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Ask a Question

Analyze your 

data and draw a 

conclusion

Test your 

hypothesis by 

doing 

experiment (or 

finding data)

Construct a 

hypothesis

Do background 

research

Communicate 

your results

http://www.sciencebuddies.org

The Student’s 

“Scientific Method” (individual) The “Scientific Method”

 We Experienced

in GATE

Collaboration 
.. Planning a field phase

..  Conducting the field phase

..  Working with colleagues

..  Comparing results

..  Resolving differences

..  Communication to broader
         community
..  Resolving differences 
…
…
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The Groups in GATE:  diversity in people AND data

Political

Americans
French
Germans
Brits
Soviets
+ 67
other
countries

SHIPS

Radar
Tethered Balloons
Surface fluxes
Surface weather
Radiosondes

AIRCRAFT

“Flight-Level” data
Gust probe data
Aircraft films
IR sensors 
 (up- and down-
  looking)
Microphysics
  (dust, precip)

SATELLITE

Images

MODELS

During GATE:
Forecast models

After GATE
LES
…
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GATE 
• Over the tropical ocean
• Multiple instruments, platforms, groups
• Improved instruments

104th AMS Annual Meeting 1 Feb 2024 4

Pre-GATE 
• Most PBL Work

• In midlatitudes (except for ATEX, BOMEX, some Australian work) 
• Single-platform or instrument type

• Problems with measurements of temperature, mixing ratio

BOUNDARY-LAYER (PBL) RESEARCH

Changed during talk:
Two groups – mid-lats, tropical – GATE brought together



GATE Workshop – 1977
Are we in the same universe????

Not 
This

But 

And learned
More horizontal variability than expected

(outflow from previous day’s storms)

Authors Combined
Aircraft, tethered balloons, 
     balloon soundings, surface
     data

10-m T (°C)

150-m mixing ratio q

1000

0

z

Same universe and similar fluxes … but
→ Need significant horizontal/time average to get meaningful CBL depth
→ Need significant horizontal average to get aircraft fluxes 
→ C-scale triangle budgets suffer from nonlinear variability between ships

Dallas tethered balloon

DC-6
UK-C130

Meteor tethered balloon

German structure sondes

q’ -- Dallas tethered balloon
 (relative to 1330-1730 avg)

1

𝜃 (K)

22°30’W

9°15’N

9°00’N

8°45’N

8°30’N

24°W

50 km

NLS 1982
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Improved water-vapor Instruments →  Yes, Trade Cu DO have roots!
EARLY 1970s Conventional wisdom:  No trade-wind cumulus roots 
Suspected by Malkus and Riehl, but initial data suggested otherwise 
(Malkus 1962)
By BOMEX (Bean et al. 1972, Grossman 1972,1982) and later, had:  
microwave radiometer (McGavin and Vetter 1965)
Lyman-𝛼 hygrometer (Buck 1976)
→ Clouds have roots

What Malkus (1962) found with
   no water vapor signal

15 Dec 72 data, LeMone and Pennell (1976)

Clouds north of
Puerto Rico,
15 Dec 1972
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Mean wind vector
→ Water vapor important to buoyancy (known in BOMEX  – e.g. Grossman 1973)



Worst problem: UK-C130
Meteorological Research Flight
Farnborough, UK 51.27°N  0.77 deg E

Intermediate: US L-188
NCAR Research Aviation Facility
39.91°N, 106.11°W
(flew through rain to clean sensors)

No problem:  US NOAA DC-6
NOAA Aviation Operations Center
27.98°N, 82.02°W
(regularly cleaned temperature sensor 
                  with distilled water)104th AMS Annual Meeting 1 Feb 2024 7

Steve Nicholls:  Salt on fast temperature sensors → too-positive cloud-base heat flux

(salt contamination 
→ Condensation on
Sensor at higher RH 
→too-warm
temperatures 

→ too positive 𝒘′𝑻′
near cloud base 
(Schmidt et al. 1978)

Steve Nicholls

AND:  salt-contamination problem a 
           function of latitude!



