Coupled vs. Decoupled Boundary Layers in VOCALS-REx

Chris Jones and Chris Bretherton
Department of Atmospheric Sciences
University of Washington

Dave Leon
Department of Atmospheric Sciences
University of Wyoming

http://www.atmos-chem-phys-discuss.net/11/8431/2011/
Two decoupling criteria

Profiles: $\Delta q = q_t (<0.25z_i) - q_t (0.75-1z_i) > 0.5 \text{ g kg}^{-1}$

Coupled

Decoupled

Subcld legs: $\Delta z_b = \text{Leg-mean lidar } z_b - \text{LCL} > 100 \text{ m}$
Decoupling correlates with well-mixed cloud thickness

...as does drizzle, but causality unclear.
Bretherton and Wyant (1997) suggested stronger latent heat fluxes should promote decoupling – not seen in our results.
Decoupling not correlated with inversion jumps

• Lock (2009) and others have suggested high values of
 \[\kappa = 1 + c_p \Delta \theta / L \Delta q_t \]
 induce strong entrainment and Sc cloud breakup.
 Strong entrainment might also favor decoupling.

• Use REx C-130 profiles to calculate jumps/decoupling, adjacent
 subcloud legs to calculate cloud fraction.

• \(\kappa > 0.4 \) often (but not always) goes with broken cloud.
• For \(\kappa < 0.5 \) there is no obvious correlation of \(\kappa \) and decoupling.
• POC and non-POC distributions overlap