Michigan Tech II Convection Cloud Chamber

Jesse C. Anderson, Will Cantrell, Raymond A. Shaw, Lynn Mazzoleni, Claudio Mazzoleni jcanders@mtu.edu, cantrell@mtu.edu, rashaw@mtu.edu, lrmazzol@mtu.edu, cmazzoleni@mtu.edu

The MTU Π-Chamber is a convection cloud chamber designed to study atmospheric clouds under a wide variety of temperatures and pressures. The internal volume of the Π -Chamber is 3.14m³, which gives the Π -Chamber its name. The temperatures of the top, bottom, and sidewalls of the chamber are independently controlled, allowing us to create a turbulent environment through Rayleigh-Bénard convection. Because the chamber can form a cloud due to turbulent mixing, we are able to create and maintain a cloud for several hours.

Operating Conditions

Pressure: • 1.0 to 0.1 atmospheres **Temperature:** -50 to 40 Celsius **Rayleigh Number:** ≤2*10⁹

https://phy.sites.mtu.edu/cloudchamber/nsf-cif/

Aerosol-Cloud Interactions

Mixed Phase Clouds

Humid Rayleigh-Bénard Convection

Michigan Technological University

Research Topics and Publications

• Soot compaction through cloud processing (Bhandari et al. 2019). • Turbulence induced broadening of the cloud droplet size distribution (Chandrakar et al. 2016, 2018, Desai et al. 2018).

• The role of aerosols in the glaciation of mixed phase clouds (Desai et al. 2019). • Ice nucleation in the wake of falling hydrometeors (*Prabhakaran et al 2020*).

Aerosol Removal and Cloud Cleansing Through Activation • Aerosol activation and cloud formation in a turbulent environment (Shawon et al. 2021, Prabhakaran et al. 2020).

• Aerosol removal and cloud collapse is accelerated by supersaturation fluctuations (Chandrakar et al. 2017)

Cloud Optical Properties

• Optical blurring due to aerosols (*Packard et al. 2018*). • Light scattering in a turbulent cloud (Packard et al. 2020).

• Properties of turbulence and the large-scale circulation in moist Rayleigh-Bénard convection (Niedermeier et al. 2018, Anderson et al. 2021). • Supersaturation fluctuations in moist Rayleigh-Bénard convection (Chandrakar et al. 2020).

