

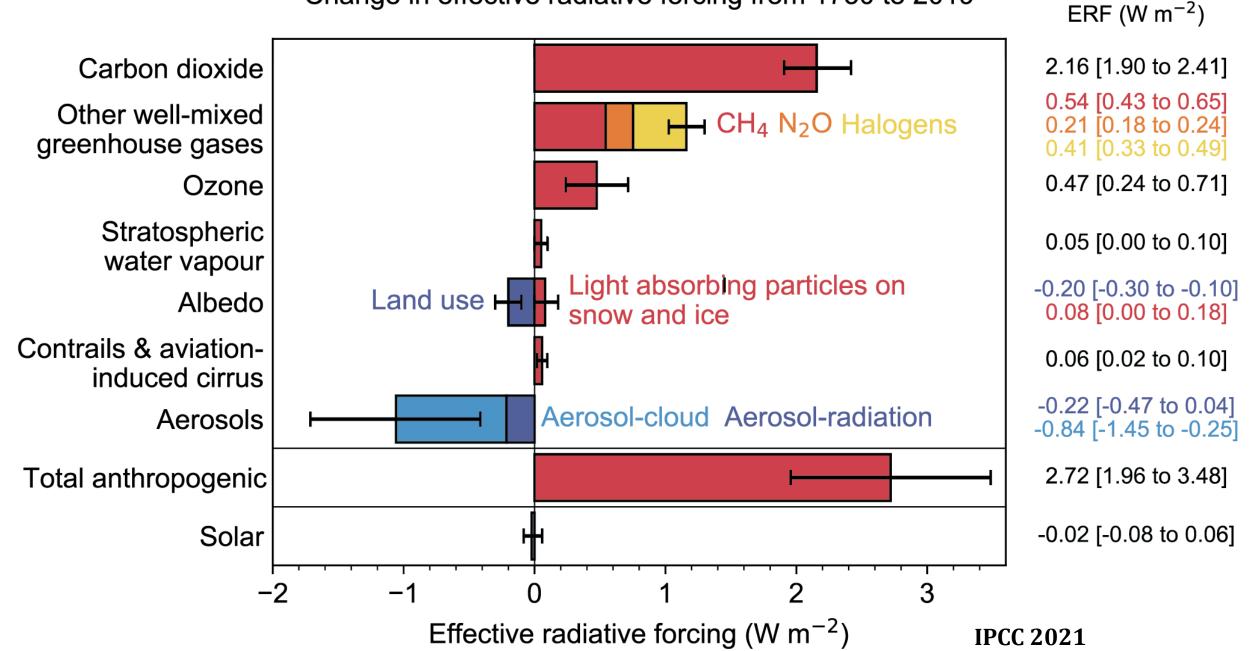
於

Greg McFarquhar

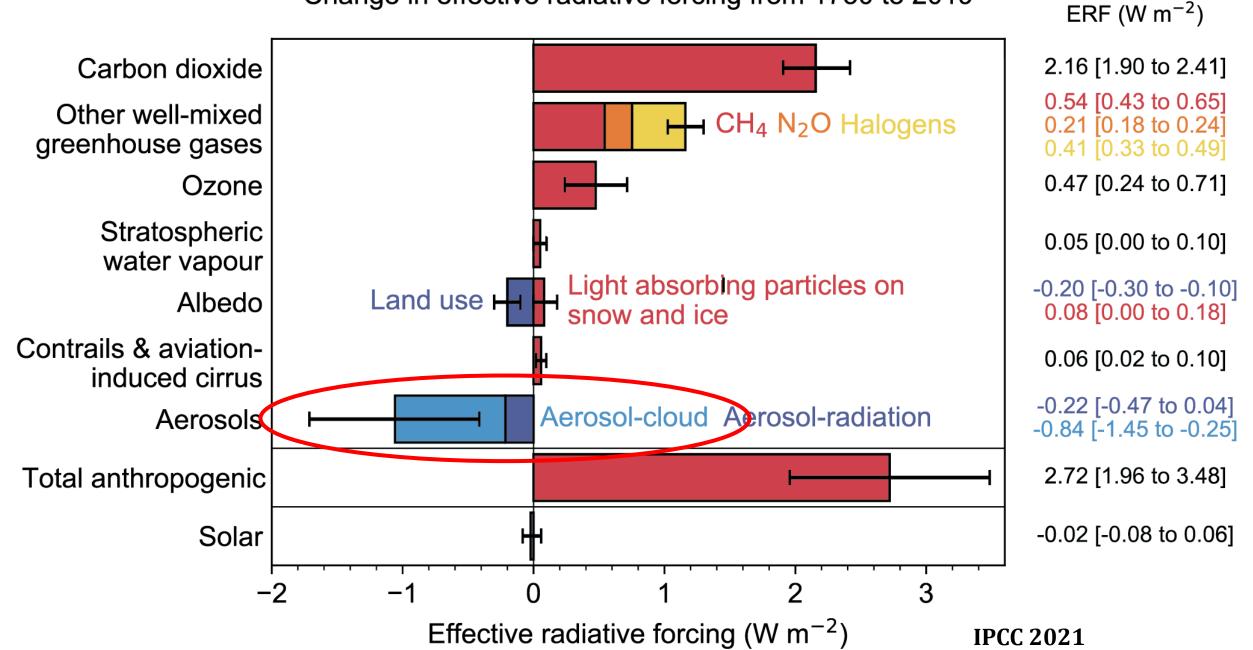
Cooperative Institute for Severe and High Impact Weather Research and Operations and School of Meteorology, University of Oklahoma, Norman, OK

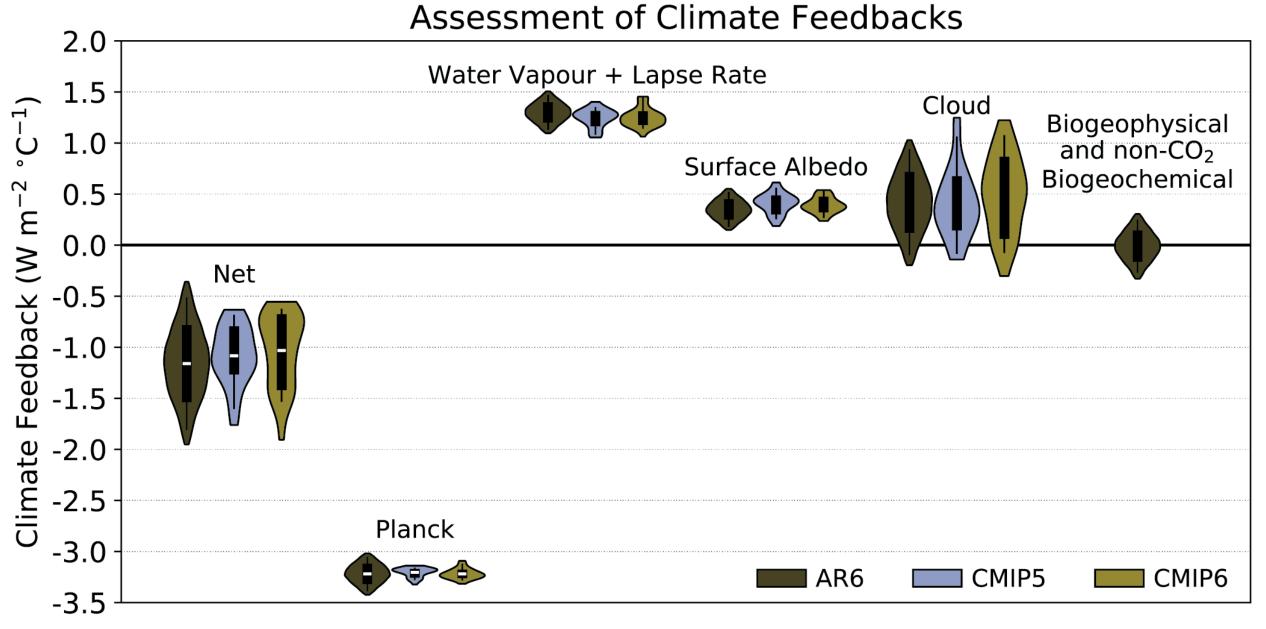
2023 NSF FARE USERS' WORKSHOP, Boulder, CO