Through subcloud layer
Virtual-temperature flux fits
“universal”  profile
    (for weak winds, steady state)
for ℎ top of subcloud layer or
cloudless CBL top

Nicholls and LeMone (1980, NL80)

Most-
developed
Cumulus

Fluxes with fast humidity and corrected fast temperature dataset
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ℎ 0.6
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0.2

0.0
1.00

𝑤′𝑇𝑣′ ℎ
/ 𝑤′𝑇𝑣′ 0

clear

At cloud base with more active cumuli 
heat flux w’T’ more negative
water-vapor flux w’q’ more positive

At surface
About half of w’Tv’ from w’q’

days 218, 253 in between



LASTING IMPACT (mostly)

HETEROGENEITY FAIR-WEATHER MARINE CONVECTIVE BOUNDARY LAYER
 recovering (atmospheric) cold pools

 leftover fresh water from rain (seen in GATE, documented more in COARE, predicted by Katsaros)
                Mesoscale CBL structure
                after GATE: Role of air/clouds above the CBL (e.g. Clark et al. 1986, Balaji et al. 1993)

IMPORTANT ROLE OF WATER VAPOR

Removal of salt contamination necessary

Recognition that clouds over tropical ocean DO have roots (impact “mass-flux” parameterizations)

MOST mid-latitude boundary-layer meteorologists start using virtual temperature instead of temperature
               for buoyancy fluxes, scaling parameters involving buoyancy fluxes 
 SOME land-based PBL scientists still resist 

– 0.2 = 𝑤′𝑇𝑣′ ℎ
/ 𝑤′𝑇𝑣′ 0

≡ “entrainment constant” (weak wind CBL only) in some PBL schemes

 (but doesn’t apply rapidly-growing CBLs over land; and seems to of secondary importance
                 late in the day)
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MESOSCALE CONVECTIVE SYSTEMS

(blend data/ideas within groups)
WHY I’M INVOLVED
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Dick Greenfield

me
Pre-GATE, deep convection
• Mostly midlatitude continental 
• Squall lines (perpendicular to low
         level shear) or supercells
• Multiple instruments

GATE
• New (tropical, marine) regime

GATE WORKSHOP, 1977
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a/c in-situ data
+ IR temp cloud tops =
+ film  →
Tilt of cloud leading edge

Radar → Tilt of echoSatellite
+aircraft (a/c)
  in-situ data + film
Clouds

Radar →
Precip (pink), 
Relevance of stratiform rain 
Melting layer

radar, aircraft → winds

Convective updrafts, downdrafts 
       weak and small
        a/c in-situ data
        Radar  reflectivity profiles

Meaurements integrated within individual groups:  
   e.g., Houze and students; Zipser group (Garpee Barleszi) and Zipser students 

For ”fast” lines, inflow U
    shear-cold-pool
    interaction explains tilt
    Rotunno/Klemp/Weisman
    (1988, aka RKW)

U (Soundings, aircraft)U

Aircraft gust-probe winds →
Vertical flux of line-normal
  momentum (u’w’)
   

(idealized cross section from Houze 1977 + Zipser 1977) LeMone et al. (1984a)

SQUALL LINE
(“fast line”)

15 km



SURPRISES
• Much less “random” convection than expected (in field) (noted in talk:  also importance of mesoscale)

• Significant precipitation beneath stratiform cloud (Houze 1982, etc.)
• Weak up- and downdrafts in MCS (didn’t have to send aircraft back to U.S. for
 inspection)
• Line normal momentum transport (INCREASED shear normal to line)

 (anticipated by VIMHEX)
• Abundance of slow lines
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other: Tropical ocean (GATE+later)
x = continental US (thundertorm Project)

Lucas et al ‘94

u’w’ (m2s-2) LeMone et al. 1984a



Weaker circulation

Much less 𝜃𝑒
Difference 
(weak cold pool)

L:
low pressure
(largely from
buoyancy)

