VOCALS Status Report

Robert Wood, University of Washington on behalf of the VOCALS Scientific Working Group

- Cold SSTs, coastal upwelling
- Cloud-topped ABLs
- Influenced by and influential on remote climates (ENSO)
- Poorly simulated by atmosphere-ocean GCMs
- Unresolved issues in heat and nutrient budgets
- Important links between clouds and aerosol

VOCALS Science Issues

- Atmospheric, oceanic, and coupled model biases and model improvement in the Southeast Pacific (SEP) and other subtropical cool-ocean regimes.
- SEP aerosol-cloud interaction; implications for aerosol indirect effect and regional climate.
- SST distribution and the ocean heat budget in the SEP.
- Role of South America and remote forcing from tropics and midlatitudes, on diurnal to interannual (ENSO) timescales.

A coupled problem

- Correct prediction of stratus properties is important for the correct prediction of the climate over the tropical warm pool
- connections with ITCZ through both ocean and atmosphere

SST Biases

Annual-mean SST biases in CCSM3 1990 control run (Collins et al. 2005)

VOCALS 3-Pronged Approach

- (1) MODELS: Diagnosis and advancement of atmosphere, ocean, and coupled regional and global model simulations of the SEP
- (2) EXTENDED OBSERVATIONS: Diagnostic studies of existing and targeted new observations in the SEP, coordinated between several research groups and feeding into the modeling activities.
- (3) FIELD PROGRAM: The VOCALS Regional Experiment (VOCALS-REx) field program.

(1) MODELS

- VOCALS Modeling Workshop to be held at NCEP, early summer (groups from NCEP, NCAR, GFDL, UCLA... y otros)
- Coordination with other activities and centers (CPT, Tropical Biases)
- Coordinated modeling proposals:
 - aerosol-cloud-precip-ocean interactions (Wang, Pullen, NRL and Liu, NASA) to NASA
 - coupled ocean-atmosphere (Mechoso, Liou, Wood) to NOAA CPPA/ACC

Mesoscale eddies - Regional Ocean Modeling

SEP stratocumulus in GCMs

Poor representation of the vertical structure of stratocumulus-topped boundary layers – improved parameterization central to improved global models

(2) EXTENDED OBSERVATIONS

- Buoy maintenance/PACS/EPIC cruises from 2001, 2003, 2004, 2005. Additional cruise planned for 2006
 - New measurements include aerosols (2003/2004, Texas A&M University) and improved cloud radar (Fairall)
- Continued high quality dataset from IMET buoy
- Automated meteorological observations from San Felix Island (Garreaud/Rutllant, U de Chile)
- Satellite datasets being analysed (Wood/Bretherton, U Washington) – Cloudsat/Calipso to be launched this week

Pollution plumes in the SE Pacific

- Chile is world's largest copper producer
- Copper smelting SO₂ emissions from Chile (1.5 TgS yr⁻¹) comparable to total SO₂ emissions in Germany
- 90% of Chilean SO₂ emissions from seven smelters!
- Andes mountains prevents eastward

The formation of pockets of open cells (POCs)

GOES thermal IR animation (images every 3 hours spanning 6 days)

(3) FIELD PROGRAM: VOCALS Regional Experiment (REx)

- Joint NOAA/NSF funded field program in October 2007 (or 2008?)
- Main platforms: NSF C-130, NOAA Ronald H Brown, Chilean and Peruvian research vessels
- Scientific Program Overview (SPO) and Experimental Design Overview (EDO) submitted to NSF for peer review January 2006 – expected response May/June 2006

VOCALS-REx Science Goals

AEROSOL-CLOUD-DRIZZLE GOALS

 Factors controlling the stratocumulus cloud thickness, cover, and optical properties over the SE Pacific

COUPLED OCEAN-ATMOSPHERE-LAND GOALS

 Physical and chemical links between the topography, coastal oceanic upwelling and the marine boundary layer

Status of VOCALS-REx 1

- Interagency briefing held in Washington DC in December. Well attended by NSF, NOAA and NASA
- Positive response from NOAA Climate (a call for VOCALS-related proposals will be made soon)
- NSF participation contingent upon outcome of peer review of SPO/EDO
- Chilean and Peruvian contributions (coastal cruises)
- NSF Chemistry interested in VOCALS but nothing definite as yet – coordination with other initiatives

Status of VOCALS-REx 2

- Interest of NSF OCE uncertain, but proposals from Weller and others submitted; Wijisekera to submit proposal for SeaSoar when second ship can be identified
- Huebert has NSF funds to study DMS fluxes on the Ronald H Brown
- Interest from NASA (remote sensing), but nothing definite. Will push this during 2006 (radiation conference). Proposal expected to use VOCALS-REx data for validation of satellite programs

VOCALS Open Ocean: Science and Logistics

Robert Wood, University of Washington on behalf of the VOCALS Scientific Working Group

- Cold SSTs, coastal upwelling
- Cloud-topped ABLs
- Influenced by and influential on remote climates (ENSO)
- Poorly simulated by atmosphere-ocean GCMs
- Unresolved issues in heat and nutrient budgets
- Important links between clouds and aerosol

SST Biases

Annual-mean SST biases in CCSM3 1990 control run (Collins et al. 2005)

Issues in ocean transports

Annual-mean heat flux **into** ocean ~ 30 W m⁻² at 1500 km offshore under persistent low cloud!

How is this net warming at the surface balanced by ocean heat transports?

Mesoscale ocean eddies?

Bandpassed satellite-derived sea-surface height and temperature meridionally averaged from 18-22°S. Note anomalies propagating westward at 5-10 cm s-1 (S-P Xie).

