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Motivation s

k.

Identify road surface conditions from images using machine learning methods

«— Severe snow

Data source: camera images above are from the New York State Department of Transportation (NYSDOT), publicly available at 511ny.org
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Data Source
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State University of New York

Data source: New York State Department of Transportation (NYSDOT)

Public live cameras: available at 511NY.org
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Classification of Winter Road Conditions
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Machine learning (ML) models can help make predictions about road surface

conditions to aid current classification approaches
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IXCITE =

University at Albany | Atmospheric Sciences Research
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Data Archive s

Archive of camera images starting late January 2022 in UAlbany’s xCITE lab

Image snapshots saved out every 5 minutes from 2400 camera sites

Example of two Buffalo images 5 minutes apart
13:35:54UTC ~13:40:35 UTC
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Modeling - Big Picture oy

Gather image data /

|

Label the data (categorize data into distinct categories, human labeled)

|

Use the labeled data to build a model (AI/ML)

|

Determine effectiveness of model
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Classification of Road Surface Condition - 6 classes R

Severe Snow Snow Wet

The 4 main classes are highlighted and align with DOT WTA (Winter Travel Advisory): https://www.dot.ny.gov/wta/status-definitions
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Hand-Labeled Dataset

Labeling “codebook” developed with social scientists:
= Carefully define & set rules for labeling to ensure
consistency within this project and
reproducibility for future projects

z Works to increase trUStWOrthineSS in the 1_495_at_Motor_Parl kwayE tSSA%:EtObO d Skyl ne_5701_2022-01-28-11:00:39.jpg
ML model development process S

| time since last precip event: 1_day_or_more |
4 LI 8T

Collaboration with NYSDOT:
- 4 main WTA classes as used on 511ny.org
- Labeling rules established based on what
can reasonably be determined in images

Mesone‘ <—High quality weather stations used/

UNIVERSITY AT ALBANY
to aid in labeling decision making




Labeled Images

. ™S

Location Num sites Num imgs Num classes

Bronx 2 4000 3 class

Ontario 1 2100 3 class

Rochester 1 2900 3 class

Buffalo (a) 1 1700 3 class

Queens 1 1400 3 class

Rensselaer 1 2000 3 class

Chatham 1 2000 3 class
=== .

Long Isl Expy. 420 10,000 6 class

N — =_‘

Buffalo (b) 1 3,400 6 class®

Total 29 29,000 @ multiple

Selected some high quality
\ cameras where road surface
IS visible at night and day

Imaqge labeling iterations:

> I Past codebook versions
with 3-classes

Final codebook with 6-
J classes

(1) no poor visibility or obstructed occurred yet in samples
(2) 28000 when including only 3-class: snow, wet, dry



Experiment Iterations
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Experiment Iterations
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Experiment Iterations
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~2900 labeled images

3 classes: snow, wet, dry
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Experiment Iterations
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Experiment Iterations
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Experiment Iterations
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Long Island Expressway (LIE) Labeled Images

Four main classes

(1) Class weights used to deal with class imbalance
(2) Augmentation (flip & rotate) to make robust dataset

"> From NYSDOT WTA (Winter Travel Advisory)

Class #images
'Severe Snow | ~900 | “~
iSnow ~1,100 :
iWet ~3,800 :
Dy, _______ =330}
Obstructed ~700

Poor visibility ~500

Total ~10,300 M@
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Poor

Severe snow Wet

Rest Stop Exit 66 East Bound 29.Jan 2022 13:44:56

Snow bry
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Modeling - Big Picture oy

Gather image data /

|

Label the data (categorize data into distinct categories, human labeled)

|

Use the labeled data to build a model (AI/ML)

|

Determine effectiveness of model
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Preprocessing & Modeling oy

k.

Convolutional Neural Networks (CNNs) are ML algorithms commonly used for image
classification problems

Original Image Preprocessed Imége
320x240 Resized 224x224
Cropped
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Modeling - Big Picture oy

Gather image data /

|

Label the data (categorize data into distinct categories, human labeled)

|

Use the labeled data to build a model (AI/ML)

|

Determine effectiveness of model
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Data splits
A"‘ALBANY

Assess performance of models using a validation (aka “holdout”) dataset

l—

Entire dataset

|
—

Training (80%) Validation (20%)

Dataset used to evaluate model performance

The goal is to have a model that makes
. accurate predictions on data it hasn’t
. seen before (i.e. the holdout data)
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Model Successes N

Data split method 1: all 20 sites are represented in both training and validation

Class Severe Snow Wet Dry .P.O or Obstructed Average
snow Visibility Accuracy
Correct® %
(model label = 94. /0% 94.10% 89.00%
»

human label)

. Most commonly - Most commonly . Most commonly

. misclassified as . misclassifiedas : T L misclassified ag | oo

 cnow e oo vty Most . B 5

e - © Most commonly - grdr Yo commonly . Moo . Most commanly .
" misclassified as L y Do Y . ! obstructed . 1 misclassified as :
. misclassi O UU U UUUORTRRRO ©: misclassified S L poor vis or dry

. severe snow or wet . as wet L :



Examples

Severe snow

Snow

Correct Prediction

actual label snow_severe
model predicted snow_severe
dry 0.1%, wet 0.6%, snow 12.7%, sev snow 71.0%, obs 0.8%, viz 14.8%

actual label snow
model predicted snow
dry 0.3%, wet 0.1%, snow 76.2%, sev snow 22.8%, obs 0.6%, viz 0.0%

NEWYORK | Department of

STATE OF

OPPORTUNITY. Transportation ,/

N\

UNIVERSITY
ATALBANY

State University of New York

Incorrect

actual label snow_severe
model predicted snow
dry 0.0%, wet 0.1%, snow 72.3%, sev snow 27.5%, obs 0.0%, viz 0.0%

actual label snow
model predicted snow_severe
dry 0.0%, wet 0.2%, snow 40.8%, sev snow 58.9%, obs 0.0%, viz 0.0%




