From LWP to COT: \(k\) coefficient

Jean-Louis Brenguier
Frédéric Burnet and Olivier Geoffroy

Météo-France / CNRS

CNRM-GAME

Experimental and Instrumental Research Group
Parameterization of Cloud Radiative Transfer in GCM

Cloud Module \Rightarrow LWP
Aerosol Module \Rightarrow N_{act} \Rightarrow COT

\Rightarrow Radiative transfer module
Parameterization of Cloud Radiative Transfer in GCM

\[W = \frac{4}{3} \pi \rho_w \int_0^H N(h) r_3^3(h) dh = \frac{4}{3} \pi \rho_w \int_0^H M_3(h) dh \]

\[\tau = \int_0^H \pi Q_{ext} \left(\bar{x} \right) N(h) r_2^2(h) dh = \int_0^H \pi Q_{ext} \left(\bar{x} \right) M_2(h) dh \]

\[k = \left(\frac{r_2}{r_3} \right)^6 = \left(\frac{r_3}{r_e} \right)^3 \]

Martin et al. 1994

\[\tau = A(kNH)^{1/3} W^{2/3} \quad \text{or} \quad r_e = \left(\frac{3W}{4\pi \rho_w kNH} \right)^{1/3} \]

\[k = M_2^3 / N M_3^2 \]
During the course of this work it was found that the most suitable parameterization for effective radius of droplets in layer clouds is

\[
 r_e [\mu m] = 10^3 \left(\frac{3L \text{ [g m}^{-3}] }{4 \pi \rho_w k N_{\text{TOT}} \text{ [cm}^{-3}] } \right)^{1/3}, \tag{14}
\]

where the values of \(k \) and \(N_{\text{TOT}} \) are

(i) in maritime airmasses:

\[
 k = 0.80 \pm 0.07 \quad (1 \text{ standard deviation})
\]

\[
 N_{\text{TOT}} = -1.15 \times 10^{-3} A^2 + 0.963 A + 5.30, \tag{15}
\]

where \(A \) is the aerosol concentration in the range \(36 \leq A \leq 280 \text{ cm}^{-3} \) and

(ii) in continental air masses:

\[
 k = 0.67 \pm 0.07 \quad (1 \text{ standard deviation})
\]

\[
 N_{\text{TOT}} = -2.10 \times 10^{-4} A^2 + 0.568 A - 27.9 \tag{16}
\]