Cloud and MBL issues

- Sharp transitions between overcast stratocumulus and open cellular convection
- Pockets of open cells (POCs) form spontaneously – prefer to form in clean clouds

Structural properties of precipitating stratocumulus

50% of the accumulated precipitation comes from rain rates > 9 mm day⁻¹, but originates from only 3% of the area

Can drizzle affect MBL dynamics?

Open cells associated with drizzle (EPIC 2001)

POCs prefer to form at night

GOES IR (left) and 11-3.7 μm brightness temperature difference (right)

Aerosol issues in SEP

- SO₂ from volcanoes

- Locations and strengths of sources of natural and anthropogenic aerosols and precursors
- Regional distribution of aerosol. Relative contribution of anthropogenic and natural sources
- Effects of aerosol on micro and macrophysical cloud properties

DMS, biogeochemistry

Error in TOA net SW radiation (W m⁻²) caused by assumption of constant cloud droplet effective radius (here assumed to be 15 microns)

Diurnal subsidence waves

VOCALS-Regional Experiment (VOCALS-REx) Science Goals

AEROSOL-CLOUD-DRIZZLE GOALS

 Factors controlling the stratocumulus cloud thickness, cover, and optical properties over the SE Pacific

COUPLED OCEAN-ATMOSPHERE-LAND GOALS

Physical and chemical links between the topography, coastal oceanic upwelling and the marine boundary layer

AEROSOL-CLOUD-DRIZZLE GOALS

- Determining the impact of the physicochemical properties of aerosols upon the formation of drizzle in stratocumulus clouds over the SE Pacific.
- Examining the role of drizzle in the formation of pockets of open cells (POCs) within stratocumulus clouds.
- Determining the importance of anthropogenic and natural sources of cloud condensation nuclei (CCN).
- Assessing whether coalescence scavenging is

COUPLED OCEAN-ATMOSPHERE-LAND GOALS

- Examining the mechanisms by which heat and fresh water are transported from coastally upwelled water to regions further offshore.
- Studying links between coastal upwelling, upper ocean biogeochemistry, and the atmospheric sulfur budget.
- Improving understanding of how diurnal subsidence waves originating on the Andes slopes propagate over the SE Pacific Ocean.

VOCALS Regional Experiment VOCALS-REX

An international field experiment designed to better understand physical and chemical processes central to the coupled climate system of the Southeast Pacific

(SFP)

- Cold SSTs, coastal upwelling
- Cloud-topped boundary layers
- Influenced by and influential on remote climates (ENSO)
- Poorly simulated by coupled atmosphere-ocean GCMs
- Unresolved issues in ocean heat and nutrient budgets
- Important links between clouds and aerosol

VOCALS-REx Science Goals

AEROSOL-CLOUD-DRIZZLE GOALS

- Determining the impact of the physicochemical properties of aerosols upon the formation of drizzle in stratocumulus clouds over the SE Pacific.
- Examining the role of drizzle in the formation of pockets of open cells (POCs) within stratocumulus clouds.
- Determining the importance of anthropogenic and natural sources of cloud condensation nuclei (CCN).
- Assessing whether coalescence scavenging is necessary to maintain POCs.

COUPLED OCEAN-ATMOSPHERE-LAND GOALS

- Examining the mechanisms by which heat and fresh water are transported from coastally upwelled water to regions further offshore.
- Studying links between coastal upwelling, upper ocean biogeochemistry, and the atmospheric sulfur budget.
- Improving understanding of how diurnal subsidence waves originating

Motivation

- Marine stratocumulus clouds have a profound impact on the earth's radiation budget
- Factors determining the coverage and thickness of stratocumulus over the world's oceans remain poorly understood. Important unresolved aspects of this problem include
 - Transitions from closed to open mesoscale cellular convection
 - The role of precipitation
 - The importance of aerosols

Shallow convection modes in the subtropical MBL

Wood and Hartmann, J. Clim., in press

Cloud cover associated with of different convection modes

Over large regions of the subtropical oceans, a significant fraction of the synoptic variability in cloud fraction can be explained by variability of the mode of shallow convection (open vs closed MCC)

The formation of pockets of open cells (POCs)

GOES thermal IR animation (images every 3 hours spanning 6 days) Last Pacific Investigation of Climate (2001)

scanning C-band radar

GOES IR (left) and 11-3.7 μm brightness temperature difference (right)

POCs prefer to form at night

Microphysics and drizzle production

Pollution plumes in the SE Pacific

- Chile is world's largest copper producer
- Copper smelting SO₂ emissions from Chile (1.5 TgS yr⁻¹) comparable to total SO₂ emissions in Germany
- 90% of Chilean SO₂ emissions from seven smelters!
- Andes mountains prevents eastward

Aerosols and cloud morphology

- Pockets of open cells (POCs) are strongly drizzling and almost completely depleted of cloud forming aerosols
- Highly suggestive of strong links between cloud microphysical and macrophysical structure

Conceptual model of POC formation

Coalescence and CCN depletion

Loss rate of CCN number concentration through coalescence

∝LWP ²

Steady-state aerosol model

Assumptions:

- 1. Wind-driven sea-salt production and entrainment of 100 cm⁻³ from free-troposphere are only aerosol sources.
- 2. Coalescence scavenging is the only loss term
- 3. Examine steady state solution for CCN concentration

Conclusions

- Transition from closed to open cellular convection is a major contributor to the variability in cloud cover (and albedo) over the SE Pacific Ocean
- Transition appears to be intimately related to drizzle formation and tends to be accompanied by strong depletion of CCN
- Because drizzle depletes CCN, it is suggested that large regions of stratocumulus over the remote oceans may be microphysically unstable. Aerosol loss rates can exceed production rates => positive feedback that results in POC formation and transition to open cells