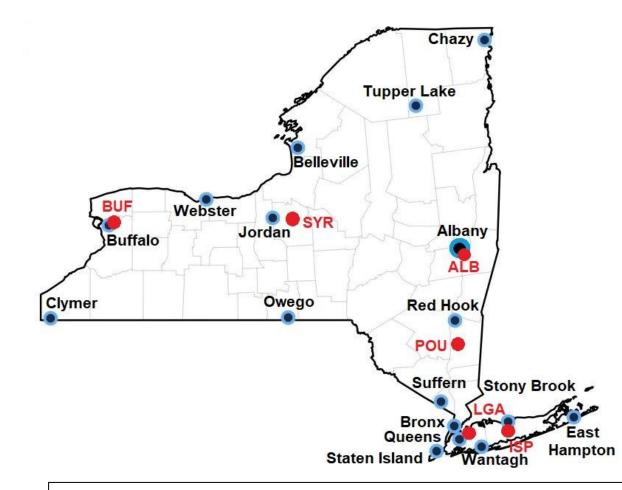
Winter Precipitation Type From Microwave Radiometer in New York State Mesonet Profiler Network

Bhupal Shrestha¹ June Wang¹, Jerald Brotzge² and Nathan Bain¹

 ¹New York State Mesonet, University at Albany SUNY
 ²Kentucky Climate Center, Department of Earth, Environmental, and Atmospheric Sciences, Western Kentucky University, Bowling Green, Kentucky, USA.


Background and Motivation

- Winter precipitation presents an adverse impact on human health and safety and economy, particularly due to snow, freezing rain and sleet
- Accurate determination of precipitation type (p-type) has been a long ongoing challenge for forecasters
 - Models have higher uncertainties in forecasting freezing rain and sleet
 - Insufficient understanding of microphysical processes and lack of adequate observational p-type data
- The profiles of temperature and moisture are critical observations:
 - Determine the p-type observed at the surface
 - Help to understand thermodynamic changes taking place aloft
- Microwave Radiometer (MWR) provides thermodynamic profiles from the surface to 10 km every ~2min

NYSM Profiler Network

- The New York State Mesonet (NYSM) Profiler Network operates 17 profiler sites across the New York state
 - Each site has collocated Leosphere/Vaisala Doppler lidar and Radiometrics MWR
- The NYSM Profiler Network provides wind & aerosol profiles up to 7 km and thermodynamic profiles up to 10 km every 1-2 minutes
- All the data are collected, quality-controlled, and archived in real-time every 10 minutes
- Real-time profiler data display available at: <u>http://www.nysmesonet.org/networks/profiler</u>

NYSM Profiler Network

A map of NYSM Profiler Network along with six selected ASOS sites (red dots)

NYSM Profiler Network site at Queens

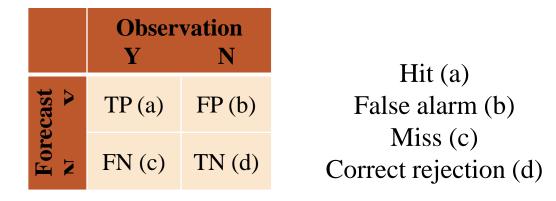
Methodology

 Application of Pai MWR data:

- 1000-700 hPa as H
- 850-700 hPa (H1)
- Threshold criteria a
 - H2 increased by 1
 - H1 > 1570 m adde

νv.				
5y	Thickness (m)		P-type	
	850 – 700 hPa (H1)	1000 – 850 hPa (H2)		
Paı		< 1300	SN	d,1993) to
	< 1540	1300 - 1320	SLT/SN	
_		> 1320	RA	
as F	≥1540	< 1300	SN if H1 ≤ 1545	
H1)			SLT/SN if H1 > 1545	tory analysis
,		1300 - 1320	FZR/RA	
ia a		> 1320	RA	
oy 1	1570 - 1595	> 1295	FZR/RA	
-	1595 - 1605		FZR/SLT	
adde	≥ 1605	≥1310	FZR	
		< 1310	SLT	