Chen et al. Global climate response to anthropogenic aerosol indirect effects: Present day and year 2100. J. Geophys. Res.
<table>
<thead>
<tr>
<th>Project</th>
<th>Location</th>
<th>Aircraft</th>
<th>Date</th>
<th>Flight</th>
<th>Cloud type</th>
<th>F-100 15 cm</th>
<th>F-100 40 cm</th>
<th>Fast-F</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCMS</td>
<td>Florida</td>
<td>C-130</td>
<td>22/07/95</td>
<td>RF04</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>SCMS</td>
<td>Florida</td>
<td>C-130</td>
<td>24/07/95</td>
<td>RF05</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>SCMS</td>
<td>Florida</td>
<td>M-IV</td>
<td>04/08/95</td>
<td>me05</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>SCMS</td>
<td>Florida</td>
<td>M-IV</td>
<td>05/08/95</td>
<td>me06</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>SCMS</td>
<td>Florida</td>
<td>M-IV</td>
<td>06/08/95</td>
<td>me07</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>SCMS</td>
<td>Florida</td>
<td>M-IV</td>
<td>07/08/95</td>
<td>me08</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>SCMS</td>
<td>Florida</td>
<td>M-IV</td>
<td>08/08/95</td>
<td>me09</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>SCMS</td>
<td>Florida</td>
<td>M-IV</td>
<td>09/08/95</td>
<td>me10</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>SCMS</td>
<td>Florida</td>
<td>M-IV</td>
<td>10/08/95</td>
<td>me11</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>SCMS</td>
<td>Florida</td>
<td>M-IV</td>
<td>11/08/95</td>
<td>me12</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>SCMS</td>
<td>Florida</td>
<td>M-IV</td>
<td>12/08/95</td>
<td>me13</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>ACE2</td>
<td>Canary islands</td>
<td>M-IV</td>
<td>25/06/97</td>
<td>me20</td>
<td>Sc</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>ACE2</td>
<td>Canary islands</td>
<td>M-IV</td>
<td>26/06/97</td>
<td>me21</td>
<td>Sc</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>ACE2</td>
<td>Canary islands</td>
<td>M-IV</td>
<td>08/07/97</td>
<td>me28</td>
<td>Sc</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>ACE2</td>
<td>Canary islands</td>
<td>M-IV</td>
<td>09/07/97</td>
<td>me30</td>
<td>Sc</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>ACE2</td>
<td>Canary islands</td>
<td>M-IV</td>
<td>16/07/97</td>
<td>me31</td>
<td>Sc</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>ACE2</td>
<td>Canary islands</td>
<td>M-IV</td>
<td>17/07/97</td>
<td>me33</td>
<td>Sc</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>ACE2</td>
<td>Canary islands</td>
<td>M-IV</td>
<td>18/07/97</td>
<td>me34</td>
<td>Sc</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>ACE2</td>
<td>Canary islands</td>
<td>M-IV</td>
<td>19/07/97</td>
<td>me35</td>
<td>Sc</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>DYCOMS-II</td>
<td>northeast Pacific</td>
<td>C-130</td>
<td>13/07/01</td>
<td>RF03</td>
<td>Sc</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>DYCOMS-II</td>
<td>northeast Pacific</td>
<td>C-130</td>
<td>24/07/01</td>
<td>RF07</td>
<td>Sc</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>DYCOMS-II</td>
<td>northeast Pacific</td>
<td>C-130</td>
<td>25/07/01</td>
<td>RF08</td>
<td>Sc</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>DYCOMS-II</td>
<td>northeast Pacific</td>
<td>C-130</td>
<td>27/07/01</td>
<td>RF09</td>
<td>Sc</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>RICO</td>
<td>Caribbean</td>
<td>C-130</td>
<td>16/12/04</td>
<td>RF06</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>RICO</td>
<td>Caribbean</td>
<td>C-130</td>
<td>17/12/04</td>
<td>RF07</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>RICO</td>
<td>Caribbean</td>
<td>C-130</td>
<td>19/12/04</td>
<td>RF08</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>RICO</td>
<td>Caribbean</td>
<td>C-130</td>
<td>20/12/04</td>
<td>RF09</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>RICO</td>
<td>Caribbean</td>
<td>C-130</td>
<td>07/01/05</td>
<td>RF10</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>RICO</td>
<td>Caribbean</td>
<td>C-130</td>
<td>11/01/05</td>
<td>RF11</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>EUCAARI</td>
<td>Netherlands</td>
<td>ATR-42</td>
<td>13/05/08</td>
<td>as49</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>EUCAARI</td>
<td>Netherlands</td>
<td>ATR-42</td>
<td>14/05/08</td>
<td>as50</td>
<td>Cu</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>EUCAARI</td>
<td>North Sea</td>
<td>ATR-42</td>
<td>15/05/08</td>
<td>as51</td>
<td>Sc</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>EUCAARI</td>
<td>North Sea</td>
<td>ATR-42</td>
<td>15/05/08</td>
<td>as52</td>
<td>Sc</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
The FSSP-100 provides accurate measurements of the mean droplet diameter, but it significantly overestimates the width of the spectrum, hence underestimates the k coefficient. This is especially true when droplets are smaller, i.e. in high concentration clouds.
Instrumental Biases

- **Fast 5.2-38.4µm**
- **FSSP 2.6-52µm**
- **SCMS-1995**
 - C130-FSSP & Fast-FSSP
- **FSSP 5.2-52µm**

- **Fast 5.9-43.8µm**
- **SPP 1-47µm**
- **DYCOMS-2001**
 - C130-SPP/Fast-FSSP
- **SPP 5.5-43.5µm**

k ratio vs **Fast-FSSP MVD (µm)**
Results
During the course of this work it was found that the most suitable parameterization for effective radius of droplets in layer clouds is

\[r_e \, [\mu m] = 10^3 \left(\frac{3L \, [g \, m^{-3}]}{4\pi \rho_w k N_{TOT} \, [cm^{-3}]} \right)^{1/3}, \]

(14)

where the values of \(k \) and \(N_{TOT} \) are

(i) in maritime airmasses:

\[k = 0.80 \pm 0.07 \] (1 standard deviation)

\[N_{TOT} = -1.15 \times 10^{-3} A^2 + 0.963 A + 5.30, \]

(15)

where \(A \) is the aerosol concentration in the range \((36 \leq A \leq 280 \, cm^{-3}) \) and

(ii) in continental air masses:

\[k = 0.67 \pm 0.07 \] (1 standard deviation)

\[N_{TOT} = -2.10 \times 10^{-4} A^2 + 0.568 A - 27.9 \]

(16)

When entrainment effects become important, the relationship between \(r_e \) and \(r_v \) breaks down and such data have been ignored in the analysis.
K coefficient and sub-adiabaticity

\[k' = 0.872, \quad <k> = 0.858 \pm 0.052 \]
\[<N> = 107.3 \pm 67.91, \quad N_{act} (p_{98^{th}}) = 240.0 \text{ cm}^{-3} \]
\[<q_l/q_{lAd}> = 0.363 \pm 0.260, \quad N_{data} = 252.0 \]
Vertical Integration

\[W = \frac{4}{3} \pi \rho_w \int_0^H N(h) r_3^3(h) dh = \frac{4}{3} \pi \rho_w \int_0^H M_3(h) dh \]

\[\tau = \int_0^H \pi Q_{\text{ext}}(\bar{x}) N(h) r_2^2(h) dh = \int_0^H \pi Q_{\text{ext}}(\bar{x}) M_2(h) dh \]

\[\tau = A(kNH)^{\frac{1}{3}} W^{\frac{2}{3}} \quad \text{with} \quad k = \frac{M_3}{N M_3} \]

Is true only in vertically uniform clouds!
Vertical Integration

In convective clouds, that are vertically stratified, with LWC increasing from cloud base to top: $q_c = C_w h$

$$k^* = \left| M_2 \right|^3 / \left| N \right| | M_3 |^2,$$ where $|x| = \int_0^H x(h) dh$.

