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1 Introduction

For DASH, ATD is planning to make measurements which can be used to
obtain C2

n for visible light to be compared to scintillometer measurements
that already have been taken. We will deploy a sonic anemometer to mea-
sure acoustic temperature Tsv from a measurement of the speed of sound and
a krypton hygrometer to measure specific humidity. (Actually, this hygrom-
eter has a temperature contamination which would have to be dealt with if
needed.)

This document presents the various steps to calculate C2
n for visible light

and the structure parameter for sound C2
na from measurements of C2

Tsv
. Note

that the index of refraction for electromagnetic waves, and thus C2
n, is wave-

length dependent, and is characterized by different weightings of the temper-
ature and humidity structure parameters. Thus, the final equations below
are not appropriate for light in the infrared or ultraviolet. (This should be
acceptable for DASH since we are comparing our measurements with scintil-
lometers working at visible wavelengths.)

2 Structure function parameters

A structure function of a quantity a is defined as

C2
a(∆x) =

< a(x)2 − a(x + ∆x)2 >

∆x2/3
(1)
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where <> denote averaging over the space x. For scales within the inertial
subrange, C2

a should be independent of ∆x. Using Taylor’s hypothesis, Eq. 1
may be transformed to an average over time t.

C2
a =

a(t)2 − a(t + ∆t)2

(U∆t)2/3
(2)

where variables are now averaged over time (overbar) and U is the longitu-
dinal wind component.

Muschinski et al. (2001) show that C2
a may be calculated from the power

spectrum Sa of a in the inertial subrange using

C2
a = 13.67Sa(f)f 5/3U−2/3 (3)

where f is frequency and 13.67 is a constant containing a factor 0.249 and
(2π)2/3.

Thus, the structure parameter is readily computed from the amplitude of
the power spectra of a quantity in the inertial subrange (the high-frequency
part of the spectrum where the power decreases as f−5/3).

3 C2
n as a function of C2

T and C2
Q

We now follow the derivation of Hill et al. (1980), but only considering the
propagation of visible light and assuming that pressure fluctuations have a
much smaller effect on C2

n than temperature or humidity fluctuations. Then,

N = Nd + Nw (4)

where N is the refractivity of the air with contributions Nd from dry air and
Nw from water vapor. Note that refractivity is defined as

N = (n − 1) × 106 (5)

where n is the actual index of refraction (a value close to unity).
Hill et al. give the following expressions for Nd and Nw as functions of

temperature T (degrees K), water vapor density Q (molecules/m3), pressure
P (Torr), and wavelength λ (µm).

Nd =
0.3789P

T
N0[1 + (5.337 − 0.0157T ) × 10−6P ] (6)
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where
N0 = 64.328 + 29498.1/(146 − λ−2) + 255.4/(41 − λ−2) (7)

and
Nw = −1.765 × 10−18(1 − 0.0109λ−2)Q. (8)

Hill et al. continue by neglecting the (small) wavelength dependence and
second-order T and P dependence in Eq. 6 to produce:

Nd = 0.3789N0
P

T
(9)

and
Nw = −1.765 × 10−18Q. (10)

For easier use, we convert the units of P to Pascals and Q to kg/kg, which
changes the above two equations to

Nd = 0.00284N0
P

T
(11)

and
Nw = −59ρQ (12)

where ρ is the density of air.
In calculations below, we let T=273.15 K, Q=0.004 kg/kg, and P=840

mb = 84000 Pa.
Differentiating,

dN = −Nd
dT

T
+ Nw

dQ

Q
. (13)

Referencing each variable to a mean (overbar) and fluctuation (’), Eq. 9
becomes

N ′ = −Nd
T ′

T
+ Nw

Q′

Q
. (14)

Using Eq. 5,

n′ = AT
T ′

T
+ AQ

Q′

Q
. (15)

where
AT = −Nd × 10−6 (16)

and
AQ = Nw × 10−6. (17)
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Note that de Bruin et al. (1995) use for light at 0.94 µm

AT = −0.78
P

T
× 10−6 (18)

and
AQ = −59Q × 10−6. (19)

(Andreas (1987) found coefficients of -0.79 and -56.4 in the above 2 equations
for light at 0.55 µm, with Q in kg/m3.) For λ = 0.94 µm, NO=274, and ρ=1
kg/m3, the coefficients in Eq. 11-12 and 18-19 agree.

