The MTU Π-Chamber is a convection cloud chamber designed to study atmospheric clouds under a wide variety of temperatures and pressures. The internal volume of the Π-Chamber is 3.14m3, which gives the Π-Chamber its name. The temperatures of the top, bottom, and sidewalls of the chamber are independently controlled, allowing us to create a turbulent environment through Rayleigh-Bénard convection. Because the chamber can form a cloud due to turbulent mixing, we are able to create and maintain a cloud for several hours.

Aerosol-Cloud Interactions
- Soot compaction through cloud processing (Bhandari et al. 2019).

Mixed Phase Clouds
- The role of aerosols in the glaciation of mixed phase clouds (Desai et al. 2019).
- Ice nucleation in the wake of falling hydrometeors (Prabhakaran et al. 2020).

Aerosol Removal and Cloud Cleansing Through Activation
- Aerosol activation and cloud formation in a turbulent environment (Shawon et al. 2021, Prabhakaran et al. 2020).
- Aerosol removal and cloud collapse is accelerated by supersaturation fluctuations (Chandrakar et al. 2017)

Cloud Optical Properties
- Optical blurring due to aerosols (Packard et al. 2018).
- Light scattering in a turbulent cloud (Packard et al. 2020).

Humid Rayleigh-Bénard Convection
- Supersaturation fluctuations in moist Rayleigh-Bénard convection (Chandrakar et al. 2020).

Michigan Tech Π Convection Cloud Chamber

Jesse C. Anderson, Will Cantrell, Raymond A. Shaw, Lynn Mazzoleni, Claudio Mazzoleni

jcanders@mtu.edu, cantrell@mtu.edu, rashaw@mtu.edu, lrmazzol@mtu.edu, cmazzoleni@mtu.edu

Overview

The MTU Π-Chamber is a convection cloud chamber designed to study atmospheric clouds under a wide variety of temperatures and pressures. The internal volume of the Π-Chamber is 3.14m3, which gives the Π-Chamber its name. The temperatures of the top, bottom, and sidewalls of the chamber are independently controlled, allowing us to create a turbulent environment through Rayleigh-Bénard convection. Because the chamber can form a cloud due to turbulent mixing, we are able to create and maintain a cloud for several hours.

Operating Conditions

Pressure:
- 1.0 to 0.1 atmospheres

Temperature:
- -50 to 40 Celsius

Rayleigh Number:
- $\leq 2 \times 10^8$

Research Topics and Publications

Aerosol-Cloud Interactions
- Soot compaction through cloud processing (Bhandari et al. 2019).

Mixed Phase Clouds
- The role of aerosols in the glaciation of mixed phase clouds (Desai et al. 2019).
- Ice nucleation in the wake of falling hydrometeors (Prabhakaran et al. 2020).

Aerosol Removal and Cloud Cleansing Through Activation
- Aerosol activation and cloud formation in a turbulent environment (Shawon et al. 2021, Prabhakaran et al. 2020).
- Aerosol removal and cloud collapse is accelerated by supersaturation fluctuations (Chandrakar et al. 2017)

Cloud Optical Properties
- Optical blurring due to aerosols (Packard et al. 2018).
- Light scattering in a turbulent cloud (Packard et al. 2020).

Humid Rayleigh-Bénard Convection
- Supersaturation fluctuations in moist Rayleigh-Bénard convection (Chandrakar et al. 2020).

https://phy.sites.mtu.edu/cloudchamber/nsf-cif/

Michigan Technological University