SLOW LINES (majority of GATE MCSs) 
–(Pestaina-Haines and Austin 1976; Houze and Cheng 1979)

Line-normal (U)-momentum flux independent
of shear for squall lines and slow lines
(LeMone et al. 1984a)

Leading-edge relative U (m s-1)

14 Sept (LeMone 1983) 

L
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𝑠𝑙𝑜𝑝𝑒 = −
𝑤𝑐

𝑐

𝑠𝑙𝑜𝑝𝑒 = −
𝑤𝑐

𝑢𝑐 − 𝑐

cloud growth at front
of convective band 
important for leading-edge tilt
(LeMone et al. 1984b)

Doesn’t
Match RKW

Similar u-momentum fluxu (m/s)

w2D (m/s)

𝜃𝑒
u’w’ (m2s-2)
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1970s—1980s TROPICS-BASED CONVECTIVE BAND
       DESCRIPTIONS DERIDED BY SCIENTISTS RAISED ON
       OKLAHOMA-TYPE SQUALL LINES 

BANANA

ROTTEN
TOMATO

TOO MUCH
LEADING-EDGE TILT!!

ANVILS ARE
THIN!

ANVILS GO 
OUT FRONT!

MEN

MOMENTUM FLUX
HAS TO BE DOWNGRADIENT!

COLD POOL IS 
  TOO WEAK! NOT LIKE

OKLAHOMA!

DISCUSSION AFTER MY FIRST
NCAR SEMINAR ON GATE MCS
TOOK PLACE IN MEN’S ROOM 

RATHER THAN SEMINAR ROOM.

Initial resistance from the midlatitude
 Community 

ED ZIPSER:
SIMILAR
REACTION
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Dataset for testing/verifying numerical simulations

Demonstration of importance of stratiform rain (added in talk)
Cited by Simpson and Tao (1999, AMS GATE 25th anniv.

Momentum transport by quasi-2-D bands
 a natural follow-on to VIMHEX (Betts, Grover, Moncrieff 1976)
 an example of Starr’s (1968) “negative viscosity phenomena”

 one line orientation accounted for in Wojtek Grabowski’s (2001)
  2-D “Superparameterizaton”; development continues.
Weak updrafts
 verified for MCSs in other tropical marine locations
                and radar reflectivity profiles (Szoke et al. 1986)
 →explanation for dearth of lightning over tropical 
  oceans (Zipser 1994, Zipser and Lutz 1994)

Slow lines (parallel to low-level shear)Still not fully understood

Will we need high-resolution GCMs to get momentum flux right?
Measurement of in-cloud temperature still a challenge

IMPACT



Conclusions
• Collaborative science in

diverse group enhances
discovery
• Sharing of ideas, approaches,
 measurements from

different platforms
• Discovering problems
• Overcomes individual biases
•  More experience to draw from

• Acceptance not guaranteed by other communities
• Many factors determine publication timing

• Validation, bias removal, correction of data
• Science culture 
• Field-program timing
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Contribute to “Out Years”?  
Access microfilm and links to digital data:
https://www.eol.ucar.edu/field_projects/gate

Adapted from Zhang and Moore (2023) 

https://www.eol.ucar.edu/field_projects/gate
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GATE
AMS Journals – LeMone 1983
MGA abstr – LeMone 2003
NCAR database (Zhang+Moore 2023)
GATE NCAR database (1974)
TOGA COARE (1992-1993)
AMMA (2002-2010)
DYNAMO (2011-2012) 

CAVEATS
• Hard to count (3 counts for GATE)
• A function of country (USSR early)
• A function of subfield

• Single-instrument first
• Integrative papers later

• A function of institution
• University – 1974 – student
        publish after graduate, now
        publish before.
• NCAR – scientists did own analyses
 (lag for NCAR GATE partially due to 
 data-validation efforts)
• NSF, etc. funding cycles

• Spacing of field campaigns

IMPACT -- PUBLICATION
• Peak faster with time?
• Long tail desirable
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https://atmos.uw.edu/MG/PDFs/JMS82_houz_cloud.pdf
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