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« My perspective: (i) Observations to (a) Total rain
improve predictive models and (ii) coupled
observations and models to improve
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weather and climate that we must be able Schumacher et al. (2003)
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Where models deviate
from observations tells us
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Captured length—scales
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* Despite model resolution and
parameterization improvements,
persistent biases remain

We know these biases stem from:

Convective radar reflectivity high
bias with excessive riming
growth

Insufficient stratiform
precipitation

Sensitivity to environmental
conditions is too limited (e.g.,
land vs. ocean)

under-resolved updrafts,

insufficient (incomplete)
parameterization of
microphysics, and

likely other under-resolved
phenomena such as cold pools

us where to focus efforts
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updraft spatial structure

= Thermal to plume spectrum dependent on

initial updraft width, CAPE, RH, and

vertical wind shear, affecting entrainment,

detrainment, and vertical transport

= Vertical profiler and aircraft multi-Doppler
retrievals can resolve these features, but

few measurements exist
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Critical unknown

Vertical wind speed is critical, but so is
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~~" Critical unknown: Near cloud environment
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65°W Ga°W Measurements have greatly improved in quality over time, and field

Lo-o | ... campaigns are more numerous. But, campaigns are more limited in
. measurement scope while still expansive in research scope. This

restricts progress, requiring a rethinking of measurement strategies.
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Varble et al. (2021)
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«  Structure snapshot changes in space and time
(D/Dt) are the result of processes operating
over time to produce such changes

= Dynamical and microphysical properties are
lagged in time

= Convective cell and system tracking via radar
and satellite is an example

= Another example is recording properties along
estimated Lagrangian flows

*  Work to be done linking representative tracked
feature datasets to lesser sample high
resolution, advanced retrieval, and
comprehensive measurement (e.g., field
campaign) datasets targeting specific
processes

=  Some new measurement strategies adapt to
moving, evolving clouds but are not yet
perfected and how to best use them is still
unclear
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As an example, even the sign of many process impacts on updrafts and aerosol impacts on processes are unknown:
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These are not free from bias, but are increasingly used for understanding 1005 | e C92 \\
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We still suffer from limited sampling, the need for proxies,
and process obscuration by feedbacks

Can we fill gaps with LES and km-scale ensembles, despite
their shortcomings, making use of instrument simulators to
connect to unobservable processes?

l. !. : Khairoutdinov et al. (2009) "
ﬁ

. .. A
A » Clouds in the mesoscale LES run of tropical oceanic deep
* ' . convection (Khairoutdinov et al. 2009). Image courtesy of lan Glenn

il
WatetVapr y _ and Steve Krueger.
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« Measurement Guidance

=  We need to be able to predict the vast variety of deep convection, which means coordinated model and observation
improvement

= Modeling capabilities have tremendously improved but persistent biases remain, highlighting gaps in our understanding

Measurement Targets
= Convective dynamics: size, shape, and strength of updrafts and downdrafts including sensitivities to environment

= Microphysics: particularly mixed phase and ice processes including interactions with circulations and effects on
precipitation and radiation

= Near cloud environmental variability such that convective dynamics and microphysics dependencies and interactions
with the environment can be quantified and understood

= Comprehensive measurements mixing objective and adaptive sampling with carefully planned strategies

* Measurement Strategies
= Retrieval resolution at the scale of key processes without loss of context and representativeness
= Tracking 2D and 3D features in time to link properties to processes
= Sample full convective variability (geographical, diurnal, organizational, life cycle, extremes)

= More innovative integration of process models with field campaigns and operational networks to fill gaps via
complementary strengths and weaknesses

Data archiving with standardized metadata, documentation, and easy access is also critical

17
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Thank you

Contact: adam.varble@pnnl.gov
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