UNH water-soluble aerosol-associated ions

- We collect bulk aerosol onto teflon filters, aim for ~ 1-1.5 scm of air (UNH DC-8 and LaRC inlets efficiently transmit aerosol up to ~5 microns).
- Extract into ultrapure water for analysis by ion chromatography post flight.
- Data submission will be few days behind.

Relevance to WINTER objectives

- We will provide "total" ions, comparison to AMS and PILS will indicate when/where supermicron aerosol is significant.
- Particular interest in sea-salt Cl⁻, abundance of particulate NO₃⁻, and possible coarse NO₃⁻and SO₄⁼ relative to NH₄NO₃ and NH₄HSO₄/(NH₄)₂SO₄ (via absorption onto sea salt and/or dust).

In SEAC^4RS we collected ~ 870 Filters on 21 flights.

We were able to quantify $SO_4^=$ and NH_4^+ in essentially all samples, NO_3^- and $C_2O_4^=$ in vast majority.

Likewise, K⁺, Mg²⁺, and Ca²⁺ were above detection limit in most samples < 6 km, tailed off in upper trop.

Above 2 km Na⁺ was above detection limit for just 50% of the samples, and Cl⁻ and Br⁻ for just 30%.

For Na⁺ and Cl⁻ the issue is blank correction which can vary with filter lot, mixing ratios of Br⁻ are low (filters are clean).