From Eq. 15, an equation for C2
n can be presented

C2
n = C2

T

A2
T

T
2 + C2

Q

A2
Q

Q
2 + 2CTQ

AT AQ

TQ
. (20)

To estimate the relative importance of the CT and CQ, assume

CTQ = rTQCT CQ (21)

and let rTQ = ±1 (Wesley, 1976). Then, using Eq. 18-19, Eq. 20 simplifies
to:

Cn = CT
AT

T

(

1 +
AQ

AT

CQ

CT

T

Q

)

(22)

= CT
AT

T

(

1 +
−59Q

−0.78P/T

w′Q′/ρL

w′T ′/ρCpair

T

Q

)

= CT
AT

T



1 +
−59

−0.78

Cpair

Lβ

T
2

P





= CT
AT

T

(

1 +
0.03

β

)

where β is the Bowen ratio w′T ′/w′Q′. If a 10% error is acceptable, the
right-most quantity in () may be ignored for β >0.3. NCAR/ATD has flux
data in January from Table Mountain, just north of Boulder, which should
be similar to that expected for the BAO. These data indicate that |β > 0.3|
about 90% of the time during the day.
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4 Acoustic temperature

Because NCAR/ATD does not have temperature probes with adequate fre-
quency response to measure T ′, we plan to use the acoustic virtual temper-
ature Tsv from our sonic anemometers

Tsv = T (1 + fQ) = T + fTQ (23)

where f is 0.51×10−3. (Note that this is slightly different than actual virtual
temperature for which f = 0.61 × 10−3.)

NCAR/ATD plan to measure humidity fluctuations with our krypton hy-
grometers (which also, unfortunately, have a slight temperature dependence),
but these sensors must be physically separated (to avoid impacting the air
flow through the sonic anemometer). Thus, at the smallest spatial scales our
measurements of Tsv and Q will be decorrelated, so it will be impossible to
use the above equation to calculate T itself. For this reason, we must now
derive how C2

n can be calculated from C2
Tsv

.
Differentiating Eq. 22

T ′

sv = (1 + fQ)T ′ + fTQ′. (24)

Thus

CTsv
= CT

(

1 + fQ + fT
Cpair

βL

)

(25)

= CT

(

1 + 0.002 +
0.06

β

)

.

Combined with Eq. 22

Cn ≈ CTsv

AT

T

(

1 − 0.03

β

)

(26)

which is gives the same error as a function of Bowen ratio as in Eq. 22, but
of the opposite sign. Thus, for small Bowen ratio, β, it is reasonable just to
use sonic temperature.
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5 Formulation for sound propagation

For the refractive index of acoustic waves Cna, again for rTQ = ±1, we have
from Wesley

Cna =
(

CT

2T

)

(

1 +
0.06

β

)

. (27)

In other words, the effect of humidity on sound scattering is exactly the same
as for acoustic temperature, which is not surprising. Thus:

Cna ≈ CTsv

2T
(28)

which obviously will make the comparison between the sonic anemometer
and sodar measurements trivial.

6 Frequency–dependent corrections to

the inertial–subrange power spectra

The preceding calculations rely on measurements of turbulence in the inertial
subrange, which occurs at spatial scales that are on the order of the path
length of the sonic anemometer and at time scales on the order of both the
sampling rate of the data and the timing sequence of sound pulses among the
three sonic measurement axes. Consequently the power spectra are corrected
for aliasing, sonic path averaging, and the influence of pulse sequence delays
on sonic response. Prior to these corrections, an independent correction has
also been applied to the temperature spectra for white noise associated with
the resolution threshold of the CSAT3 sonic anemometer. In the following,
the corrections are discussed individually and then combined into an overall
formula for correction of the inertial–subrange spectra.

