

# HARP photolysis frequencies

Samuel Hall Kirk Ullmann











### HIAPER Airborne Radiation Package (HARP)

















# HARP Zenith (downwelling)

-

1

National Science Joundation Where Discoveries Begin

### HARP Nadir (upwelling)

T

### **HARP Actinic Flux Spectroradiometers**

#### Measurement

CCD detection of spectrally resolved up and downwelling actinic flux

### Calibrations

- NIST traceable absolute spectral sensitivity (primary lab, secondary field)
- Wavelength assignment (Hg and solar)
- Angular, azimuthal and effective plane
- Stray light characterization
- Radiative transfer model comparisons
- Chemical actinometer comparisons

#### Products

Photolysis frequencies calculated from cross-sections and quantum yields



| Wavelengths          | 280-680 nm (unfiltered)                               |
|----------------------|-------------------------------------------------------|
| Resolution           | ~1.8 nm FWHM at 297 nm                                |
| Precision            | 1-2% wavelength dependent                             |
| Spectral<br>Accuracy | 5% (UV-B), 3% (UV-A/VIS)<br>limited by NIST standards |
| Detection Limits     | ~0.04 mW/m2/nm at 300 nm                              |
| Data Rate            | 3-6 seconds                                           |



## **Aerosol Profile**





## $j [O_3 \rightarrow O_2 + O(^1D)]$ $j [NO_2 \rightarrow NO + O(^{3}P)]$ j [H<sub>2</sub>O<sub>2</sub> $\rightarrow$ 2OH] j [HNO<sub>2</sub> $\rightarrow$ OH + NO] $j [HNO_3 \rightarrow OH + NO_2]$ j [CH<sub>2</sub>O $\rightarrow$ H + HCO] $j [CH_2O \rightarrow H_2 + CO]$ j [CH<sub>3</sub>CHO $\rightarrow$ CH<sub>3</sub> + HCO] $j [C_2 H_5 CHO \rightarrow C_2 H_5 + HCO]$ j [CHOCHO $\rightarrow$ H<sub>2</sub> + 2CO] j [CHOCHO $\rightarrow$ CH2O + CO] j [CHOCHO $\rightarrow$ HCO + HCO] j [CH<sub>3</sub>COCHO $\rightarrow$ CH<sub>3</sub>CO + HCO] j [CH<sub>3</sub>COCH<sub>3</sub> $\rightarrow$ CH<sub>3</sub>CO + CH<sub>3</sub>] j [CH<sub>3</sub>OOH $\rightarrow$ CH<sub>3</sub>O + OH] $j [N_2O_5 \rightarrow NO_3 + NO_2]$ j [CH<sub>3</sub>ONO<sub>2</sub> $\rightarrow$ CH<sub>3</sub>O + NO<sub>2</sub>]

 $j [HO_2NO_2 \rightarrow HO_2 + NO_2]$ j [HO<sub>2</sub>NO<sub>2</sub>  $\rightarrow$  OH + NO<sub>3</sub>] j [CH<sub>3</sub>CO(OONO<sub>2</sub>)  $\rightarrow$  $CH_{3}CO(OO) + NO_{2}$ j [CH<sub>3</sub>CO(OONO<sub>2</sub>)  $\rightarrow$  $CH_3CO(O) + NO_3$ ] j [CH<sub>3</sub>COCH<sub>2</sub>CH<sub>3</sub>  $\rightarrow$  $CH_3CO + CH_2CH_3$ ] j [CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CHO  $\rightarrow$  $C_3H_7 + HCO]$ j [CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CHO  $\rightarrow$  $C_2H_4 + CH_2CHOH$ ] j [CH<sub>3</sub>CH<sub>2</sub>ONO<sub>2</sub>  $\rightarrow$  $CH_3CH_2O + NO_2$ ] j [Br<sub>2</sub>  $\rightarrow$  Br + Br] j [BrO  $\rightarrow$  Br + O] j [Br<sub>2</sub>O  $\rightarrow$  products] j [HOBr  $\rightarrow$  HO + Br]

j [BrONO<sub>2</sub>  $\rightarrow$  Br + NO<sub>3</sub>] j [BrONO<sub>2</sub>  $\rightarrow$  BrO + NO<sub>2</sub>] j [BrCl  $\rightarrow$  Br + Cl] j [Cl<sub>2</sub>  $\rightarrow$  Cl + Cl] j [CIO  $\rightarrow$  CI + O(<sup>3</sup>P)] j [CIONO<sub>2</sub>  $\rightarrow$  CI + NO<sub>3</sub>] j [CIONO<sub>2</sub>  $\rightarrow$  CIO + NO<sub>2</sub>] Recent Additions j [CINO<sub>2</sub>  $\rightarrow$  CI + NO<sub>2</sub>] j [CIONO  $\rightarrow$  CI + NO<sub>2</sub>] j [BrNO  $\rightarrow$  Br + NO] j [BrONO  $\rightarrow$  Br + NO<sub>2</sub>] j [BrONO  $\rightarrow$  BrO + NO] j [BrNO<sub>2</sub>  $\rightarrow$  Br + NO<sub>2</sub>] j [CHBr<sub>3</sub>  $\rightarrow$  Products] j [CH<sub>2</sub>=C(CH<sub>3</sub>)CHO  $\rightarrow$  Products] j [CH<sub>3</sub>COCH=CH<sub>2</sub>  $\rightarrow$  Products]

### Photolysis frequencies calculated from HARP actinic flux

# HARP Summary

- Measure spectrally resolved actinic flux density
- Calculate photolysis frequencies
- Photochemistry driver of daytime processes and evolution (ozone, NOx, halogens, HOx, VOCs, etc)
- Daytime/nightime transitions
- Aerosol and cloud impacts on photolysis
- Photolysis impacts on heterogeneous chemistry
- Excellent dark signal characterization