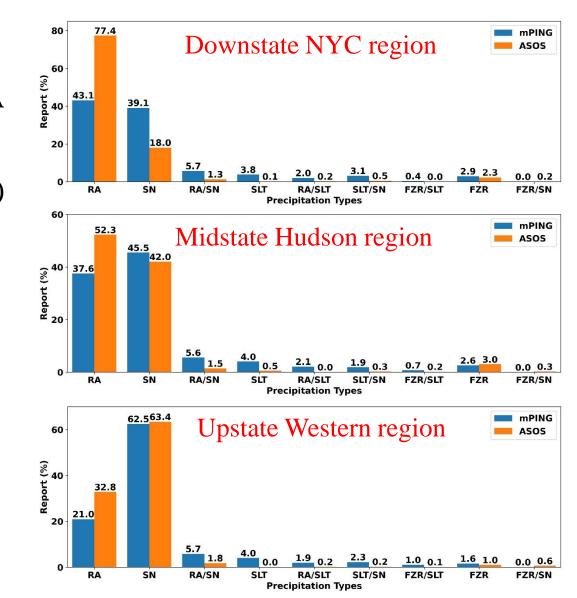
Additional conditions:


- If P-type = SN and Ts > 0 °C \rightarrow RA/SN
- If H2 > 1335 and $Ts > -1 \circ C \rightarrow RA$
- If MWR T profile $\leq -3 \circ C \rightarrow SN$
- If $Ts > 7 \circ C \rightarrow RA$
- If all T's > 0 °C and Tmax > 2 °C within first 50 hPa \rightarrow RA

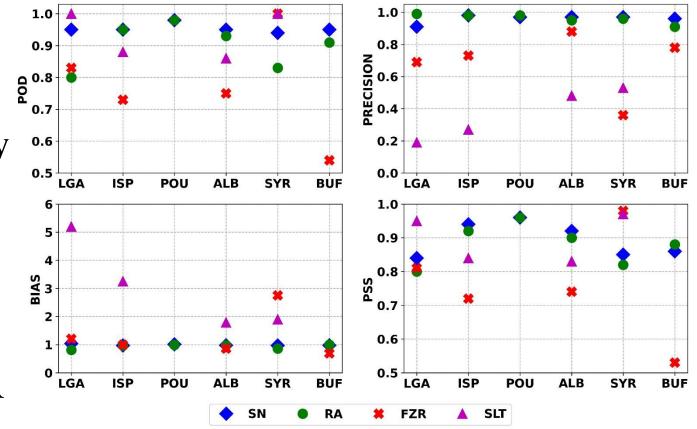
Methodology

- MWR 10 min p-types are derived from 2020 to 2022 (Nov Apr) at Queens, Stony Brook, Red Hook, Albany, Jordan and Buffalo compared against:
 - mPING observations (reports from citizen scientists) within 15 km radius
 - ASOS observations in vicinity
- A match is considered when MWR p-type agrees with or is in a mix with mPING or ASOS
- Mixed p-types are collapsed into 4 major p-types with priority order: FZR > SN > RA > SLT

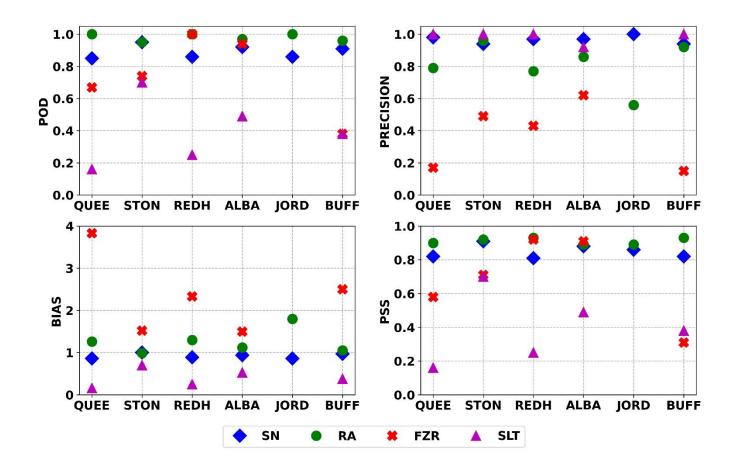
Methodology


• MWR performance based on confusion matrix and 4 measures:

