The VOCALS Assessment (VOCA)

Matt Wyant, Chris Bretherton, Rob Wood
Department of Atmospheric Sciences
University of Washington

Scott Spak, U. Iowa (Emissions)

VOCA modeling groups (without which there’s nothing to say)
Pre-VOCA compared 15 regional, weather forecast, and climate models (in forecast mode) for October 2006 in the VOCALS region.

- Many models had large errors in distribution of low cloud cover, though ECMWF and UKMO performed well.
- Most models produced a marine BL too shallow near the coast at 20°S.
- Most models qualitatively captured diurnal and day-to-day variability of the cloud and BL despite mean biases.
- Global models outperformed most regional models.
The VOCALS Assessment (VOCA): Motivations

• Make use of extensive REx in-situ aircraft/ship datasets
• Emphasize chemical/aerosol transport, cloud-aerosol interaction.
• Do models simulate the variation of droplet concentration N_d along 20S?
• Is anthropogenic sulfate the main contributor to geographic N_d variation?
• What controls N_d in remote ocean regions?
• What is the simulated indirect effect due to anthropogenic aerosols perturbing clouds and net TOA radiative flux in the VOCALS domain?
VOCA Overview

- Similar protocol to PreVOCA.
- Aerosol Species: \(\text{SO}_4 \), sea salt, dust, black carbon, organic carbon
- Gas Species: \(\text{SO}_2 \), DMS, CO, \(\text{O}_3 \)
- Emissions of aerosol and gas species are specified in a standard protocol for regional models.
- Compare aerosol and gas concentrations to in-situ measurements.
- Compare cloud-top effective radius with satellite.
- Geoengineering experiment: Set \(N_d = 375 \text{ cm}^{-3} \) everywhere.
- Initial results are coming in now.
Participating Models

<table>
<thead>
<tr>
<th>Center or Group</th>
<th>Model</th>
<th>(Regional or Global)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNNL</td>
<td>WRF-Chem</td>
<td></td>
</tr>
<tr>
<td>U. Iowa</td>
<td>WRF-Chem</td>
<td></td>
</tr>
<tr>
<td>ECMWF</td>
<td>ECMWF CY33r1</td>
<td></td>
</tr>
<tr>
<td>UK Met Office</td>
<td>UKMO</td>
<td></td>
</tr>
<tr>
<td>NCAR</td>
<td>CAM4 and CAM5</td>
<td></td>
</tr>
<tr>
<td>GFDL</td>
<td>AM 3p9</td>
<td></td>
</tr>
<tr>
<td>UW</td>
<td>COSMO</td>
<td></td>
</tr>
<tr>
<td>UCLA</td>
<td>WRF-ROMS</td>
<td></td>
</tr>
<tr>
<td>UCSD</td>
<td>RSM (coupled)</td>
<td></td>
</tr>
<tr>
<td>COLA</td>
<td>RSM</td>
<td></td>
</tr>
<tr>
<td>IPRC</td>
<td>iRAM</td>
<td></td>
</tr>
<tr>
<td>NRL</td>
<td>COAMPS</td>
<td></td>
</tr>
<tr>
<td>UCLA</td>
<td>UCLA AGCM</td>
<td></td>
</tr>
<tr>
<td>LMD</td>
<td>LMDZ</td>
<td></td>
</tr>
<tr>
<td>UWiscM</td>
<td>WRF-CLUBB</td>
<td></td>
</tr>
</tbody>
</table>
Monthly-mean results (16 Oct – 15 Nov 2008)

Low cloud fraction

[Various models' data visualizations showing cloud fraction maps across different regions]
Liquid water path [g m$^{-2}$]
In-situ on 20S: 0.1-0.5 mm/d at 80-85W, negligible at 70-75W (Breth et al. 2010).
Specified aerosols

ECMWF1 Low Cloud

Interactive aerosols

ECMWF2 Low Cloud

ECMWF1 LWP [g m\(^{-2}\)]

ECMWF2 LWP [g m\(^{-2}\)]
Mean 20S cloud fraction cross-section

Bretherton et al. 2010

Inv too low at coast: CAM5, GFDL, UKMO

Inv somewhat low offshore: GFDL, CAM5
Mean 20S sulfate cross-sections

PNNL AERO SO4, kg/kg

UKMO AERO SO4, kg/kg

ECMWF 2 outer SO4, kg/kg

GFDL AERO SO4, kg/kg

CAM5 SO4, kg/kg

Boundary layer

PNNL, ECMWF good

FT obs

Allen 2011
Mean 20S sea-salt cross-sections

- Do we have suitable VOCALS observations?
- Caveat: number is as important as mass.
Mean 20S DMS cross-sections

PNNL AERO DMS, kg/kg

GFDL AERO DMS, kg/kg

CAM5 DMS, kg/kg

PNNL much too high, CAM5 and GFDL somewhat high
Caveat: observations don’t cover the diurnal cycle
Mean 20S CCN (0.1\%) cross-sections

Model CCNs mostly too low near coast (except UKMO). GFDL too low everywhere.
Mean 20S N_d cross-sections

Huge differences
- GFDL very low,
- CAM and PNNL have strange profiles,
- UKMO may include clear air

Surprisingly different from CCN fields

Is model output really the mean in-cloud N_d?
Temporal variability

Models pick up pollution peaks associated with offshore flow, but mean biases are overwhelming (except PNNL).
Conclusions

• VOCA is a stringent observational test of model-simulated clouds and aerosol-cloud interaction in SE Pacific.
• Results presented here are still preliminary!
• The comprehensive REx dataset indicates a diverse set of parameterization issues in all models, hopefully pointing the way to an intensive phase of model improvement.
Emissions Inventory (Scott Spak)

- SO$_2$, VOCs, CO
- CONAMA Chilean Inventory point sources, municipal mobile, residential sources
- SO$_2$ Peruvian smelters and volcano estimates from OMI PBL SO$_2$
- Inclusion of daily biomass emissions using MODIS detection of fires from C. Wiedinmyer is being investigated.
SO$_2$ Point Sources

mt/year

- 10^6
- 10^5
- 10^4
- 10^3
- 10^2
- 10
VOCALS: A CLIVAR study of SE Pacific cool ocean/Sc region.

REx: Large field expt off N Chile - Oct.-Nov. 2008
- cloud/aerosol/land interactions
- role of mesoscale ocean eddies