6.1 Aliasing

As a consequence of digital sampling of a physical process at a rate fs, only
frequencies within the range 0 ≤ f ≤ fN can be resolved from the mea-
surements, where the Nyquist frequency fN = fs/2. However, energy in the
frequency range f > fN is not lost, but is ’folded’ back to the observed range
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of frequencies, 0 ≤ f ≤ fN . Thus the aliased (observed) spectrum is

Sa(f) = S(f) +
∞
∑

m=1

H(2mfN − f)S(2mfN − f)

+
∞
∑

m=1

H(2mfN + f)S(2mfN + f) ,

(29)

where S(f) is the true spectrum and H(f) is the frequency–dependent atten-
uation caused by processes such as sonic path averaging and pulse sequence
delay. If f is in the inertial subrange, then

S(f) = Sa(f)
/ ∞

∑

m=−∞

H(fm)(fm/f)−5/3 (30)

where fm ≡ |f + 2mfN/|−5/3

6.2 White noise removal

Since the preceding correction for aliasing assumes that the spectrum has an
inertial–subrange decay of f−5/3, any noise in the observed spectrum must
be removed prior to applying the multiplicative correction. The manual for
the CSAT3 specifies that instantaneous temperature measurements made
with a constant input have a standard deviation σn that is independent
of the sample rate and equal to 0.002◦C. Since inspection of the observed
temperature power spectra suggest that the actual noise level may be up to
twice that value, we have subtracted a constant value from the spectra equal
to 4σ2

n/fN . With fN = 15 sec−1 and U = 3 m/s, Eqs. 3 and 26 imply that
the noise level for C2

n at the Nyquist frequency is 5 × 10−16 m−2/3.

6.3 Sonic pulse sequence delays

Larsen et al. (1993) examine attenuation and cross–contamination of temper-
ature and velocity measurements that occur when sonic anemometer acoustic
pulses in opposite directions along a single measurement path are emitted
sequentially rather than simultaneously. Nielsen and Larsen (2002) extend
this analysis to the R3 Solent sonic anemometer, which has a path geometry
similar to the CSAT3 and, like the CSAT3, outputs a temperature that is an
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average over the three measurement paths and is corrected for sound path
curvature, i.e. cross–contamination by the velocity component normal to the
measurement path.

For a single measurement path, Larsen et al. (1993) show that

T ′

S =
1

2
[ T ′

sv(t1) + T ′

sv(t2) ] +
a

2
[ w′(t1) − w′(t2) ] − a

2

U

c̄
[ u′(t1) + u′(t2) ] (31)

w′

S =
1

2
[ w′(t1)+w′(t2) ]+

1

2a
[ T ′

sv(t1)−T ′

sv(t2) ]− 1

2

U

c̄
[ u′(t1)−u′(t2) ] (32)

where TS is the temperature and wS the wind measured and output by the
single–path sonic anemometer, Tsv is the true acoustic virtual temperature, u
and w are the wind components normal and parallel to the sonic measurement
path, t1 and t2 refer to the sequential times at which the two acoustic pulses
are emitted in opposite directions along the sonic path, c is the speed of
sound, and

a ≡ 2T̄sv

c̄
(33)

is about 1.8. If the two pulses were emitted simultaneously, then the second
terms in both equations and the third term in Eq. 32 equal zero and the
measured temperature is in error by only the third term in Eq. 31, the sound
path curvature error mentioned previously. The CSAT3 sonic corrects the
measured temperature for this error, but with the assumption that the pulses
are emitted simultaneously. Measurement of the crosswind component for
each path necessarily entails measurements by two more (non–parallel) paths,
and therefore this correction is only partially effective since it also uses data
obtained at times t3 through t6. However, we note that the ratio of the third
term to the second term in Eqs. 31–32 is on the order of the Mach number
U/c̄ and therefore neglect the third terms in the following.