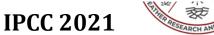
21 September 2023

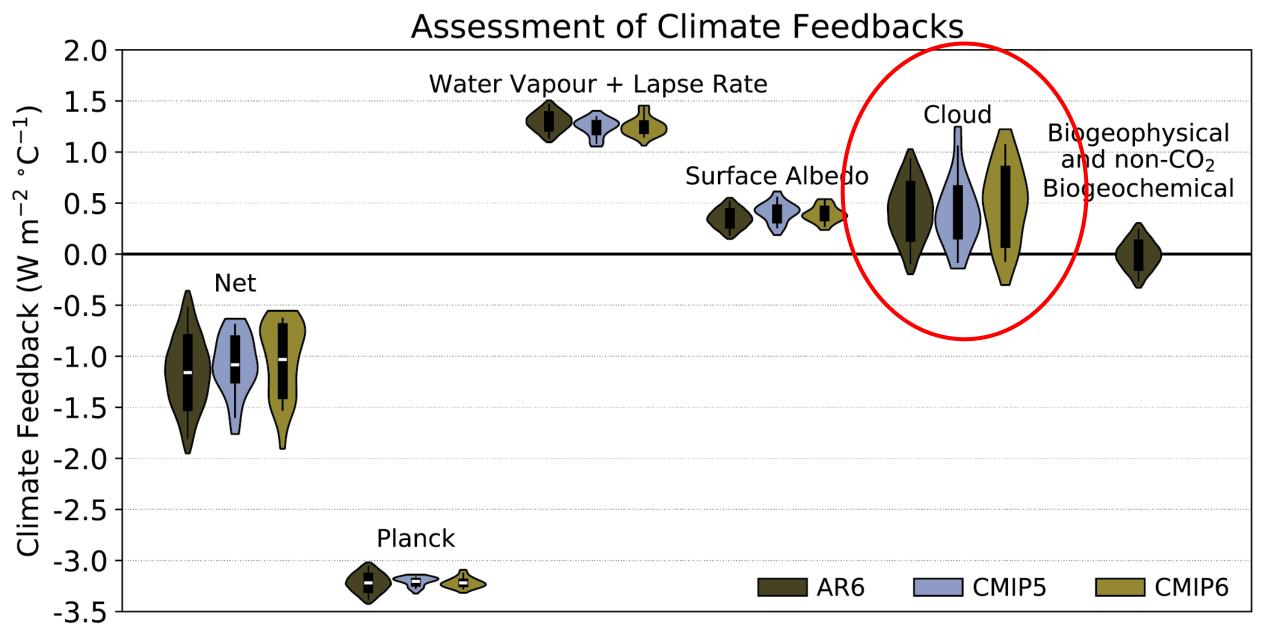


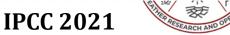
Aerosol-Cloud-Precipitation-Climate


- The most fundamental and complex problems in climate and weather research today are our poor understandings of the basic properties of clouds and our inability to determine quantitatively the many effects cloud processes have on weather and climate
- Work to investigate these problems requires an integrated approach using ground/air-based in-situ and remote sensing observations, satellite remote sensing and models with a variety of temporal and spatial scales




Change in effective radiative forcing from 1750 to 2019

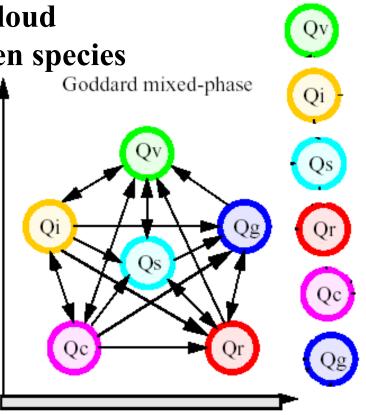



Change in effective radiative forcing from 1750 to 2019

Role of Observations

- We need to improve our process-oriented understanding of aerosol-cloud-precipitation interactions
- But, we observe aerosol, cloud, precipitation and radiative properties, not processes

• How can we link the two?



What do models need from in-situ data?

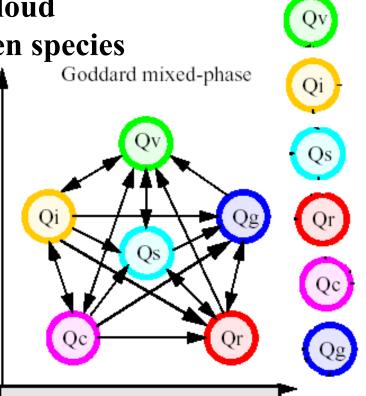
Most cloud parameterization schemes predict 1- or 2- moments of a size distribution for a # of hydrometeor categories

These schemes require some information about cloud microphysics to calculate conversion rates between species

-ý-

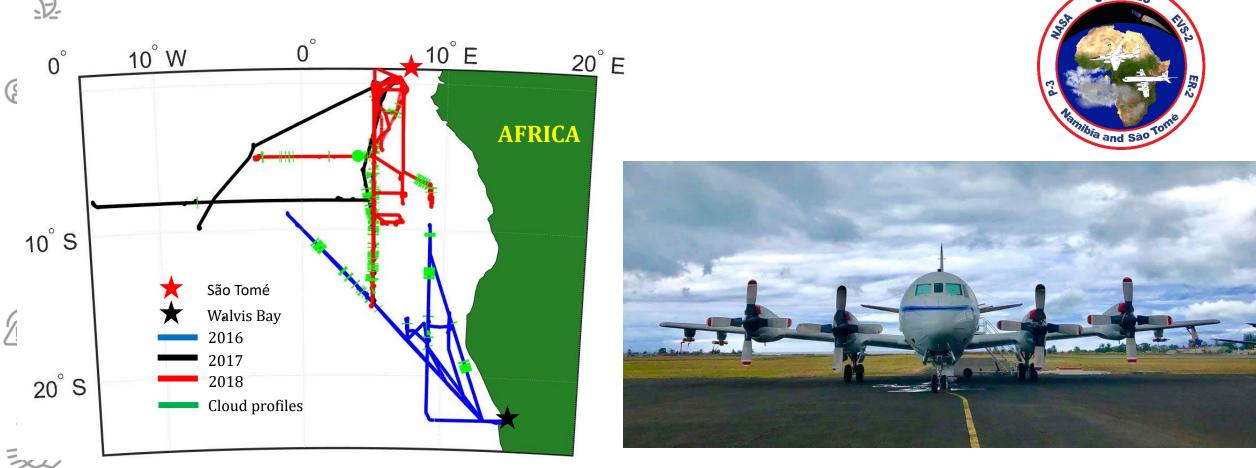
-<u>\</u>

What do models need from in-situ data?


Most cloud parameterization schemes predict 1- or 2- moments of a size distribution for a # of hydrometeor categories

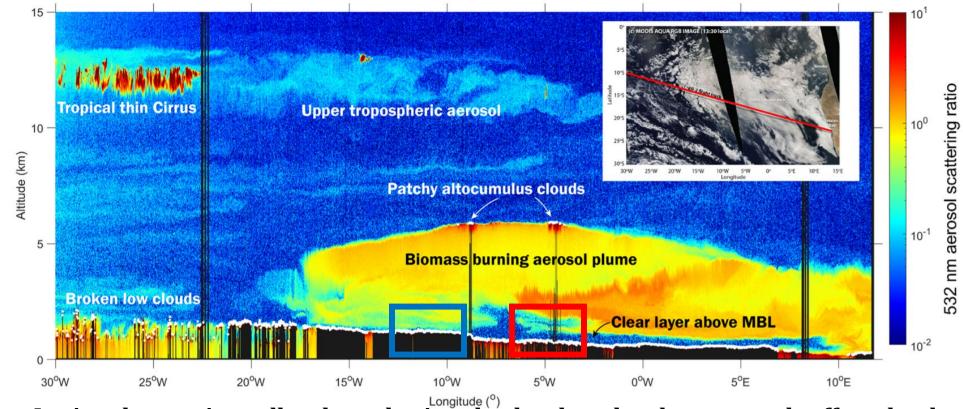
These schemes require some information about cloud microphysics to calculate conversion rates between species

$$m = \alpha D^{\beta}$$
 (mass)

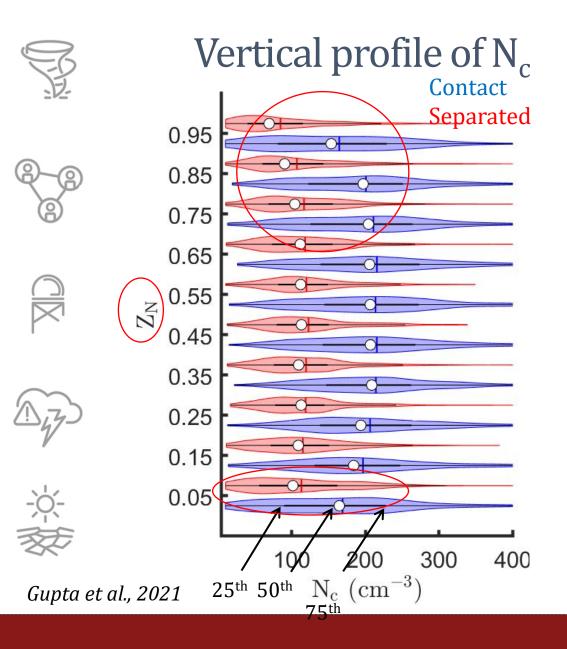

V = aD^b (fall speed)

