Objectives of Boulder HIWC-2022 Workshop

Presented by Walter Strapp

29-Nov-2023

Part 1

Workshop Objective

- Given that insufficient high-altitude in-situ measurements in high aerosol were collected in HIWC-2022 to form conclusions, we want to summarize other supporting measurements, analysis, and literature
 - Review Nayoya U. and TASS modeling results
 - Review in-situ TCu measurements
 - Limited relevant literature review
 - Collect above material to write a section for future NASA Technical Memorandum, summarizing HIWC-2022 effort

Workshop format

- Very informal talks
 - Suggest that questions be welcome during talks
 - Presenters please talk clearly
- Priority (no particular order):
 - Nagoya University Model results
 - TASS model results
 - Literature reviews and TCu studies
- If necessary, the above talks may need more time than agenda allocates
 - If so, Thursday afternoon general HIWC-2022 talks may be postponed to postworkshop telecoms

Part 2

Current situation and Workshop Objective

- HIWC-2022 only provided one case of high CCN concentration; insufficient to make any conclusions on first-order hypothesis
- Given the limited results, we should see what further could be done with cloud models, the TCu data, and literature review (due diligence)
 - Nagoya U. model simulations of HIWC-2022 cases and aerosol sensitivity studies
 - TASS model simulations of HIWC-2022 cases and aerosol sensitivity studies
 - Literature review of warm rain and high aerosol, and TCu study of warm rain (Strapp)
 - Literature review of ice initiation and effect of aerosol (Bansemer)
- Objective is to summarize the above in NASA Technical Memorandum.

How TCu measurements fit into this.

- Many flight hours were spent looking at towering cumuli surrounding MCSs, initially to support Nagoya U. study
- There was no formal plan for a complete analysis of these data.
 - Based on real-time observations, Strapp thought that useful conclusions regarding the first-order hypothesis might be reached from the TCu data.
 - FAA provided additional funding to Strapp and Bansemer to do a limited study of the TCu data (Strapp warm rain, Bansemer ice)

How TCu measurements fit into this? Warm Rain

- First order hypothesis assumes:
 - Low aerosol → production of drizzle and rain below the freezing level (warm rain) → reduces TWC aloft
 - high aerosol \rightarrow suppresses drizzle and warm rain \rightarrow higher TWC aloft
 - Based on: high aerosol → higher drop concentration, smaller droplets, more difficult for condensation-coalescence (warm rain) process to get started
 - This suppression of warm rain has been supported by several observations and model studies in the literature (to be shown)
 - Does our HIWC-2022 TCu data exhibit warm rain? Is it significant enough to lower LWC?

How TCu measurements fit into this? Ice

Can other microphysical processes counteract or support warm rain hypothesis?

- 1. Does high aerosol alter the initiation of ice through higher IN?
 - Does high aerosol also increase the number of ice nuclei, thereby starting ice precipitation earlier?
 - Could this <u>reduce</u> TWC aloft if ice formation is earlier?
- 2. Does high aerosol alter the initiation of ice through suppressing ice multiplication?
 - Does high aerosol suppress drizzle drops that may be important to ice multiplication? (Hallet-Mossop process, or drop freezing spicules, or other)
 - Could this <u>increase</u> TWC aloft if ice formation is later?

How TCu measurements fit into this? Ice

- 3. Could high aerosol alter the particle sizes in cloud via graupel?
 - Large high-density graupel particles are accounted for in the Appendix D size characterization
 - More graupel could be important for aviation (e.g. pitots)
 - If ice formation is delayed, implies more LWC, more graupel, more lightning
- Ice interactions are arguably more complex that warm rain, and conclusions may be difficult.
- There may be other important factors for regulatory interests not identified in this summary

End of presentation