The CSAT3 sonic anemometer measures three wind components and vir-
tual temperature using three non–orthogonal paths (a,b,c), each at an angle
φ = π/3 with respect to the horizontal and intersecting the horizontal plane
at intervals of 2π/3. The sonic temperature output by the CSAT3 is the
average of the measurements for all three paths. Thus

T ′

S =
1

6

6
∑

j=1

T ′

sv(tj)

+
a

6
[ w′

a(t1) − w′

a(t2) + w′

b(t3) − w′

b(t4) + w′

c(t5) − w′

c(t6) ] .

(34)
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The time interval between sequential pulses, e.g. t2 − t1 = 2τ , where the
time required for a single set of 6 pulses, 12τ = 13.4 msec for a CSAT3 sonic
collecting 30 samples per second. (Fig. 2 of Larsen, et al., 1993, incorrectly
associates τ with the time between pulses; Nielsen and Larsen, 2002, correct
this error.) Following Larsen et al. (1993), the Fourier transform of Eq. (34)
is

dZTS
=

1

3
dZTsv

cos ωτ ( 1 + 2 cos 4ωτ)

− ia

3
sin ωτ

[

dZwa
e−i4ωτ + dZwb

+ dZwc
ei4ωτ

]

,

(35)

where ω = 2πf , and the power spectrum of TS is

STS
=

1

9
STsv

cos2 ωτ ( 1 + 2 cos 4ωτ)2 +
a2

9
sin2 ωτ [ Swa

+ Swb
+ Swc

+ 2 (Cowawb
+ Cowbwc

) cos 4ωτ + 2 Cowcwa
cos 8ωτ

− 2 (Qwawb
+ Qwbwc

) sin 4ωτ + 2 Qwcwa
sin 8ωτ ]

+
a

9
sin 2ωτ ( 1 + 2 cos 4ωτ) [ (CowcTsv

− CowaTsv
) sin 4ωτ

− (QwaTsv
+ QwcTsv

) cos 4ωτ − QwbTsv
] .

(36)

Thus the spectrum of sonic temperature is attenuated by the factor

Hτ
Tsv

(ω) =
1

9
cos2 ωτ( 1 + 2 cos 4ωτ)2 (37)

and contaminated by the spectra of the velocity components parallel to the
sonic paths, as well as by cospectra Co and quadrature spectra Q between
those velocities and between those velocities and sonic temperature. The
(aliased) contamination, like the measurement noise, must be subtracted
from the measured sonic temperature spectra prior to correction for path av-
eraging and aliasing. The net spectral correction will be discussed in Section
6.5.

Equations for the measured values of the velocity spectra and cross spec-
tra, as well as the velocity–temperature cross spectra are found by the same
method used to obtain Eq. 36, thus requiring the simultaneous solution of
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multiple equations in multiple unknowns to obtain estimates of the true spec-
tral values. Here we simplify that calculation by assuming that the contam-
ination terms in all such equations are small and we only retain the leading
attenuation term in all the equations required to provide the contamination
terms in Eq. 36. These are,

S̃w ≃ Sw cos2 ωτ (38)

C̃owawb
≃ Cowawb

cos2 ωτ (39)

Q̃wawb
≃ 0 (40)

C̃owaTsv
≃ CowaTsv

(41)

Q̃waTsv
≃ QwaTsv

cos 2ωτ (42)

where, for example, S̃w is the measured value of Sw.

6.4 Sonic path averaging

The response of the anemometer is also reduced at high wavenumbers be-
cause Tsv and w are calculated as averages over the acoustic path(s). Further-
more, the CSAT3 sonic anemometer combines the data from 3 such paths
for measurement of temperature. Kaimal et al. (1968) present a detailed
derivation of the transfer functions, the ratio of the measured to the true
one–dimensional power spectra, for the three wind components measured by
a Kaijo Denki sonic anemometer. It is straightforward to extend this analysis
to CSAT3 measurements of wind and temperature.