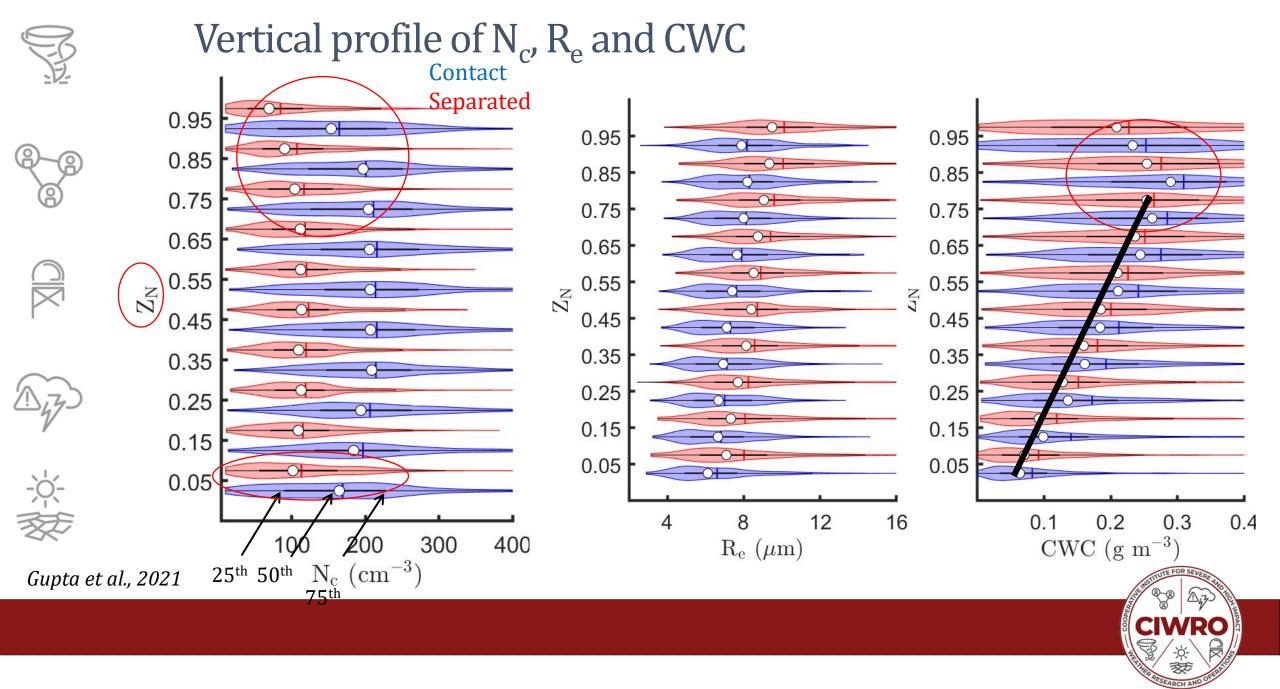
g,
$$\omega_0 = f(T, IWC, r_e)$$

ORACLES: <u>ObseRvations of Aerosols above CLouds and their intEractionS</u>



ORACLES used aircraft to quantify how mixing of aerosols near tops of persistent stratocumulus deck off west coast of Africa affected cloud properties


ORACLE



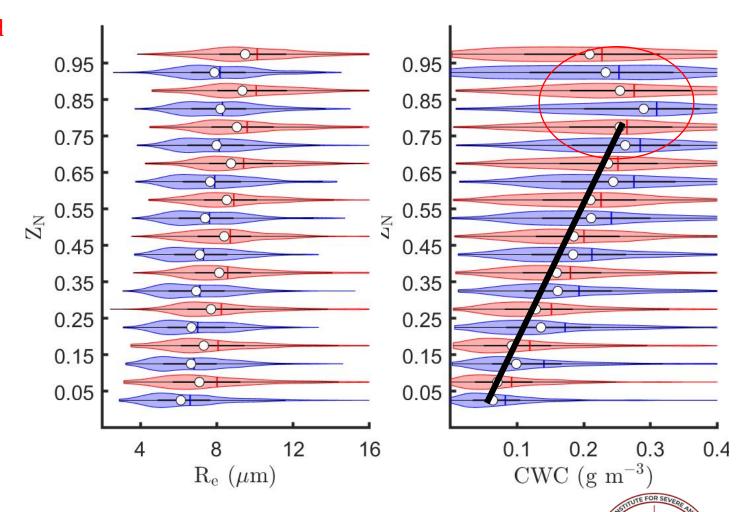
- In situ observations allow hypothesis to be developed on how aerosols affect clouds
- Synergy with modeling studies evaluated with observations required to quantify processes by which ACIs affect cloud properties; also evaluate remote sensing algorithms

N_c for contact profiles 84 to 90 cm⁻³ higher. (95% confidence intervals; 2-sample t-test).

-;:

Vertical profile of N_c, R_e and CWC

Contact Separated


R_e increased with height

- 7.1 to 9.5 µm
- 6.1 to 7.9 μm

CWC increased up to $Z_N = 0.75$, similar for contact and separated

Decrease in CWC near cloud top

- Inhomogeneous mixing

Future Observations

- What observations do we need in future?
- Where/when do we need these observations?
- How do we need to collect these observations?

Future Observations

- What observations do we need in future?
- Where/when do we need these observations?
- How do we need to collect these observations?

Science questions/hypotheses drive the answers to these questions

8	SOCRATES observational requirement	To enhance our knowledge of SO aerosols, clouds and their interactions in a variety of synoptic settings and to narrow the uncertainties in representing key processes in climate models, a comprehensive dataset is needed that documents BL structure, and associated vertical distributions of liquid and mixed-phase cloud and aerosol (including CCN and IN) properties over the SO under a range of synoptic settings.
	SOCRATES modeling requirement	For such a dataset to have broad impact on climate modelling, the modelling community must be an integral part of the SOCRATES design and be involved in a systematic confrontation of leading climate models with SOCRATES data, e. g. using short-term hindcasts as in VOCALS model assessment (Wyant et al. 2014).

-ò́-

 Important for modeling community be involved from very beginning of project

McFarquhar et al. 2020

Science Traceability Matrix (STM)

