VOCALS Quadrupole Aerosol Mass Spectrometer

Preliminary Results

Lelia Hawkins, Scripps Institution of Oceanography

On board: Dave Covert, University of Washington
Derek Coffman, Pacific Marine Environmental Laboratory
Catherine Hoyle, University of Washington

Ashore: Lynn Russell, Scripps Institution of Oceanography
Timothy Bates, Pacific Marine Environmental Laboratory
Patricia Quinn, Pacific Marine Environmental Laboratory
Accumulation mode composition

- 15 minute averages
- Sulfate dominates accumulation mode mass
- Very low organic aerosol concentrations
- Radon increase indicates SEP MBL had recent land contact

Possible drizzle and open cell pattern - Matt Miller

Entering Peruvian EEZ

On station at WHOI buoy

Instrument background

On station at DART buoy
Coastal Influences on SO_4 and OM

- Near shore samples are roughly double the concentrations of sulfate and organics.
- Stronger off-shore winds brought increased mass (marked by arrows) from land sources (e.g. copper smelters and fossil fuel combustion).
Diurnal cycle of sulfate: boundary layer mixing, production, or advection

Local time
Summary and Remaining Questions...

- Accumulation mode is dominated by sulfate. Organics are rarely much above instrumental noise.
- Concentrations are higher closer to shore.
- Radon variability (as a proxy for continental influence on air mass) roughly correlates with AMS measured aerosol mass.
- For short periods, diurnal trend in SO$_4$ is clear.

- How does the chemistry of the smaller particles (below 50 nm, not measured by AMS) differ from the accumulation mode (50 nm - 1000 nm)?
- How does aerosol chemistry differ inside and outside Pockets of Open Cells (POCs)?
- What roles do boundary layer height, mixing, and advection play in the particulate sulfate concentration?
- Is continental (anthropogenic) air the major source of accumulation mode particles to the SEP?

Thank You!