The sonic virtual temperature, averaged over a single sonic path of length
p, is

T̃sv(xo,p) =
1

p

∫ p/2

−p/2
Tsv(xo + s) ds . (43)

Here Tsv(x) is the sonic virtual temperature at point x, and xo is the center
point of the sonic path. By representing the temperature field in terms of
its Fourier components, it follows that the transfer function for the one–
dimensional, streamwise power spectrum is

HTsv
(k1,p) =

∫

∞
∫

−∞

sinc2(k · p/2) ΦTsv
(k) dk2 dk3

∫

∞
∫

−∞

ΦTsv
(k) dk2 dk3

, (44)
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where sinc ≡ sin(x)/x, k =
3
∑

j=1
îjkj is wave number with components k1 in

the streamwise direction and k3 in the vertical direction, and ΦTsv
(k) is the

spectral density for sonic temperature.
The acoustic temperature that is output by the CSAT3 sonic is the av-

erage of the measurements along all three sonic paths, and therefore the
transfer function for sonic temperature becomes

HTsv
(k1p) =

∫

∞
∫

−∞

(

3
∑

j=1
sinc(k · pj/2)

)2

ΦTsv
(k) dk2 dk3

∫

∞
∫

−∞

ΦTsv
(k) dk2 dk3

. (45)

Here pj = î1 cos θj cos φ + î2 cos θj sin φ, where θj = θ1 + 2(j − 1)π/3, and θ1

is the streamwise direction measured with respect to the CSAT3 ‘a’ path,
which is in the plane defined by the upper and lower sonic support arms.

Assuming isotropy and k in the inertial subrange,

ΦTsv
(k) ∝ NTsv

ǫ−1/3k−5/3

2πk2
(46)

(Tennekes and Lumley, 1972). Here k is the magnitude of k, NTsv
is the rate

of dissipation of sonic temperature variance, and ǫ is the rate of turbulent
energy dissipation.

The integral in the denominator of the transfer function can be found
analytically,

∫

∞
∫

−∞

ΦTsv
(k) dk2 dk3 =

3

5
NTsv

ǫ−1/3k
−5/3
1 , (47)

but the integral in the numerator must be computed numerically. Since the
integrand is non–negligible over several decades of k2 and k3, it is suggested
that the numerical integration be calculated logarithmically over N decades
in each quadrant, e.g. dk2 = k2 d ln k2, k0 ≤ k2 ≤ 10Nk0. Accuracy to better
than 1% is found for k0 = k110(3/4−N/2), N ≥ 5, and S integration steps per
decade, e.g. ∆ ln k2 = ln(10)/S, S ≥ 5.

It was shown in Section 6.3 that the sonic pulse sequence delay contami-
nates the temperature spectrum with the velocity spectra and cross–spectra.
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Consequently the velocity spectra and cross-spectra must also be corrected
for path averaging. Again assuming isotropy and k in the inertial subrange,

Φij(k) ∝ ǫ2/3k−5/3

4πk4
(k2δij − kikj) . (48)

For the power spectrum of the velocity component parallel to one of the
CSAT3 measurement paths, k·pj = k1p cos α+k3p sin α = kαp where cos α =
cos θj cos φ, and

Hα(k1p) =

∫

∞
∫

−∞

sinc2(kαp/2) (k2 − k2
α) dk2 dk3

∫

∞
∫

−∞

(k2 − k2
α) dk2 dk3

. (49)

Both the integration in the numerator over k2 and the integral in the denom-
inator can be found analytically, so that

Hα(k1p) =
11 Γ(4/3) k

5/3
1

2
√

π Γ(5/6) (4 − cos2 α)

∫

∞

−∞

sinc2(kαp/2) (k2
1 + k2

3 − k2
α) dk3 .

(50)
(Note that this results differs from that of Nielsen and Larsen (2002), Eq. 17.)
It is suggested that the integral over k3 again be computed logarithmically,
as detailed above.

In the absence of a complete spectral model for the cospectra and quadra-
ture spectra required in Eq. 36, we follow the suggestion of Larsen et al. (1993)
and Nielsen and Larsen (2002) to approximate path averaging for the cross

spectra as Hx,y =
√

HxHy, where x, y is any mixed combination of Tsv, wa,
wb, or wc. They justify this approximation with the observation that the
cospectra and quadrature spectra terms in Eq. 36 are smaller than the power
spectral terms.

