Innovative Pyrgeometer Concept

The CG 4 is designed for meteorological observations of far-infrared radiation. Based on the well-known quality of Kipp & Zonen radiometers the CG 4 allows permanent outdoor observations combining outstanding accuracy with measurement ease.

The development of a new dome was highly successful and now allows observations of far-infrared irradiance with a measurement accuracy and ease that was previously unavailable. The excellent thermal stability of the dome construction eliminates the need for dome temperature measurements. Only the internal temperature, measured with a thermistor (YSI 44031), is required to calculate the downward far-infrared irradiance.

Specifications

- Spectral range: 4.5 - 42 µm
- Sensitivity (nominal): 10 µV/W/m²
- Window heating offset (max): +4 W/m² at 1000 W/m² solar irradiance
- Response time: 6 s (63 %)
- Thermopile output range: -250 - +250 W/m²
- Temperature dependence: less than ± 1 % (-20 ºC to +50 ºC)
- Zero-offset due to temp. change: less than ± 2 W/m² (5 K/h)
- Operating temperature: -40 ºC to +60 ºC
- Field of view: 180 º
- Dimensions W x H: Ø 150 mm x 76.5 mm
- Weight: 1 kg
- Cable length: 10 m

Directional Response Error

Ground-based observations with the CG 4 benefit from the directional distribution of far-infrared radiation emitted from the Earth’s atmosphere. In the graph below, the intensity of the downward far-infrared radiation as function of wavelength λ is shown for various (viewing) zenith angles θ. At zenith angle θ = 90 º the atmospheric window is ‘closed’ and consequently the atmospheric thermal radiation is equal to the Planck’s curve at a temperature T_{TOP}. The Earth’s surface temperature is generally close to T_{TOP}. The observations benefit from the small infrared radiation exchange between the CG 4 and the atmosphere in horizontal directions because the internal temperature is also nearly the same as T_{TOP} (the internal temperature and temperature measured with a thermistor are assumed equal). Consequently the influence of the directional response near horizontal viewing angles on the measurements is small. However, the largest radiation exchanges occur in the vertical direction, where the directional response of the CG 4 is highly ‘lambertian’ (nearly perfect).

Calculation of the Downward Far-infrared Irradiance

Infrared radiation observations are always influenced by the emission of thermal radiation originating from the instrument itself. In the CG 4 only the internal temperature is required to account for the radiative heat exchange of the radiation-sensitive surface. The formula below shows how the downward far-infrared irradiance with a wavelength larger than 4.5 µm is obtained with the CG 4.

\[L_d = \frac{U_{\text{out}}}{S} + \sigma \times T_b^4 \]

- \(L_d \) = downward radiation [W/m²]
- \(U_{\text{out}} \) = sensor output voltage [µV]
- \(S \) = calibration factor [µV/W/m²]
- \(T_b \) = body temperature [K]
- \(\sigma \) = Stefan-Boltzmann Constant = 5.67 x 10⁻⁸ [W/m²/K⁴]

Kipp & Zonen B.V. reserve the right to alter specifications of the equipment described in this documentation without prior notice.

Kipp & Zonen and EKO Instruments have formed a strategic global alliance. Our aim is to provide the scientific community with the most complete range of high quality instrumentation and support services for meteorology, hydrology, atmospheric science and renewable energy.

Kipp & Zonen B.V.
P.O. Box 507 2600 AM Delft
The Netherlands
T +31(0)15 269 8000
F +31(0)15 262 0351
E info.holland@kippzonen.com

Solar & Atmospheric Science