• In any specific campaign, need STM

NNH13ZDA001N-EVS2

rity		Scientific Measurement Requ	lirements	Instrument Functional Requirements	Investigation Functional Requirements		
Priority		Parameter	Ассигасу	(bold font indicates instruments that meet or exceed measurement requirements)	(A = all)	-Priority:	
	Aerosol direct effects:	Aerosol:				I HOIILY.	
	S01-1 (Aerosol spatial evolution)	AOD at UV-VIS-SWIR	± 0.02 or 5%	4STAR (0.01-0.02), RSP (0.02), AirMSPI, HSRL-2 (0.01), eMAS, AERONET (0.01-0.02)			
	S01-2 (Aerosol-induced ra- diative fluxes)	AAOD at UV-VIS-SWIR	± 0.02 for A0D>0.1	4STAR + SSFR (0.02), RSP, AirMSPI, S01-1 S01-2 HSRL,eMAS,HIGEAR, AERONETT (0.02) 502-2 502-2	Observations: Intensive, multi-aircraft field campaigns		
	S01-3 (Seasonal aerosol	Aerosol spectral refractive index at UV-VIS- SWIR	± 0.02 for real part	4STAR + SSFR, RSP, AirMSPI, HSRL, eMAS, Aeronet (0.02)	Measurements on routine flight track along	Critical,	
	variation)	Aerosol/CCN size distribution , $r_{e\!f\!f}$	$\pm 0.07\mu\text{m}\pm7\%$	HiGEAR (10% number, 5% size), RSP 501-1 503-1	model grid boxes) to enable statistical	Gritticalj	
Po		Aerosol number conc. profile	50%	HIGEAR (10%), HSRL-2 501-1 503-1	comparisons to climate models	T	
Threshold	Aerosol semi-direct ef-	Chemical composition	Speciation (BC, vola- tile, refractory)	HIGEAR-AMS (35%), SP2 (25%) RSP 501-1 503-1	Sampling that permits assessments of variability	Important,	
£	fects: S02-1 (Relative vertical dis-	Aerosol extinction/absorption profile	$\pm 0.025~{\rm km}^{-1}$ in ext	HiGEAR (0.005 in ext), HSRL-2 (0.01 ext), 4STAR 502-1	in aerosol and doud proper ties within dimate model grid cells (100 km²) for multiple adjacent cells		
	tribution)	Single Scattering Albedo (SSA)(profile or layer)	±0.028	HiGEAR (0.03), HSRL-2, RSP, AirMSPI, 4STAR S01-1 S01-2 + SSFR (0.02 in midvis), AERONET (~0.03) S02-1 S02-2	3 airborne campaigns in different months 501-3	Nice to Have	
	S02-2 (Aerosol-doud heat-	Gases:			502-1		
	ing rates)	C0, C0, H ₂ 0, 0	$\pm 10\mathrm{ppbv}\mathrm{CO}$	COMA (2 ppbv C0), facility, HiGEAR S03-1 S01-1	<i>In situ</i> and remote sensing obs of aerosol S03-1 layers above (and entrained into) low-level A		
	S02-3 (Cloud changes due to aerosol-induced heating)	Cloud/Drizzle/Precipitation:			layers above (and entrained into) low-level 🔒 A Sc deck A		
		Cloud fractional cover	±0.05	eMAS (0.05), ACR+APR-2, AirMSPI (0.05), MODIS/SEVIRI (0.05) 502-3 501-2	Coincident obs of underlying doud macro- and	Threshold o	
		Goud top/bottom height	±100 m	ACR+APR-2 (60 m), HSRL-2 (33 m), AirMSPI ASSI ASSI ASSI ASSI ASSI ASSI ASSI A	Massurament of ET to DPL mixing	I III esitotu ol	
		Particle Size Distribution/Composition	±20%	CAPS-CAS , PDI (20%), CVI, CDP 502-2 502-3 503-2	Measurement or F1-to-PDL mixing 503-1	D	
	Aerosol indirect effects:	COD	±10%	eMAS (5-10%), SSFR, RSP, AirMSPI, 4STAR 502-2 502-3	Modeling: Large eddy simulations to integrate observations for process scale understanding of aerosol-doud	Baseline	
	SO3-1 (Mixing survey)	r _{eff}	±20%	eMAS (10-20%), RSP, AirMSPI, SSFR, 4STAR, <i>in situ</i> probes (20%)	interactions.		
Baseline	SO3-2 (Cloud changes due to aerosol mixing)	Liquid water content (LWC/LWP)	± 0.05 g m ⁻³ / 10 g m ⁻²	King probe, CAPS-LWC, PDI 502-3 (20% LWC), ACR+APR-2 (10 gm ⁻² LWP) \$03-2 \$03-3	Regional chemistry-aerosol climate modeling for field planning, to integrate observations to con- strain direct, semi-direct and indirect effects,		
Bas		Thermodynamics		Facility 502-3	and to separate aerosol and meteorological	TE FOR SEL	
	S03-3 (Cloud changes due	Precipitation microphysics/rate	± 0.4 mm/day (rate)	2D-S, CAPS-CIP, PDI+HVPS3 (0.2 mm/day), eMAS+ACR+APR-2 (0.2 mm/day) S03-3	effects on clouds	14 8 B 17	
	to aerosol-suppressed pre- cipitation)	Radiation:			Global climate modeling to determine impacts A		
	apitationy	Spectral Solar Flux	±3%	SSFR (3%, 0.5-7% for differentials) 501-1 502-2	dirculation		
		Visible-SWIR Degree of Linear Polarization	±0.5%	RSP (0.2%), AirMSPI (0.5%) 501-2 502-2 503-2			
		Visible, SWIR, Thermal IR Radiance / Bright- ness	$\pm 510\%$ in radiance, ± 0.5 K for IR	eMAS (5% in radiance, 0.5 K for mid- and window-IR, 1-2 K for 13+ μm) 502-3		Final Press - un of	

NNH13ZDA001N-EVS2

rity	Science Object	Scientific Measurement Requ	lirements	Instrument Functional Requirements	Investigation Functional Requirements	
Priority	Science object	Parameter	Accuracy	(bold font indicates instruments that meet or exceed measurement requirements)	(A = all)	–Science
	Aerosol direct effects:	Aerosol:				Julie
	S01-1 (Aerosol spatial evolution)	AOD at UV-VIS-SWIR	± 0.02 or 5%	4STAR (0.01-0.02), RSP (0.02), AirMSPI, HSRL-2 (0.01), eMAS, AERONET (0.01-0.02)		Objective:
	S01-2 (Aerosol-induced ra- diative fluxes)	AAOD at UV-VIS-SWIR	± 0.02 for AOD>0.1	4STAR + SSFR (0.02), RSP, AirMSPI, 501-1 501-2 HSRL,eMAS,HIGEAR, AERONETT (0.02) 502-2 502-2	Observations: Intensive, multi-aircraft field campaigns	Objective.
	- 10 -	Aerosol spectral refractive index at UV-VIS- SWIR	± 0.02 for real part	4STAR + SSFR, RSP, AirMSPI, HSRL, eMAS, Aeronet (0.02) 501-1	Measurements on routine flight track along	
	SO1-3 (Seasonal aerosol variation)	Aerosol/CCN size distribution , r _{eff}	$\pm 0.07\mu\text{m}\pm7\%$	HiGEAR (10% number, 5% size), RSP 501-1 503-1	15°S, sampling at least 40 hrs (~200 100 km ² 501-1 model grid boxes) to enable statistical	
Pe		Aerosol number conc. profile	50%	HiGEAR (10%), HSRL-2 501-1 503-1	comparisons to climate models 503-1	
Threshold	Aerosol semi-direct ef-	Chemical composition	Speciation (BC, vola- tile, refractory)	HIGEAR-AMS (35%), SP2 (25%) RSP 501-1 503-1	Sampling that permits assessments of variability	E.g., Aerosol
۲	fects: S02-1 (Relative vertical dis-	Aerosol extinction/absorption profile	± 0.025 km ⁻¹ in ext	HiGEAR (0.005 in ext), HSRL-2 (0.01 ext), 4STAR 502-1	Sampling that permits assessments of variability in aerosol and doud proper ties within dimate model grid cells (100 km²) for multiple adjacent cells	
	tribution)	Single Scattering Albedo (SSA)(profile or layer)	±0.028	HiGEAR (0.03), HSRL-2, RSP, AirMSPI, 4STAR S01-1 S01-2 + SSFR (0.02 in midvis), AERONET (~0.03) S02-1 S02-2	3 airborne campaigns in different months 501-3	direct or
	S02-2 (Aerosol-doud heat-	Gases:	-		S02-1	
	ing rates)	CO, CO ₂ , H ₂ O, O ₃	$\pm 10\mathrm{ppbv}\mathrm{CO}$	COMA (2 ppbv CO), facility, HiGEAR 503-1 501-1	<i>In situ</i> and remote sensing obs of aerosol S03-1 layers above (and entrained into) low-level A	indirect
	CO2 2/Cloud sharman due to	Cloud/Drizzle/Precipitation:	-		layers above (and entrained into) low-level 🛛 🗛 A Sc deck 👘 🗛	muncu
	S02-3 (Cloud changes due to aerosol-induced heating)	Cloud fractional cover	±0.05	eMAS (0.05), ACR+APR-2, AirMSPI (0.05), MODIS/SEVIRI (0.05) 502-3 501-2	Coincident obs of underlying doud macro- and	offosts
		Goud top/bottom height	$\pm 100\text{m}$	ACR+APR-2 (60 m), HSRL-2 (33 m), A SO1-2		effects
		Particle Size Distribution/Composition	±20%	CAPS-CAS , PDI (20%), CVI, CDP 502-2 502-3 503-2	Measurement of FT-to-PBL mixing 503-1	
	Aerosol indirect effects:	COD	±10%	eMAS (5-10%), SSFR, RSP, AirMSPI, 4STAR S02-2 S02-3	Modeling: Large eddy simulations to integrate observations for process scale understanding of aerosol-doud	
	SO3-1 (Mixing survey)	r _{eff}	±20%	eMAS (10-20%), RSP, AirMSPI, SSFR, 4STAR, <i>in situ</i> probes (20%)	interactions.	
Baseline	S03-2 (Cloud changes due	Liquid water content (LWC/LWP)	± 0.05 g m ⁻³ / 10 g m ⁻²	King probe, CAPS-LWC, PDI \$02-3 (20% LWC), ACR+APR-2 (10 gm ⁻² LWP) \$03-2 \$03-3	field planning, to integrate observations to con-	
Bat	to aerosol mixing)	Thermodynamics		Facility 502-3	strain direct, semi-direct and indirect effects, and to separate aerosol and meteorological	TE FOR SEL
	SO3-3 (Cloud changes due	Precipitation microphysics/rate	± 0.4 mm/day (rate)	2D-S, CAPS-CIP, PDI+H¥PS3 (0.2 mm/day), eMAS+ACR+APR-2 (0.2 mm/day)	effects on clouds	ALL BOARD
	to aerosol-suppressed pre- cipitation)	Radiation:			Global climate modeling to determine impacts of BB aerosols on radiation budget and global	
	aproducity	Spectral Solar Flux	±3%	SSFR (3%, 0.5-7% for differentials) 501-1 502-2	drculation A	
		Visible-SWIR Degree of Linear Polarization	±0.5%	RSP (0.2%), AirMSPI (0.5%) 501-2 502-2 503-2		
16		Visible, SWIR, Thermal IR Radiance / Bright- ness	$\pm5\text{-}10\%$ in radiance, ±0.5 K for IR	eMAS (5% in radiance, 0.5 K for mid- and window-IR, 1-2 K for 13+ $\mu m)$		THE RESEARCH AND OFFIC