6.5 Net spectral correction

Finally, the contributions of aliasing, white noise, sonic pulse sequence delays,
and sonic path averaging can be combined to obtain an equation for the
measured temperature spectrum,

S̃TS
(f) = STsv

(f)
∞
∑

m=−∞

Hp
Tsv

(k1m) Hτ
Tsv

(ωm) (fm/f)−5/3 + 4σ2
n/fN
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+
a2

9
Swa

∞
∑

m=−∞

Hp
wa

(k1m) sin2(ωmτ) (fm/f)−5/3 + . . .

− a

9
CowaTsv

∞
∑

m=−∞

[Hp
wa

(k1m)Hp
Tsv(k1m)]1/2 sin (2ωmτ)

(

1 + 2 cos (4ωmτ)
)

×

sin (4ωmτ) (fm/f)−7/3 + . . . ,

(51)

where k1m = ωm/U , Hp are transfer functions for sonic path averaging, e.g.
Eq. 50 for Hp

wj
, and Hτ are transfer functions for the sonic pulse sequence

delays, e.g. Eq. 37 for Hτ
Tsv

. Note that Swa
in this equation is the true

spectrum, which can be found from Eq. 38

Swa
(f) ≃ S̃wa

/ ∞
∑

m=−∞

Hp
wa

(k1m
) cos2(ωmτ) (fm/f)−5/3 (52)

This and similar equations (from Eqs. 39–42) are used to obtain the true
spectral variables, which are then substituted into Eq. 51, which is in turn
itself solved for STsv

. Only three representative terms of Eq. 36 are explicitly
written out in Eq. 51; the remainder follow by direct analogy. Note in par-
ticular that the velocity–temperature cross spectrum is assumed to decay as
f−7/3 in the inertial subrange.

7 Applicability of Taylor’s hypothesis

All of the above has assumed that Taylor’s hypothesis can be used to trans-
form the spectra from the frequency to wavenumber domain. Wyngaard and
Clifford (1974) show that making this assumption induces an error in the
power spectra as a function of turbulence intensity. For a scalar quantity,
the ratio of the measured to correct one-dimensional power spectrum is

Sm

S
= 1 − 1

9

u′u′

U
2 +

1

3

v′v′

U
2 +

1

3

w′w′

U
2 . (53)

They evaluated this correction for the moderately unstable surface-layer and
mixed-layer in their Table 2 and show that this correction is 1–5%.

8 Summary

The use of sonic anemometers to determine C2
n from Ts is straightforward:
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1. The measured power spectrum STS
is obtained from the time series.

2. An estimate of sonic white noise is subtracted from the measured power
spectrum.

3. The measured spectra and cross–spectra for sonic path-parallel veloci-
ties and the velocity-temperature cross spectra are divided by the ap-
propriate transfer function to correct for aliasing, sonic path averaging,
and pulse sequence delays, e.g. Eq. 52.

4. Estimates (from step 3) of cross contamination terms associated with
the velocity components parallel to the sonic paths are subtracted from
the power spectrum of step 2.

5. STs
from step 4 is divided by a transfer function to correct for aliasing,

sonic path averaging, and pulse sequence delays.

6. The spectral amplitude is estimated in the inertial subrange.

7. Eq. 53 is used to correct for deviations from Taylor’s hypothesis.

8. Eq. 3 is used to calculate CTs
.

9. Eqs. 26 and 28 are used to compute C2
n and C2

na.

From other data we’ve collected, we expect the Bowen ratio to be greater
than 0.3 at least 85% of the time (98% of clear-sky cases!) which allows the
expression 0.03/β to be ignored in Eq. 26. However, we plan to measure
humidity fluctuations as well, if only to measure the humidity flux and thus
the Bowen ratio. The Bowen ratio correction in Eq. 26 is derived for rTQ =
±1, but a similar formulation can be made for other values. With our time
series measurements of Ts and Q, we can easily determine rTQ, albeit at lower
frequencies, due to the separation between the humidity and temperature
sensors.
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