Assuming k is constant throughout the cloud, $r_2^2 = k^{\frac{1}{3}} \alpha^{\frac{2}{3}} h^{\frac{2}{3}}$, where $\alpha = C_w / (4/3 \pi \rho_w)$.

It follows that $|M_2| = 3/5 k^{\frac{1}{3}} \alpha^{\frac{2}{3}} NH^{\frac{5}{3}}$, and $|M_3| = 1/2 \alpha N H^2$, and finally:

$$k^* = \left(\frac{3}{5} \right)^3 \left(\frac{1}{2} \right)^{-2} k = 0.864 k$$
Results

\[k^* = \frac{|M_2|^3}{|N||M_3|^2} \]

\(\langle N \rangle \) (cm\(^{-3}\))
Parameterization of Cloud Radiative Transfer in GCM

Cloud Module \Rightarrow LWP
Aerosol Module \Rightarrow N_{act}

\Rightarrow
Radiative transfer module
COT & N

But $N \neq N_{\text{act}}$
because of entrainment-mixing
Results

\[\frac{N}{N_{\text{act}}} = 0.81 \pm 0.09 \text{ in Sc} \]

\[\frac{N}{N_{\text{act}}} = 0.46 \pm 0.08 \text{ in shallow Cu} \]
Entrainment and mixing: Conceptual Model

Inhomogeneous

Key Parameters (Baker et al., 1979)
- droplet life time: $\tau_d = -(d^2 / AS)$

Homogeneous

- turbulent homogeneity: $\tau_T = (X^2/\varepsilon)^{1/3}$

Key Parameters:
- droplet life time: $\tau_d = -(d^2 / AS)$
- turbulent homogeneity: $\tau_T = (X^2/\varepsilon)^{1/3}$

Graphs showing the relationship between normalized mean volume diameter (d_v) and normalized concentration for both inhomogeneous and homogeneous cases.
Entrainment and mixing: Case Studies

\[
\frac{\tau_d}{\tau_T} = 6.6
\]

SCMS Cu

\[
\frac{\tau_d}{\tau_T} = 1.9
\]

SCMS Cu

\[
\frac{\tau_d}{\tau_T} = 0.05
\]

DYCOMS-II Sc

Burnet & Brenguier, JAS 2006

J. L. Brenguier, Météo-France CNRS

CNRM/GAME

VOCALS - Miami - 21/03/2011
Conclusion

\[\tau = A (k_{act}^* N_{act} H)^{1/3} W^{2/3} \]

where \(k_{act}^* = k^* \frac{N}{N_{act}} \)

\(\frac{N}{N_{act}} = 0.81 \pm 0.09 \) in stratocumulus clouds

\(\frac{N}{N_{act}} = 0.46 \pm 0.08 \) in shallow cumuli

\(k_{act}^* = 0.73 \times 0.81 = 0.59 \) in stratocumulus clouds

\(k_{act}^* = 0.73 \times 0.46 = 0.34 \) in shallow cumuli
Thank you for your attention.
Key Parameters:

- **Droplet life time**
 \[\tau_d = - \left(\frac{d^2}{AS} \right) \]

- **Turbulent homogenisation**
 \[\tau_T = \left(\frac{X^2}{\varepsilon} \right)^{1/3} \]

Table: Entrainment and mixing: Case Studies

<table>
<thead>
<tr>
<th></th>
<th>DYCOMS-RF03</th>
<th>SCMS-me9506</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>- 0.7</td>
<td>- 0.7</td>
</tr>
<tr>
<td>d</td>
<td>15 µm</td>
<td>30 µm</td>
</tr>
<tr>
<td>(\tau_d)</td>
<td>0.8 s</td>
<td>3.2 s</td>
</tr>
<tr>
<td>w</td>
<td>0.5 m/s</td>
<td>5 m/s</td>
</tr>
<tr>
<td>T_c</td>
<td>12.3 C</td>
<td>14.1 C</td>
</tr>
<tr>
<td>q_{lc}</td>
<td>0.7 g/kg</td>
<td>3.4 g/kg</td>
</tr>
<tr>
<td>T_e</td>
<td>16.2 C</td>
<td>20.0 C</td>
</tr>
<tr>
<td>q_{ve}</td>
<td>5 g/kg</td>
<td>4 g/kg</td>
</tr>
<tr>
<td>N</td>
<td>350 cm⁻³</td>
<td>250 cm⁻³</td>
</tr>
<tr>
<td>P</td>
<td>950 hPa</td>
<td>750 hPa</td>
</tr>
</tbody>
</table>