NNH13ZDA001N-EVS2

Priority		Scientific Measurement Requ	irements	Instrument Functional Requirements	Investigation Functional Requirements	
Pre-	Science Objectives	Parameter	Accuracy	(hold foot indicates instruments that meet or exceed measurement requirements)	(A = a)	
	Aerosol direct effects:	Aerosol:				
	S01-1 (Aerosol spatial evolution)	AOD at UV-VIS-SWIR	± 0.02 or 5%	4STAR (0.01-0.02), RSP (0.02), AirMSPI, HSRL-2 (0.01), eMAS, AERONET (0.01-0.02)		
	S01-2 (Aerosol-induced ra- diative fluxes)	AAOD at UV-VIS-SWIR	± 0.02 for A0D>0.1	4STAR + SSFR (0.02), RSP, AirMSPI, 501-1 501-2 HSRL,eMAS,HIGEAR, AERONETT (0.02) 502-2	Observations: Intensive, multi-aircraft field campaigns	
	SO1-3 (Seasonal aerosol variation)	Aerosol spectral refractive index at UV-VIS- SWIR	± 0.02 for real part	4STAR + SSFR, RSP, AirMSPI, HSRL, eMAS, Aeronet (0.02) S01-1	Measurements on routine flight track along	
		Aerosol/CCN size distribution , $\mathbf{r}_{_{\rm eff}}$	$\pm 0.07\mu\text{m}\pm7\%$	HiGEAR (10% number, 5% size), RSP 501-1 503-1	15°S, sampling at least 40 hrs (~200 100 km ² 501- model grid boxes) to enable statistical	
DIG		Aerosol number conc. profile	50%	HIGEAR (10%), HSRL-2 501-1 503-1	comparisons to climate models	
niousauu	Aerosol semi-direct ef-	Chemical composition	Speciation (BC, vola- tile, refractory)	HIGEAR-AMS (35%), SP2 (25%) RSP 501-1 503-1	Sampling that permits assessments of variability	
	fects: S02-1 (Relative vertical dis-	Aerosol extinction/absorption profile	± 0.025 km ⁻¹ in ext	HiGEAR (0.005 in ext), HSRL-2 (0.01 ext), 4STAR 502-1	in aerosol and doud proper ties within dimate model grid cells (100 km²) for multiple adjacent cells	
	tribution)	Single Scattering Albedo (SSA)(profile or layer)	±0.028	HiGEAR (0.03), HSRL-2, RSP, AirMSPI, 4STAR S01-1 S01-2 + SSFR (0.02 in midvis), AERONET (~0.03) S02-1 S02-2	3 airborne campaigns in different months 501-	
	S02-2 (Aerosol-doud heat-	Gases:			502-	
	ing rates)	C0, C0 ₂ , H ₂ 0, 0 ₃	$\pm 10\mathrm{ppbv}\mathrm{CO}$	COMA (2 ppbv C0), facility, HiGEAR S03-1 S01-1	In situ and remote sensing obs of aerosol	
	S02-3 (Cloud changes due to	Cloud/Drizzle/Precipitation:	layers above (and entrained into) low-level A A Sc deck A			
	aerosol-induced heating)	Cloud fractional cover	±0.05	eMAS (0.05), ACR+APR-2, AirMSPI (0.05), MODIS/SEVIRI (0.05) 502-3 501-2	Coincident obs of underlying doud macro- and	
		Goud top/bottom height	$\pm 100{ m m}$	ACR+APR-2 (60 m), HSRL-2 (33 m), AirMSPI A 501-2	microphysical properties	
		Particle Size Distribution/Composition	±20%	CAPS-CAS , PDI (20%), CVI, CDP 502-2 502-3 503-2	Measurement of F1-to-PBL mixing 503	
	Aerosol indirect effects:	COD	±10%	eMAS (5-10%), SSFR, RSP, AirMSPI, 4STAR S02-2 S02-3	Modeling: Large eddy simulations to integrate observations for process scale understanding of aerosol-doud	
	SO3-1 (Mixing survey)	r _{eff}	±20%	eMAS (10-20%), RSP, AirMSPI, SSFR, 4STAR, <i>in situ</i> probes (20%)	interactions.	
Baseline	S03-2 (Cloud changes due	Liquid water content (LWC/LWP)	$\pm 0.05{ m gm^{-3}}/10{ m gm^{-2}}$	King probe, CAPS-LWC, PDI S02-3 (20% LWC), ACR+APR-2 (10 gm ⁻² LWP) S03-2 S03-3	Regional chemistry-aerosol climate modeling for field planning, to integrate observations to con- strain direct, semi-direct and indirect effects,	
Ra Raz	to aerosol mixing)	Thermodynamics		Facility 502-3	strain direct, semi-direct and indirect effects, and to separate aerosol and meteorological	
	SO3-3 (Cloud changes due	Precipitation microphysics/rate	± 0.4 mm/day (rate)	2D-S, CAPS-CIP, PDI+HVPS3 (0.2 mm/day), eMAS+ACR+APR-2 (0.2 mm/day)	effects on clouds Global climate modeling to determine impacts	
	to aerosol-suppressed pre- cipitation)	Radiation:	Radiation:			
	aprauony	Spectral Solar Flux	±3%	SSFR (3%, 0.5-7% for differentials) 501-1 502-2	of BB aerosols on radiation budget and global dirculation	
		Visible-SWIR Degree of Linear Polarization	±0.5%	RSP (0.2%), AirMSPI (0.5%) 501-2 502-2 503-2		
		Visible, SWIR, Thermal IR Radiance / Bright- ness	$\pm5\text{-}10\%$ in radiance, $\pm0.5\text{K}$ for IR	eMAS (5% in radiance, 0.5 K for mid- and window-IR, 1-2 K for 13+ μm)		

-Science Measurement Requirements

Parameter and Accuracy needed

NNH13ZDA001N-EVS2

rity		Scientific Measurement Requ	lirements	Instrument Functional Requirements	Investigation Functional Requirements		
Priority	Science Objectives	Parameter	Accuracy	(bold font indices in the second second measurement requirements)	(4 – all)		
	Aerosol direct effects:	Aerosol:					
	S01-1 (Aerosol spatial evolution)	AOD at UV-VIS-SWIR	DD at UV-VIS-SWIR 4STAR (0.01-0.02), RSP (0.02), AirMSPI, HSRL-2 (0.01), eMAS, AERONET (0.01-0.02) SO1-1 SO1-1 <thso1-1< th=""> SO1-1 SO1-1</thso1-1<>				
	S01-2 (Aerosol-induced ra- diative fluxes)	AAOD at UV-VIS-SWIR	± 0.02 for A0D>0.1	4STAR + SSFR (0.02), RSP, AirMSPI, 501-1 S01-1 S01-1			
	S01-3 (Seasonal aerosol	Aerosol spectral refractive index at UV-VIS- SWIR	± 0.02 for real part	4STAR + SSFR, RSP, AirMSPI, HSRL, eMAS, Aeronet (0.02) 501 -	Measurements on routine flight track along 15°S, sampling at least 40 hrs (~200 100 km² 50		
	variation)	Aerosol/CCN size distribution , $\mathbf{r}_{_{\rm eff}}$	$\pm 0.07\mu\text{m}{\pm}7\%$	HiGEAR (10% number, 5% size), RSP 501-1 503-	model arid boyes) to enable statistical		
Pio	(Carrier M	Aerosol number conc. profile	50%	HIGEAR (10%), HSRL-2 501-1 503-	1 comparisons to climate models		
Threshold	Aerosol semi-direct ef-	Chemical composition	Speciation (BC, vola- tile, refractory)	HIGEAR-AMS (35%), SP2 (25%) RSP 501-1 S03-	Sampling that permits assessments of variability		
đ	fects: S02-1 (Relative vertical dis- tribution)	Aerosol extinction/absorption profile	± 0.025 km ⁻¹ in ext	HiGEAR (0.005 in ext), HSRL-2 (0.01 ext), 4STAR 501-1 502-	in aerosol and doud properties within dimate model grid cells (100 km ²) for multiple adjacent cells		
		Single Scattering Albedo (SSA)(profile or layer)	±0.028	HiGEAR (0.03), HSRL-2, RSP, Air MSPI, 4STAR S01-1 S01-2 + SSFR (0.02 in midvis), AERONET (~0.03) S02-1 S02-2	of PD coscon		
	S02-2 (Aerosol-doud heat-	Gases:	S				
	ing rates)	C0, C0, H,0, 0,	$\pm 10\mathrm{ppbv}\mathrm{CO}$	COMA (2 ppbv C0), facility, HiGEAR S03-1 S01-	In situ and remote sensing obs of aerosol Social Arrows above (and entrained into) low-level Arrows above (and entrained into) low-level Arrows are sensitive to the sensitive term of ter		
	S02-3 (Cloud changes due to	Cloud/Drizzle/Precipitation:			Sc deck		
	aerosol-induced heating)	Cloud fractional cover	±0.05	eMAS (0.05), ACR+APR-2, AirMSPI (0.05), MODIS/SEVIRI (0.05) 502-3 501-	contractic obsortandentying doud made and		
		Goud top/bottom height	$\pm 100\mathrm{m}$	ACR+APR-2 (60 m), HSRL-2 (33 m), AirMSPI	microphysical properties Measurement of FT-to-PBL mixing		
		Particle Size Distribution/Composition	±20%	CAPS-CAS, PDI (20%), CVI, CDP 502-2 502-3 503-	SO		
	Aerosol indirect effects:	COD	±10%	eMAS (5-10%), SSFR, RSP, AirMSPI, 4STAR 502-2 502-3	Modeling: Large eddy simulations to integrate observations		
	S03-1 (Mixing survey)	r _{eff}	±20%	eMAS (10-20%), RSP, AirMSPI, SSFR, 4STAR, <i>in situ</i> probes (20%)	interactions.		
Baseline	SO3-2 (Cloud changes due to aerosol mixing)	Liquid water content (LWC/LWP)	± 0.05 g m ⁻³ / 10 g m ⁻²	King probe, CAPS-LWC, PDI S02- (20% LWC), ACR+APR-2 (10 gm-2LWP) S03-2 S03-2	field planning, to integrate observations to con-		
Bat		Thermodynamics		Facility 502-	strain direct, semi-direct and indirect effects, and to separate aerosol and meteorological		
	SO3-3 (Cloud changes due	Precipitation microphysics/rate	± 0.4 mm/day (rate)	2D-S, CAPS-CIP, PDI+H¥PS3 (0.2 mm/day), eMAS+ACR+APR-2 (0.2 mm/day)	effects on clouds		
	to aerosol-suppressed pre- cipitation)	Radiation:			Global climate modeling to determine impacts of BB aerosols on radiation budget and global		
	upitation	Spectral Solar Flux	±3%	SSFR (3%, 0.5-7% for differentials) 501-1 502-2	dirculation		
		Visible-SWIR Degree of Linear Polarization	±0.5%	RSP (0.2%), AirMSPI (0.5%) 501-2 502-2 503-	2		
		Visible, SWIR, Thermal IR Radiance / Bright- ness	\pm 5-10% in radiance, \pm 0.5 K for IR	eMAS (5% in radiance, 0.5 K for mid- and window-IR, 1-2 K for 13+ µm)	8		

