) onto PTFE MF

- cooling rate: -1 °C/min, record the freezing T for each droplet
- contact angle between MF and droplets: α =131.6 °
- the number of INP in every 0.5°C intervals -> calculate INP conc., INAS

Sampling Data (filters)

							4	$0 \text{ IN} = 0.80/27_01$
	ID	Date	Start	Stop	Period	Ave. Alt	Ave. Flow	— Trajectory
			[UTC]	[UTC]	[min]	[m]	[L/min]	
	US0708_01	2022/7/8	19:19	19:36	16.8	619.5	12.1 ₃	0°N
	US0710_01	2022/7/10	19:47	20:15	27.3	302.2	18.5	your of a
	US0714_01	2022/7/14	14:50	15:28	37.8	11012.7	3.8	
	US0714_02	2022/7/14	17:51	18:16	24.8	340.1	12.1 2	0°N
	US0722_01	2022/7/22	13:45	14:21	36.0	186.7	12.4	
	US0722_02	2022/7/22	14:22	14:33	11.0	190.9	12.6	100°W
10 samples	US0724_01	2022/7/24	14:58	15:28	30.0	189.6	12.1	
	US0726_01	2022/7/26	14:02	14:33	31.0	169.4	12.4	
	US0727_01	2022/7/27	14:44	15:14	30.6	146.4	12.7	80°N
	LUS0730_01	2022/7/30	17:06	17:36	29.7	168.3	12.5	
	CV0916_02	2022/9/16	19:51	20:26	35.0	3109.8	7.3	20°N
	CV0926_01	2022/9/26	5:03	5:19	16.3	5562.1	6.6	
	CV0926_02	2022/9/26	11:48	11:54	6.3	3185.8	9.6	
o samples	CV0929_03	2022/9/29	16:09	16:21	11.6	4007.0	8.7	10°N
	CV0930_01	2022/9/30	8:29	8:41	12.0	5669.4	7.0	- CV0916_02 - CV0926_01
	<u>CV0930_04</u>	2022/9/30	14:31	14:54	22.9	9389.1	4.6	0° CV0926_02 CV0929_03 CV0930_01
								CV0930 04

Results(aerosol)

Time series of aerosol conc. (H < 3 km)

HIWC-2022

Results(aerosol)

Vertical profiles of aerosol conc. (H < 8 km)

Results(aerosol)

Altitude [m]

CPEX-CV

100

Results(CCN)

CCN_SS spectra_220727 (at low levels)

Results(CCN)

Hygroscopicity (*K*) (at low levels)

HIWC-2022

CPEX-CV

Results(CCN vs aerosol)

HIWC-2022

CPEX-CV

CCN vs PCASP or SMPS (at low levels, average)

CCN vs CDP or CAS (5th highest)

HIWC-2022, 9/30

PCASP or OPC vs 2DS+PIP (max.) (CIP for 9/30)

IDFM (on Si wafer)

HIWC-2022

- Total [#] : 46693
- highest T : -19.2°C
- INP (-30<T<-22) [#]:42
- <u>INP (T>-22) [#] : 15</u>

CPEX-CV

- Total (#) : 27892
- highest T : -22.4°C
- INP (- 30<T<-22) [#]:116
- <u>INP (T>-22) [#] : 0</u>

- elliptoid shape, different from sea salt or mineral dust
- \cdot C-H band and/or C, which indicates organic substances
 - \rightarrow <u>bio-aerosol</u> internally mixed with sea salt, which may cause higher activated T.

INP (-30<T<-22)

Results(INP) **#1**

- non-spherical shape with asperity
- clay mineral feature: <u>fluorescence</u>, mineral particle feature: Al, Fe
 - mineral dust internally mixed with sea salt

INP

Results(INP) **#1**

- non-spherical shape with asperity
- clay mineral feature: <u>fluorescence</u>, mineral particle feature: Al, Fe
 - mineral dust externally mixed with others

Results(INP) **#1**

Back Trajectory

bio-aerosol originated <u>from the land</u>, which contributed to freeze at higher T (US)
externally mixed mineral dust originated from the Sahara desert (CV)

Results(INP) **#2**

INP Conc.

- comparable INP conc. to previous studies (various locations) (Kanji et al., 2017, Price et al., 2018)
- 1 ~ 2 order range in any T in both campaigns
- similar INP conc. between two campaigns, despite of different sampling locations and heights 32

Results (INP) #2 Ice Nucleation Active Site (INAS) Densities

- INAS was calculated based on size ditributions over all ranges (SMPS+OPC)
- no significant differences between two campaigns
- rapid increase at T < -20°C in CPEX-CV

INAS Densities vs Particle Types

Difference of INAS desities may not be related to MD and/or biogenic aerosols.

Results(INP) **#2**

- INAS variations among cases were not clearly understood, although various types were classified.
 - \rightarrow Partly because contributions of INP surface areas to all areas may be small ?

Results(INP) **#2**

INAS Densities vs Particle types

Difference of INAS densities may not be dominantly related to MD.

- In CPEX-CV, INAS variations among cases were not clearly understood, although most type was MD. 35

 \rightarrow Partly because contributions of INP surface areas to all areas may be small?

Contributions of Mineral Dust

If all INPs were mineral dust (MD), INAS curves converged to those of standard dust particle ... (vertical axis: INAS from the aerosols classified as MD and larger than 0.3um)

Internally Mixed Particles

In HIWC-2022, contrast to CPEX-CV,

- Mineral dust (MD), without detection of Fe or internally mixed with sea salt, was chracteristic.
- Contributions of MD may be underestimated, which caused to weaken the relations between particle classification and INAS.

Summary and future work

$(\mbox{CCN and aerosol})$

- Aerosol number concs. were highly variable in both campaigns in terms of vertical and horizontal distributions.
- CCN number concs., as well as CCN spectra, were well-correlated with aerosol loading in HIWC-2022, but not so correlated (mostly low CCN) in CPEX-CV.
- κ was higher at any SS in HIWC-2022 than in CPEX-CV. The values were small compared to typical continental case.

(INP #1)

- Bio-aerosol internally mixed with sea salt, which originated from the land, may cause high activated T in HIWC-2022.
- No particles activated at T>-22C in CPEX-CV. Mineral dust internally mixed with sea salt, which originated from the Sahara desert, activated at T<-22C.

(INP #2)

- INP number concs. in both campaigns were similar and comparable to previous studies.
- INAS at T<-20C may be explained through the dust parameterizations from previous studies.
- INAS at T>-20C was difficult to explain or understand in context of the dust parameterizations.

(Future work)

- Size dependency on CCN and INP activations
- Difference between activated and non-activated aerosol, even in bio-aerosol category
- Evaluation of mineral dust particles internally mixed with other categories

Backup Slides

K value of a given chemical composition

K -Köhler theory Petters and Kreidenweis, 2007

Particle Type	К
(NH ₄) ₂ SO ₄	0.61
NaCl	1.28
Arizona Test Dust	0.025
Sahara Dust	0.054

Fig. 1. Calculated critical supersaturation for $0 \le \kappa \le 1$ computed for $\sigma_{s/a} = 0.072 \text{ Jm}^{-2}$ and T = 298.15 K. The gray lines are linearly spaced intermediates.

small $\kappa =>$ growth similar to pure water large $\kappa =>$ larger solute effect typical value κ (ambient air) : 0.1-0.9

> Typical IN assay by cold plate

Cooled to -50°C (1°C/min)

nis study !! Droplet Freezing Assay on Filter

Polycarbonate Filter

coated with Vaseline

on the filter

Cooled to -50°C (1°C/min)