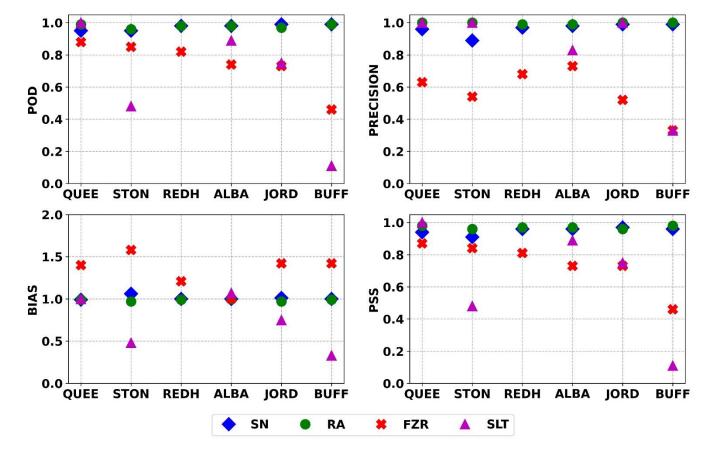
- Probability of Detection (POD) = a/(a+c)
- Precision = a/(a+b)
- Bias (B) = (a+b)/(a+c), B < 1 (under), B = 1 (unbiased) and B > 1 (over)
- Pierce's Skill Score (PSS) = a/(a+c) b/(b+d)


Results: mPING vs ASOS

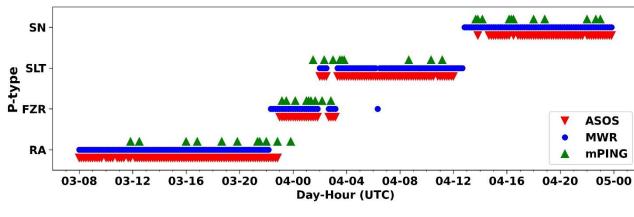
- mPING users are less inclined to report RA than SN
- mPING (ASOS) comprises 10-12% (2-4%) other p-types than RA, SN or RA/SN
- mPING reports of FZR or its mix are comparable to ASOS (3% vs 2.6%)
- mPING reports of SLT or its mix are much higher than ASOS (9% vs 0.7%)
 - About 66% of mPING SLT reports were either wet SN or FZR (Reeves, 2016)
 - ASOS does not detect SLT (done manually)