–Instrument Functional Requirements

What Instrument meets requirements

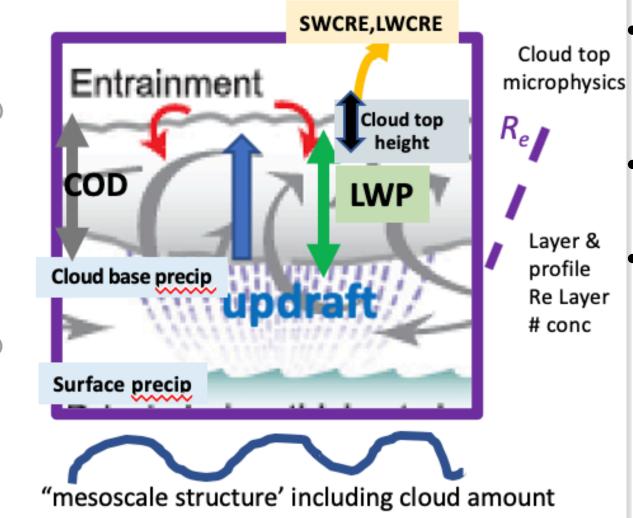
NNH13ZDA001N-EVS2

LT L		Scientific Measurement Requ	lirements	Instrument Functional Requirements		Investigation Functional Requirements	
Priority	Science Objectives	Parameter	Accuracy	(bold font indicates instruments that meet or measurement requirements)	r exceed	(A = an;	–Investi
	Aerosol direct effects:	Aerosol:					
s	S01-1 (Aerosol spatial evolution)	AOD at UV-VIS-SWIR	± 0.02 or 5%	4STAR (0.01-0.02), RSP (0.02), AirMSPI, HSRL-2 (0.01), eMAS, AERONET (0.01-0.02)	01-1 501-2		Function
	S01-2 (Aerosol-induced ra- diative fluxes)	AAOD at UV-VIS-SWIR	± 0.02 for A0D>0.1	HSRL,eMAS, HIGEAR, AERONETT (0.02)	501-1 501-2 502-2	Observations: Intensive, multi-aircraft field campaigns	runcu
	2008035 W 2	Aerosol spectral refractive index at UV-VIS- SWIR	± 0.02 for real part	4STAR + SSFR, RSP, AirMSPI, HSRL, eMAS, AERONET (0.02)	501-1	Measurements on routine flight track along	Requir
	S01-3 (Seasonal aerosol variation)	Aerosol/CCN size distribution , r _{eff}	$\pm 0.07 \mu\text{m} \pm 7\%$	HiGEAR (10% number, 5% size), RSP	01-1 \$03-1	15°S, sampling at least 40 hrs (~200 100 km ² 501-1 model grid boxes) to enable statistical	negun
	Comparison of the	Aerosol number conc. profile	50%	HIGEAR (10%), HSRL-2	501-1 S03-1	comparisons to climate models	
	Aerosol semi-direct ef-	Chemical composition	Speciation (BC, vola- tile, refractorv)	HIGEAR-AMS (35%), SP2 (25%) RSP	5 <mark>01-1</mark> S03-1	Sampling that permits assessments of variability	
	fects: S02-1 (Relative vertical dis-	Aerosol extinction/absorption profile	± 0.025 km ⁻¹ in ext	HiGEAR (0.005 in ext), HSRL-2 (0.01 ext), 4STAR	501-1 S02-1	in aerosol and doud proper ties within dimate model grid cells (100 km²) for multiple adjacent cells	
	tribution)	Single Scattering Albedo (SSA)(profile or layer)	±0.028	HIGEAR (0.03), HSRL-2, RSP, AirMSPI, 4STAR S + SSFR (0.02 in midvis), AERONET (~0.03)	01-1 501-2	3 airborne campaigns in different months 501-3	What
	S02-2 (Aerosol-doud heat-	Gases:			502-1	_	
	ing rates)	CO, CO ₂ , H ₂ O, O ₃	$\pm 10\mathrm{ppbv}\mathrm{CO}$	COMA (2 ppbv CO), facility, HiGEAR S	03-1 501-1	In situ and remote sensing obs of aerosol	tracks
	CO2 2/Claud damard and	Cloud/Drizzle/Precipitation:			layers above (and entrained into) low-level	uains	
	S02-3 (Cloud changes due to aerosol-induced heating)	Cloud fractional cover	±0.05	eMAS (0.05), ACR+APR-2, AirMSPI (0.05), MODIS/SEVIRI (0.05)	02-3 <mark>501-2</mark>	Coincident obs of underlying doud macro- and	(on no)
		Cloud top/bottom height	±100 m	ACR+APR-2 (60 m), HSRL-2 (33 m), AirMSPI	A 501-2	microphysical properties	(or rel
		Particle Size Distribution/Composition	±20%	CAPS-CAS, PDI (20%), CVI, CDP 502-2 5	02-3 503-2	Measurement of FT-to-PBL mixing 503-1	
	Aerosol indirect effects:	COD	±10%	eMAS (5-10%), SSFR, RSP, AirMSPI, 4STAR	02-2 502-3	Modeling: Large eddy simulations to integrate observations	mode
	S03-1 (Mixing survey)	r _{eff}	±20%	eMAS (10-20%), RSP, AirMSPI, SSFR, 4STAR, <i>in situ</i> probes (20%)	503-2 503-3	for process scale understanding of aerosol-doud A for the interactions.	satelli
	S03-2 (Cloud changes due to aerosol mixing)	Liquid water content (LWC/LWP)	± 0.05 g m ⁻³ / 10 g m ⁻²	King probe, CAPS-LWC, PDI (20% LWC), ACR+APR-2 (10 gm ⁻² LWP)	502-3 503-2 503-3	Regional chemistry-aerosol climate modeling for field planning, to integrate observations to con- strain direct, semi-direct and indirect effects,	
		Thermodynamics		Facility	S02-3	strain direct, semi-direct and indirect effects, and to separate aerosol and meteorological	studie
	SO3-3 (Cloud changes due	Precipitation microphysics/rate	± 0.4 mm/day (rate)	2D-S, CAPS-CIP, PDI+HVPS3 (0.2 mm/day), eMAS+ACR+APR-2 (0.2 mm/day)	503-3	effects of clouds	Studie
to aerosol-suppressed pre-		Radiation:				Global climate modeling to determine impacts	
	cipitation)	Spectral Solar Flux	±3%	SSFR (3%, 0.5-7% for differentials)	01-1 502-2	of BB aerosols on radiation budget and global A directly and globa	
		Visible-SWIR Degree of Linear Polarization	±0.5%	RSP (0.2%), AirMSPI (0.5%) 501-2 S	02-2 503-2	A.	
		Visible, SWIR, Thermal IR Radiance / Bright- ness	\pm 5-10% in radiance, \pm 0.5 K for IR	eMAS (5% in radiance, 0.5 K for mid- and window-IR, 1-2 K for 13+ μm)	\$02-3		

Investigation **Functional Requirements**

What flight tracks needed (or related modeling, satellite

ଞ~ଡ


Science Questions: ACI and low clouds

- How do vertical distributions of aerosols affect cloud formation and evolution?
 - How can effects due to variation in meteorology be separated from aerosol effects?
- How is precipitation initiated in shallow cumulus clouds in 30minute time periods?
- In mixed-phase clouds, what controls depth, amount & longevity of supercooled liquid water & initiation of ice?
 - Why do mixed-phase clouds persist?

