Formaldehyde during WINTER

Glenn Wolfe, NASA GSFC

- Background
- Questions
- Other neat ideas
- Instrument summary

Formaldehyde (HCHO)

0.56

VIRGINIA

Newport News

0.56

How does Chemistry Change when Trees Sleep?

During SENEX 2013, isoprene chemistry *alone* accounts for ~83% of observed HCHO.

Wintertime HCHO precursors expected to be primarily anthropogenic alkenes

What can HCHO tell us about Nocturnal Processes?

 Halogen-enhanced VOC oxidation should increase HCHO production

• HCHO *might* be a tracer for NO₃ oxidation of VOC

Fluxes

- Surface-atmosphere exchange is an important, but often poorly quantified, source/sink for trace gases
- Wavelet transforms offer a spatially-resolved advantage over traditional eddy covariance

Kim, Farmer and Bertram, PNAS (2014)

- OMI
 - HCHO
 - $-NO_2$
 - $-SO_2$
- TES
 - $-NH_3$
 - $-CH_3OH$
 - HCOOH

Agricultural Emissions?

Is the wintertime maximum in OMI NO_2 due to emissions (e.g. from winter wheat) or a retrieval artifact?

Laser-Induced Fluorescence (LIF)

The laser is continuously tuned between a large formaldehyde rotational transition and a nonresonant wavelength.

 $\Delta\lambda = 0.005 \text{ nm}$

The concentration of formaldehyde is proportional to the difference between the online and the offline signals.

Det. Limit: 36 ppt/s Accuracy: ±10%

In Situ Airborne Formaldehyde (ISAF)

Team HCHO

SUPPORT:

How does Chemistry Change when Trees Hibernate?

Wintertime HCHO precursors expected to be primarily anthropogenic alkenes