Measurements of NO, NO_{y} , O_3 on the C130 for WINTER

A. Weinheimer, D. Montzka, T. Campos

NO-NO_y-O₃

Two instruments integrated with one another:

- 2-channel chemiluminescence instrument for NO-NO_v
- 1-channel chemiluminescence instrument for O₃
- Occupy 1-1/2 GV racks.

Shared:

- Power distribution and power supplies
- Data acquisition system for control and recording
- Pump
- Inlet
- Zero Air
- Operator

NO-NO_y-O₃

The technique:

- Both instruments based on the chemiluminescence detection, employing the reaction of NO with O₃ to form excited NO₂.
- This NO₂ detected via photon counting using a dry-ice cooled PMT.
- To measure O3, reagent NO from a gas bottle is added to the sample flow of ambient air to produce the reaction.
- To measure NO, reagent O3 (from an) is added to the sample flow of ambient air to produce the reaction.
- To measure NO_y, the NO_y species are first converted to NO catalytically on a gold surface, and then detected as NO.

Nominal specifications:

- O₃: Precision (1-s) of < 0.1 ppbv at low mixing ratios; overall uncertainty of 5%.
- NO: Precision (1-s) of ~10 pptv at low mixing ratios; overall uncertainty of 10% at high.
- NO_y: Precision (1-s) of ~10 pptv at low mixing ratios; overall uncertainty of 20% at high.
- Data archived at 1 sec.

Current status:

- Are converting from NO-NO₂ configuration to NO-NO_v
 - Swap converters, NO_y vs. NO₂
 - Inlet pylon on belly, centerline, houses NO_y converter
 - Cal valves, etc., under floor
- Still significant work to do.