- What is role of secondary ice production processes & what controls development of precipitation?
- What controls open-closed cell transitions in Sc?

Science Questions: ACI and low clouds

 Need high frequency data on cloud, aerosol, precipitation, radiative & surface fluxes

- Profiles through boundary layer and free troposphere
- Statistical sampling in multiple aerosol & meteorological regimes at different stage of evolution

- Measurement Requirements:
 - Vertical profiles of aerosols in vicinity of cloud and their activation properties
 - CCN, INPs, Aerosol PSDs, composition/hygroscopicity, optical depth, scattering and absorption properties, mixing scenarios in both boundary layer & free troposphere
 - Environmental properties that control aerosol activation
 - Vertical velocity, in-cloud supersaturation, activation spectra (CCN = f(SS), INP = f(Ssi, T), turbulent fluxes of energy and moisture, vertical profile of boundary layer structure, 3-d winds for dynamics, high frequency T, q, w, u, v
 - Cloud size-resolved and bulk properties
 - Vertical profiles of bulk LWC and TWC, bulk extinction, size, shape and phase distributions of cloud particles, precipitation, spacing of cloud particles (homogeneous/inhomogeneous mixing), cloud fraction, high-resolution images, single particle scattering
 - Radiative Properties
 - Broadband up and down irradiance, high resolution spectral up and down, broadband and spectral albedo, cloud optical depth
 - Multi-wavelength/polarimetric remote sensing data to give context of observations

Aerosol Indirect Effects: Convective Clouds

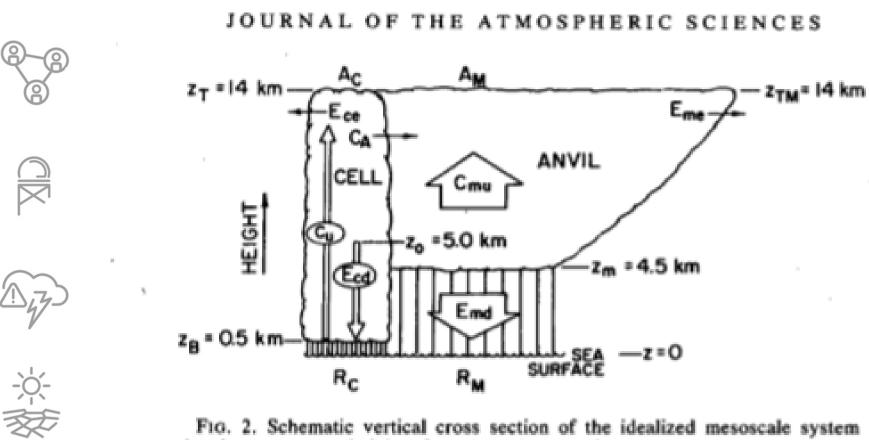


FIG. 2. Schematic vertical cross section of the idealized mesoscale system showing sources and sinks of condensed water. Symbols are defined in Section 2 of the text. Leary and Houze 1980

 \mathbf{V}_{i}

Science Questions: ACI and convective clouds

- How are the properties of anvil clouds generated coupled to that of convection producing them?
 - How are convective properties coupled to environmental conditions?
 - How will properties of clouds/convection vary in a warming environment?
 - What controls evolution of cirrus (anvil/cirrus evolution)?
- What is impact of aerosols on convective evolution and on deep clouds?
- What controls precipitation efficiency?
- To what extent can seeding of clouds impact precipitation?

Aerosol Indirect Effects: Convective Clouds

Cloud transports, mixing

Vertical motion, mass fluxes

Ice processes

Convective intensity, organization

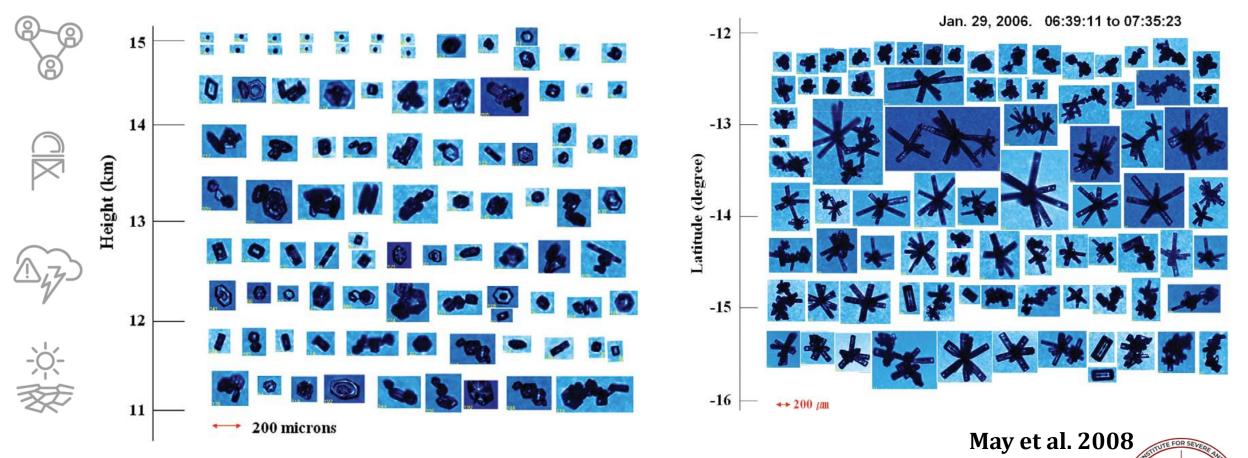
Precipitation susceptibility

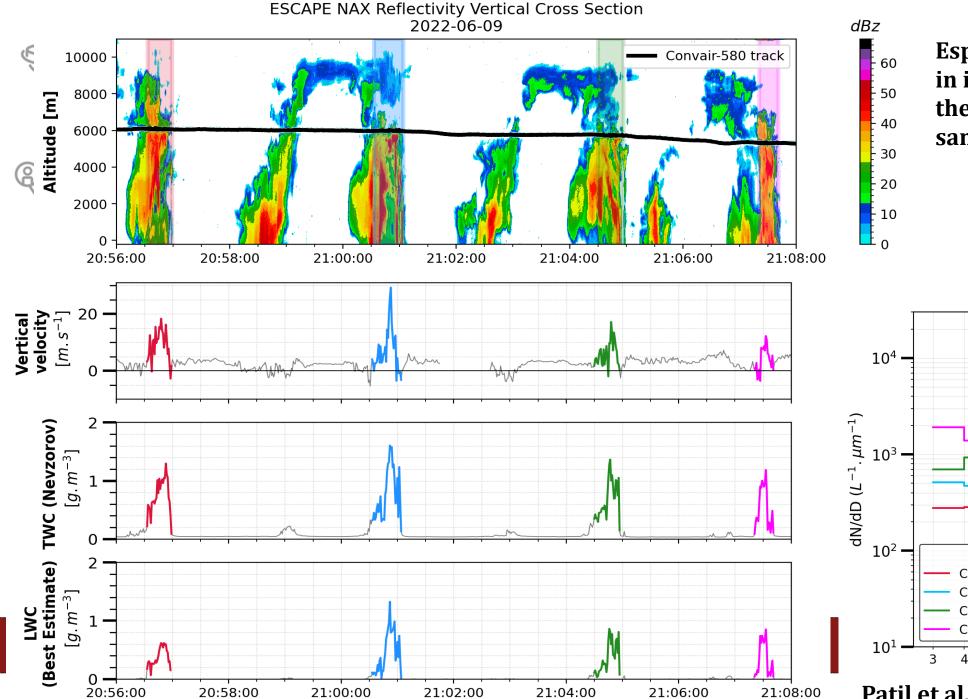
Cloud environment: Aerosols, thermodynamics, dynamics