Examples

Wet

Dry

Correct Prediction

actual label wet
model predicted wet
dry 0.0%, wet 100.0%, snow 0.0%, sev snow 0.0%, obs 0.0%, viz 0.0%

actual label dry
model predicted dry

dry 38.4%, wet 26.2%, snow 35.1%, sev snow 0.1%, obs 0.1%, viz 0.0%

NEWYORK | Department of

STATE OF

OPPORTUNITY. Transportation

UNIVERSITY
ATALBANY

State University of New York

Incorrect

actual label wet
model predicted poor_viz
dry 0.4%, wet 28.7%, snow 0.0%, sev snow 0.0%, obs 0.2%, viz 70.8%

actual label dry
model predicted wet
dry 38.5%, wet 61.4%, snow 0.0%, sev snow 0.0%, obs 0.0%, viz 0.0%




Examples

Correct Prediction

actual label poor_viz
model predicted poor_viz
dry 0.8%, wet 17.6%, snow 0.2%, sev snow 1.5%, obs 27.5%, viz 52.5%

Poor Visibility

actual label obs
model predicted obs
dry 0.0%, wet 0.1%, snow 0.0%, sev snow 0.3%, obs 89.6%, viz 10.1%

Obstructed

NEWYORK | Department of

STATE OF

OPPORTUNITY. Transportatian

UNIVERSITY
ATALBANY

State University of New York

Incorrect

actual label poor_viz
model predicted wet
dry 5.7%, wet 92.8%, snow 0.0%, sev snow 0.0%, obs 0.3%, viz 1.1%

actual label obs
model predicted poor_viz
dry 0.0%, wet 0.4%, snow 0.0%, sev snow 0.0%, obs 47.7%, viz 51.8%
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Model Difficulties L

Data split method 2: unique sites in training vs validation

- 16 sites in training
- 4 sites in validation (holdout)

Model accuracy about ~70%

= An important problem to fix because we want the model to generalize
well to unseen sites across the state
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Modeling - Big Picture oy

Gather image data /

|

Label the data (categorize data into distinct categories, human labeled)

|

Use the labeled data to build a model (AI/ML)

|

Determine effectiveness of model
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ML model performs well on data it’s “seen”

Example:
If model is trained on Site A and Site B, it will perform well on Site A and Site B

= A matter of having labeled data

ML model needs improvement on data it’s never seen

Example:
If model is trained on Site A and Site B it won’t perform very well on Site C

= An open-ended algorithm development/computer science question
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Future Work s

Drivin by goal of model generalizability:

- Labeling
- Have winter 2022-2023 season images to include
- Labeling working group to label images, adding thousands more images across new sites

- Improving model architecture

Thank you!

This material is based upon work
supported by the National
Science Foundation under Grant
No. ICER-2019758

Contact for questions or comments:
Carly Sutter csutter@albany.edu,

Nick Bassill nbassill@albany.edu,
Kara Sulia ksulia@albany.edu

ai2es.org
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Two Methods for
Train/Val Data
Splitting

Cam #

[EEN

O | N O 0| b lwN

All sites in training and validation
High accuracy model >92%

Val
Val
Val
Val
Val
Val
Val
Val
Val
Val
Val
Val
Val
Val
Val
Val
Val

Site-specific validation
Model accuracy ~70%

Val

Val

Val

Val

Val

Val

Val




Preprocessing & Model Detalls

Convolutional Neural Network (CNN)

Using VGG16 architecture

Original Image

=) N g

Preprocessed Image

INPUT

320x240 Resized 224x224
Cropped
Image source: https://www.geeksforgeeks.org/vgg-16-cnn-model/
More Model Details
Python Package: Loss function: Optimizer: Learning Rate: Activation function: Epochs:
Tensorflow Categorical Cross | SGD 0.01, exponential Relu Max 50

Entropy

decay rate 0.99

Softmax (output layer)

Early stopping 10

Snow
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Other modeling details

Image data generator
5-fold cross validation used
Updates made from last meeting with DOT in November 2022:

- Regqularization
- Dropout
- Additional image augmentation (brightness temperature



Confusion Matrix

One of the folds from 5-fold CV

True Label

Confusion Matrix fold3 on Val Data

94.02% 3.80% 0.00% 0.00%
173/184 7

snow_severe

93.33%
196/210

snow

91.17%
692/759

wet

93.88%
629/670

dry

poor_viz

obs

snow_severe  snow wet dry
Predicted Label

1.63%

91.67%
99/108

poor_viz

0.54%

90.21%
129/143

obs

80%

60%

-40%

-20%

-0%



Example of Incorrect Label
Human error in labeling in which case the model did better!

actual label poor_viz
model predicted wet
dry 0.0%, wet 100.0%, snow 0.0%, sev snow 0.0%, obs 0.0%, viz 0.0%




Experiments to Optimize Image Labeling

Goal of experiments: understand how to optimize time spent labeling images,
especially under the lens of generalizability

- Secondary goal: provide perspective on claim that model just “needs more data”

Findings:

# 1) the focus should be on adding more sites rather than more images of
existing sites (experiment 3)

# 2) ~400 images per site is optimal (experiment 2)

# 3) ~12 training sites per 3 validation sites (15 sites) is ideal (experiment 1b)



ldentifying Images for Labeling

Daily summary for
NYSM Station

Pick a DOT Camera

Closest NYSM Station

2022 2023
Night Day Night Day
Snow Precip Dry Snow Precip Dry
Top 3 dates Top 3 dates Top 3 dates Top 3 dates Top 3 dates Top 3 dates




