

University of Colorado Boulder

Insights into submicron composition during WINTER as measured by the AMS

WINTER Science Meeting

17-Sept to 18-Sept-2015

Jason Schroder, Pedro Campuzano-Jost, Jose Jimenez

1. Data Overview

- 2. Instrument Comparisons
- 3. Campaign Averages
- 4. Organic Aerosol (OA)
- 5. Aging of OA Case study
- 6. Oxidation flow reactor (OFR)
- 7. Biomass burning OA (BBOA)

Overview of Data:

Close to final data:

- Implement final calibrations
- Implement improved background interpolation method
- Finish working out kinks for size distributions

Issues:

- Down for RF05
- Not yet reporting organic nitrate when sampling marine environment due to potential interference of NaNO₃
- Still investigating spikes for RF01, could be HOA, could be radio towers

Some notes on size distributions

- Currently there are speciated size distributions files in the archive under the DataID "AMSSD" ٠
- All these are using a new, experimental mode to acquire size distributions with 50% dutycycle (instead of 2%) ٠
- Data needs to be normalized to account for slow vaporization ۰
- Currently reported distributions are noisier than they can be ٠
- New size calibration, new normalization method implemented in the last few months, indicating no major problems. ٠
- Still need to work on the inversion algorithm, but current results are encouraging ٠

An example from RF03:

- More validation work needed on the new inversion algorithm, especially performance at low concentrations
- AMS software needs a sizeable overhaul for this to work.
- Non-linear inversion poses some data reporting challenges
- Need to decide what time resolution(s) are useful for this group

Instrument Comparisons: AMS Volume VS PCASP Volume

Don't expect perfect agreement

- PCASP is wet, AMS is dry
- PCASP includes supermicron
- PCASP > 300 nm, AMS > 60 nm

Once I get a hold of the final UHSAS data I can make a more fair comparison

)verview 🦳 Campaign Avera

Instrument Comparisons

: Aerosol 👘 Photoc

Oxidative Flov

University of Colorado Boulder

Instrument Comparisons: AMS & SAGA & PILS

verview Campaign Averages Instr

Instrument Comparisons Org

anic Aerosol 👘 Ph

ge Oxidative

of Colorado Boulder

Instrument Comparisons: AMS & SAGA & PILS

Overview Campaign Average

Instrument Comparisons On

s Organic Aerosol

Photochemical Ag

Oxidative Fl

Some observations of nitrate volatility

Intercomparison on RF06

- Biggest discrepancy seen in thin NH₄NO₃ layers
- Preliminary evidence suggest that the UHSAS (outside the plane) and the AMS Volume agree very well during these events

Chloride: also semivolatile, consistent w/ NH₄Cl

- Volatility of chloride
- Roughly tracks ammonium nitrate, and suggest NH₄Cl
- The ratio of the main ions Cl⁺/HCl⁺ is consistent with in-field calibrations of this ratio conducted with NH₄Cl

verview Campaign Averages

University

arisons 🔰 Organic Aero

Photochemical Ag

Oxidative Fl

Campaign Averages

rerview Campaign Averages

mparisons 🚽 Organic Aei

Photochemical Ag

Oxidative Flo

	% of Time
Land – Day	29
Land – Night	31
Ocean – Day	17
Ocean - Night	23

Campaign Averages – Flight by Flag

Overview Campaign Averages Instrument Comparisons Organic

Photochemical Age

Oxidative Flow Rea

view Campaign Averages Ins

ment Comparisons 👘 Orgai

ol Photochemi

Oxidative Flow R

Campaign Averages - Comparison

of Colorado

Campaign Averages - Comparison

Organic Aerosol – Campaign Flight Track

Organic Aerosol – O/C

University of Colorado Boulder

Oxidative Flo

Photochemical Age – "NYC" Plume Transect RF03

Photochemical Age

Oxidative Flow Reactor (OFR)

OH Production in OFR at I= 185nm: $H_2O + hv (185nm) \rightarrow OH$ $O_2 + hv (185nm) \rightarrow O_3$ $O_3 + hv (254nm) + H_2O \rightarrow 2 OH$

Oxidation Flow Reactor (OFR)

Oxidation Flow Reactor (OFR)

RF02

RF02

Oxidation Flow Reactor (OFR)

RF02

Oxidation Flow Reactor (OFR)

Biomass Burning Organic Aerosol

Fresh Biomass Burning Organic Aerosol?

Moving Forward

- Why is $OA/\Delta CO$ lower in the winter?
 - Lack of SOA formation due to low radicals?
 - Is estimated photochemical age wrong?
 - Differences in mix of anthropogenic SOA precursors?
 - Higher losses? SV dry deposition? Wet deposition?
- Why is OA so oxidized, if radicals are low?
 - Very oxidized primary BBOA?
 - Look into timescales of OA oxidation near urban sources
 - OA oxidation in clouds?
- Look into measures of acidity downwind of power plant plumes

Thanks!

Photochemical Age – "NYC" Plume Transect RF03

Overview Campaign Averages Instrument Comparisons Organic Aero

Photochemical Age

ge Oxidative

Nitrate evaporation in thermal denuder (~14 s)

- Can lose 30-100% of nitrate in 14 s upon heating 25 C
- But different starting conditions than WINTER

Huffman et al., ACP 2009

Oxidative Flow

Extra Slides:

Instrument Comparisons: AMS & SAGA

Overview Campaign Averages

Instrument Comparisons Or

Organic Aerosol

Instrument Comparisons: AMS & SAGA

w Campaign Averages Instrument

Instrument Comparisons Organ

Aerosol Photoch

Point Sources – Power Plants (RF02)

verview

Averages

Ör, Ae Point Sources

hotochemic

Oxidative

Point Sources – pH

Insert Pedro's new pH plots Need to get him fresh data (waiting for NH₃ order)

Overview

mpaign /erages Compariso

Organi Aeroso Point Sources

Photochem

Oxidative Fl

Flight SummaryD2N = Day into nightN2D = Night into Day

RF #	Flight Type	% Over Water	% Over Land	Approx. Hours After Sunrise	Approx. Hours After Sunset	Location
1	D2N	60	40	3	4.5	Long Island, Atlantic City
2	D2N	0	100	6.5	1	Ohio River Valley
3	D2N	98	2	3.5	4.5	Long Island and East
4	D2N	5	95	2.5	4.5	Crisscross eastern seaboard
AMS Down						
6	N2D	99	1	0.5	8.5	Offshore plumes
7	Night	1	99	0	7.5	Urban/Power plant PA to VA
8	N2D	97	3	5	3.5	Long Island (bow-ties)
9	N2D	0	100	6.5	2	PA (Urban and power plant)
10	N2D	0	100	0.5	7.5	Atlanta
11	D2N	20	80	5.5	1	Shale fields-> around Long Island
12	Day	0	100	7	0	Ohio River Valley
13	Day	95	5	6.25	0	Bermuda Triangle

Photochemical Age – NYC Transect RF03

Photochemical Age - More NYC Outflow?

Photochemical Age [Days]

Campaign Averages

1%

35%

15%

- AMS Aerosol Concentration [µg/m²] **Vertical Profiles:**
- Shows decreased boundary layer height ۲
- Predominately regional background species (OA & Sulfate) •
- Nitrate in shallower layer ٠

31%

Fraction of OA and Inorganic Species:

- Larger fraction of NO₃ during the day
- Larger fraction of OA and sulfate at night