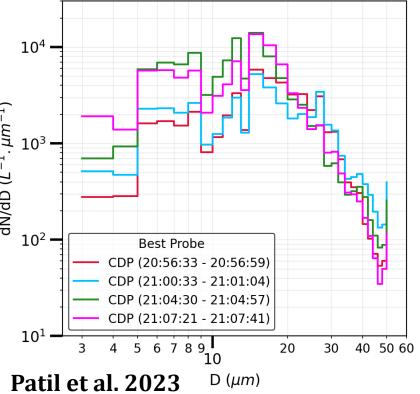
Precipitation rate, efficiency

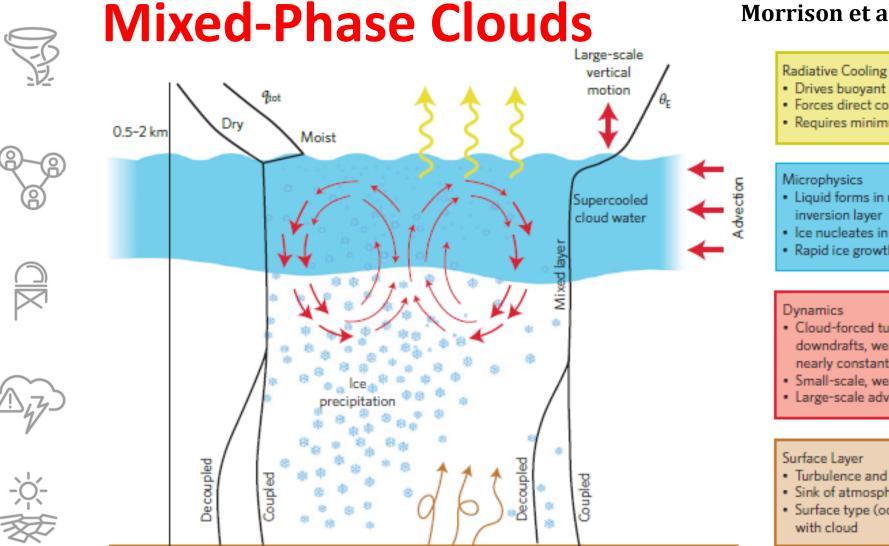
Cloud droplet nucleation, water contents, hydrometeor sizes, concentrations

Aerosol Indirect Effects: Convective Clouds • Measurement Requirements:


- Environmental conditions
 - Large-scale and small-scale environmental thermodynamics and kinematics, surface properties & fluxes, mesoscale structure, T, q, u, v, w, cloud top T,
- Convective core properties
 - Age of convection, size of core, height of maximum vertical motion, magnitude of vertical motion, ice mass flux, Maximum Z, position from fronts, cloud cover, cloud top phase, lightning, melting layer height
- Cloud size-resolved and bulk properties
 - Vertical profiles of bulk LWC and TWC, bulk extinction, size, shape and phase distributions of cloud particles, scattering properties, spacing of cloud particles (homogeneous/inhomogeneous mixing), ice water path, derived microphysical property rates
- Aerosol Properties
 - Aerosol loading and properties, CCN, INP, Aerosol SDs, scattering properties, hygroscopicity, Angstrom exponent, AOD
- Radiative Properties
 - Broadband up and down irradiance, high resolution spectral up and down, broadband and spectral albedo, cloud optical depth
- Remote Sensing
 - Multi-wavelength/polarimetric data required to give context (phased array radar?




Aerosol Indirect Effects: Convective Clouds


• What controls evolution of microphysics from fresh anvil to aged anvil?

Especially need observations in intense updrafts such as these 30 m s⁻¹ updrafts sampled during ESCAPE

Morrison et al. 2012

- Drives buoyant production of turbulence
- Forces direct condensation within inversion layer
- Requires minimum amount of cloud liquid water
- Liquid forms in updrafts and sometimes within the
- Ice nucleates in cloud
- Rapid ice growth promotes sedimentation from cloud
- Cloud-forced turbulent mixed layer with strong narrow downdrafts, weak broad updrafts, and q_{tot} and θ_{r} nearly constant with height
- Small-scale, weak turbulence in cloudy inversion layer
- Large-scale advection of water vapour important
- Turbulence and q contributions can be weak or strong
- Sink of atmospheric moisture due to ice precipitation
- Surface type (ocean, ice, land) influences interaction

Figure 3 | A conceptual model that illustrates the primary processes and basic physical structure of persistent Arctic mixed-phase clouds. The main features are described in text boxes, which are colour-coded for consistency with elements shown in the diagram. Characteristic profiles are provided of total water (vapour, liquid and ice) mixing ratio (q_{tot}) and equivalent potential temperature (θ_{ϵ}). These profiles may differ depending on local conditions, with dry versus moist layers/moisture inversions above the cloud top, or coupling versus decoupling of the cloud mixed layer with the surface. Cloud-top height is 0.5-2 km. Although this diagram illustrates many features, it does not fully represent all manifestations of these clouds.

Mixed-Phase Clouds

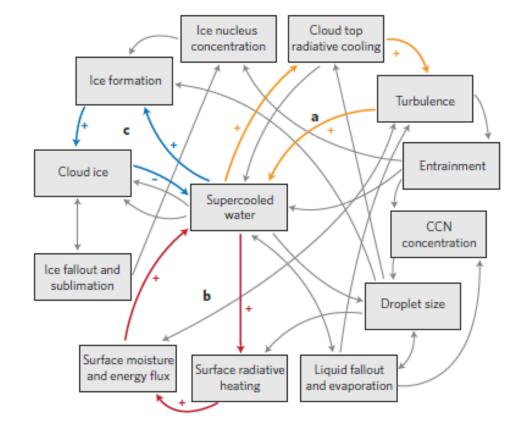


Figure 2 | Processes associated with Arctic mixed-phase clouds are linked through a complex web of interactions and feedbacks. In this diagram, the arrows signify the direction of influence of interactions between various physical quantities and processes. Not all important associations are included. Three specific interaction pathways (labelled a, b and c) are highlighted by coloured arrows and discussed in greater depth in the text. Signs (+ or -) indicate the expected response (increase or decrease) of the receiving element. Morrison et al. 2012

- Need to make measurements of physical properties that affect all these properties!
 - Similar to what previously listed, with special emphasis on transitions between phases and development of precipitation
 - Supercooling
 - Lagrangian transitions of air masses (how aerosols evolve and effect cloud, and feedback on clouds and precipitation)
 - Vertical profiles M(D), V(D), ρ(D), habit distribution and variability
 - Scattering/absorption properties at multiple λ
 - Precipitation rate/remote sensing
 - Environmental characteristics (largescale and mesoscale)

Where can we improve?

- In-situ measurements in deep convection
 - Critically needed for evaluating remote sensing retrievals and process studies
- Routine deployment of UAS
 - Routine statistics and 3-d mesonet
 - Ability to measure in lower boundary layer
 - Swarms of UAS to make measurements in multiple locations simultaneously
- Lagrangian sampling
 - Eulerian sampling is good for determining what properties are present, but falls short on deducing processes responsible for those properties

Funding limitations

- Perceived pressure to keep project small to maximize changes of success
- Need multiple measurements (aerosols including composition, clouds, remote sensing) to get complete picture of processes
- Are good projects not being funded due to aircraft/funding availability?
- Accurate measurements of humidity/supersaturation inside cloud
 - Needed to test invigoration hypothesis proposed by Rosenfeld/Fan

Where can we improve?

- Measurements of single-particle mass and fall velocity
 - m(D) and V(D) relations for ice crystals critical for model development
- Measurements of small ice crystals
 - Progress in understanding crystal shattering and depth of field limitations has been made, but high temporal resolution of ice crystals with D < 100 μm are still problematic (holographic & single-scattering probes help)
- Understanding cloud probes
 - Multiple analysis packages exist, and can give different results
 - Needs to be some standardization/benchmarking
 - Impact of cloud probe mounting location uncertain
- Observations over oceans
 - Coastal areas not representative of oceanic regions

Where can we improve?

- High Temporal/Spatial Frequency Observations
 - Many processes take place on fine time scales, and there can be significant inhomogeneities in fine spatial scales (e.g., turbulence and entrainment mixing very important)
 - Resolve homogeneous vs. inhomogeneous mixing
 - Fine-scale mixing of mixed-phase clouds
- Laboratory studies
 - Useful for supplementing field observations because can be better able to understand temporal evolution of processes
- Undersampled regions in world
 - Southern Ocean, polar regions, African continent, tropical oceans, wildfires, cryosphere interactions
 - Always need meteorological context of observations
- Capacity building
 - Need to engage early career scientists/grad students in all aspects of project (design, data collection, analysis)
 - Need to ensure funding and seats on aircraft

Aerosol Indirect Effects: Convective Clouds

- Goal:
 - Relate vertical motion within convective storms and associated cloud and precipitation structures to
 - Storm life cycle
 - Local environment thermodynamic and kinematic properties (T, q, wind shear)
 - Ambient aerosols
 - Surface properties
 - Latent heating profiles
 - Inflow → Convective drafts → microphysics → outflow characteristics → radiative effects
 - How does this contribute to transport of energy, heat and moisture
 - Coupling between vertical velocity, aerosols & microphysics
 - Convective detrainment and lifetime are also very important
 - Anvil cirrus life cycle