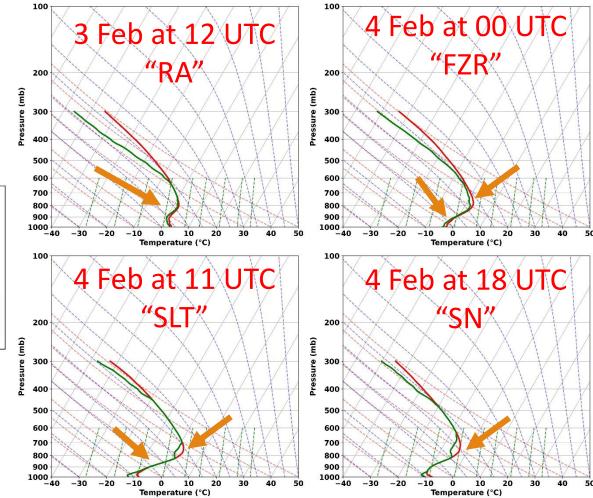

Results: mPING vs ASOS

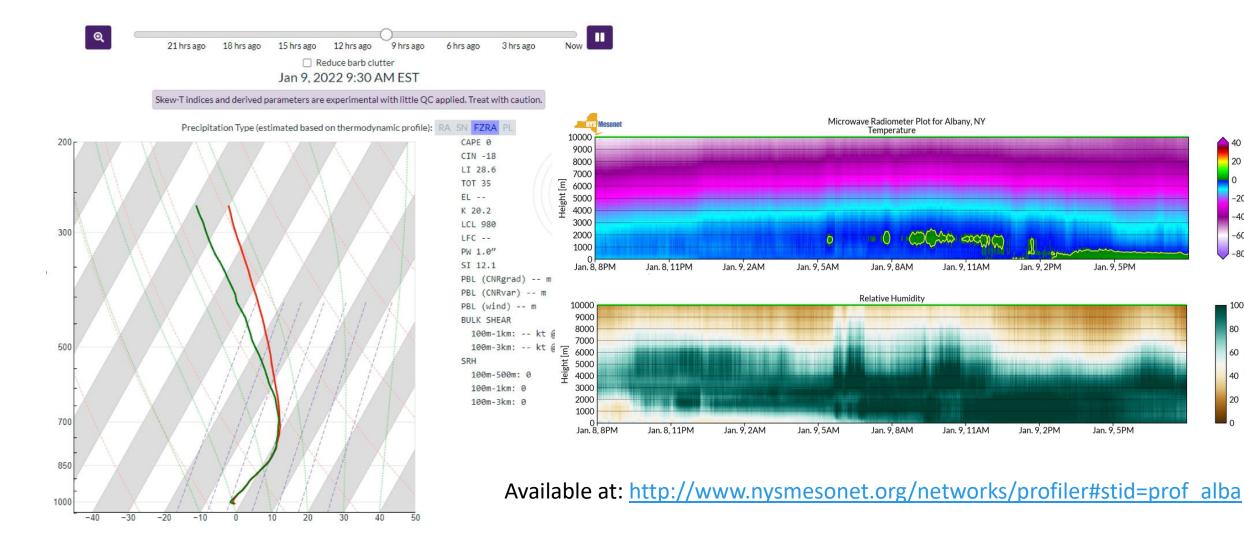
- POD for SN, RA and SLT ≥ 0.80, mostly lower for FZR (high misses)
- Precisions for SLT are mostly lower (≤ 0.53) high false alarms
- Significant over-forecasts of SLT, (bias = 1.8 – 5.2)
- PSS > 0.70 mostly but are comparatively lower for FZR as POD


Results: MWR vs. mPING

- POD for SLT lowest, mostly < 0.5 (high misses)
- Precision for FZR lowest, ≤
 0.62 (high false alarms)
- Over-forecasts FZR (>1.5) and under-forecasts SLT (< 0.70)
- PSS similar POD, lowest for SLT


Results: MWR vs. ASOS


- POD for FZR decreases from QUEE to BUFF, for SLT lowest at STON and BUFF (high misses)
- Precision for FZR lowest (≤ 0.73, high false alarms)
- Over-forecasts FZR (≤1.58) and under-forecasts SLT (STON, JORD, BUFF)
- PSS similar to POD


Results: Wintry Mix Event on 3 - 4 Feb 2022

A long duration winter storm brought all four p-types with 12+ hours of SLT (2 inches) at Albany, NY

Application: Real-time p-type monitoring

WINTRE-MIX WORKSHOP: 22 MAY 2023

Jan. 9, 2PM

Jan. 9, 2PM

Jan. 9, 5PM

Jan. 9, 5PM

20

0

0 -20 -40

-60

-80

100

80

40 40 percent

20

Conclusion

- Both mPING and ASOS agree well on RA and SN but show some discrepancies in FZR and SLT reports (due to observer and instrumental biases, and spatial and temporal variability)
- MWR provides high reliability on RA and SN and a reasonable accuracy on FZR and SLT compared to both mPING and ASOS
- MWR over-forecasts FZR and under-forecasts SLT but comparatively better to ASOS than mPING
- Inconsistencies in MWR FZR and SLT forecasts due to mPING biased towards SLT and away from FZR, ASOS under-reporting of SLT and may be due to FZR biased collapse scheme applied

Conclusion

- MWR can capture high-temporal p-type transition (10 min) and provide profile data to better understand/monitor thermodynamic changes taking place aloft affecting the p-type at the surface
 - A much-needed information not available from ASOS, mPING or CoCoRaHS and significant advantages over twice daily NWS radiosondes
- MWR p-type retrievals can be further improved with the refinement of parcel thickness method or applying robust, explicit temperature dependent area method (Bourgouin, 2000)

Any questions?

Contact: Bhupal Shrestha (<u>bshrestha@albany.edu</u>)

(Manuscript Shrestha et al. 2023 submitted to Weather and Forecasting)