On the origin of the high levels of BrO in the tropical free troposphere

Why study tropospheric halogens?

Why care about tropospheric ozone?

- Green house gas
- OH precursor
- Oxidant
- Air pollutant

Fig. 3 of Mickley et al. (2004): Change in forcing due to uniform 18 ppb increase to pre-industrial tropospheric ozone.

Br plays a major role in the Hg cycle

- Atomic Br is thought to be the major oxidant of Hg(0) to Hg(II) in the atmosphere (Goodsite et al., 2004, 2012; Dibble et al., 2012)
- Hg(II) is more water soluble than Hg(0) and therefore more readily deposited to land and ocean: a better understanding of [BrOx] will improve our ability to predict the spatial distribution of Hg deposition
- Observations suggest greater Hg oxidation and higher [Hg(II)] in UTLS (Lyman and Jaffe, 2011; Horowitz et al., in prep.) than the current GEOSChem model estimate: higher [BrOx] than is currently in the model UTLS could reconcile this
- Greater Hg oxidation from higher [BrOx] aloft could also improve the model's low Hg deposition bias in deep convection areas (Soerensen et al., in prep.)

GEOS-Chem modeled Hg(II) deposition: oxidation by Br & TOMCAT BrOx fields

Holmes et al., 2010 μg m⁻² a⁻¹

Lower stratosphere Hg – CARIBIC (2005 – 2011) vs. GEOS-Chem

Slide prepared by Hannah Horowitz (2014)

The GEOS-Chem bromine scheme: Sources, Sinks and Partitioning

GEOS-Chem underestimates the tropospheric BrO column

Large Uncertainties on the observations. But general LOW-BIAS in the GC

GEOS-Chem underestimates BrO in the free troposphere

GEOS-Chem underestimates BrO in the free troposphere

GC underestimates the OMI BrO column of the tropics ...

Figure by Qing Liang (2013)

... and there is no seasonality in the deviation in the tropics

Figure by Qing Liang (2013)

GC underestimates BrO in the MBL

Why is GC underestimating BrO?

- Sources
- Sinks
- Partitioning

Why is GC underestimating BrO?

Organobromines in GEOS-Chem

(Q. Liang et al (2010))

Global source strength in Gg Br/yr

Other = CHBrCl2, CHBr2Cl, CH2BrCl (Est. from WMO Ozone report)

model CHBr, mixing ratios agree well with observations on a global scale

[CHBr_o] / ppt

TORERO TOGA CHBr₃ observations compared to GEOS-Chem

TORERO TOGA observations vs. Model output from GC v9-02

CHBr₃ emission fields

Q. Liang et al (2010)

C. Keller (2014)

- Emission for Jan. 2012
- Inversion
- SST, Chl-a, forest, coast
- HalOcAt dataset

TORERO VSLH CHBr₃ observations compared to GEOS-Chem

TORERO VSLH (ship) observations vs. Model output from GC v9-02

GC CHBr₃ mixing ratios in E. Pacific agree well with observations

HIPPO #1 aircraft observations vs. Model output from GC v9-02

Comparison of TORERO TOGA CH₂Br₂ observations to GEOS-Chem

TORERO TOGA observations vs. Model output from GC v9-02

The SSA bromine source

SSA bromine activation

Why is GC underestimating BrO?

Sink strength from Parrella et al (2012)

Why is GC underestimating BrO?

- Sources
- Sinks
- Partitioning

Is GC underestimating the recyling of HBr or HOBr?

Yes, key heterogeneous processes are missing

The kinetics of heterogeneous reactions is parametrized by the reac. uptake coef. (γ)

$$X(g) \xrightarrow{het} X(s)$$
 $X(g) \xrightarrow{het} X(aq)$
 $X(g) \xrightarrow{het} products$ $X(g) + Y \xrightarrow{het} products$

rate =
$$d[X(g)]/dt = -\gamma (c_{avg}/4)$$
 [Surf area] [X(g)]

- · Prob. to reactive uptake coefficient (γ)
- · Prob. to surface area concentration
- Prob. to concentration of X(g)
- No explicit dependence on Y!

The reac. uptake coef. is determined by the "bottleneck" of the heterogeneous reaction

Reaction involves several steps, e.g,

- 1) Diffusive to surface
- 2) Uptake on/into particle
- 3) Reaction in condensed phase

$$1/\gamma = 1/\Gamma_{diff} + 1/\gamma'$$

$$\Gamma_{\text{diff}} = 4 D_g / (c_{\text{avg}} r)$$

$$D_{g} \approx 3 (k_{B}T / (2\pi\mu_{X-air}))^{1/2} / (8 n_{air} \sigma_{X-air}^{2})$$

1st approximation of Chapman-Enskog

 $\Gamma_{\text{diff}} \sim 0.2$ @ 1bar but sensitive to n_{air} and r

rate = -
$$\gamma$$
 (c_{avg}/4) [Surf area] [X(g)]

$$[X(g)] \ge [X(IF)]$$

The reac. uptake coef. for reactions in the bulk liquid phase

$$X(g) + Y(aq)$$
 products

rate = - γ (c_{avg}/4) [Surf area] [X(g)]

Two possible bottlenecks:

- 1) Uptake into bulk
- 2) Reaction in bulk

$$1/\gamma' = 1/\alpha_b + 1/\Gamma_b$$

$$\Gamma_b = 4 H_X R T (D_I k_b [Y(aq)])^{1/2} \beta / c_{avg}$$

$$\beta = \coth(r/I) - (I/r)$$

$$I = D_{l} / (k_{b} [Y(aq)])$$

The uptake coef. for reactions on surfaces: Two mechanisms

rate = - γ (c_{avg}/4) [Surf area] [X(g)]

$$X(g) + Y(s)$$
 products

Eley-Rideal (ER) mechanism

$$X(g) + Y(s) \longrightarrow products$$

$$\gamma' = \gamma_X \theta_y$$

- Prob. to some intrinsic reaction probability
- Prob. to surface coverage of Y
- Does not depend surface uptake coef. (α_s)

Langmuir-Hinshelwood (LH) mechanism

1)
$$X(g) \longrightarrow X(s)$$

2)
$$X(s) + Y(s) \longrightarrow products$$

$$1/\gamma' = 1/\alpha_s + 1/\Gamma_s$$

$$\Gamma_s = k_s[X(s)][Y(s)] 4/(c_{avg}[X(g)])$$

- Prob. to surface concentrations
- "4/(c_{avq}[X(g)])" cancels out
- Does depend on α_s

The Extended Heterogeneous Chemistry (EHC) mechanism

Liquid phase reaction:

- HOBr + Br⁻/Cl⁻
- HOCI + Br⁻/CI⁻
- $CINO_3 + Br^-$
- $O_3 + Br^-$
- Cl₂ + Br⁻
- BrCl + Br-

- HOBr + HBr/HCI
- HOCI + HBr/HCI
- CINO₃ + HBr/HCI
- HONO + HBr

Chemistry driven SSA bromine emission

Uptake and rxn parameters from Ammann et al (2013) and Crowley et al. (2010) (IUPAC recommendations)

EHC computes reac. uptake coefficients for each grid box and time step

Uptake and rxn parameters from Ammann et al (2013) (IUPAC recommendation)

Chemistry driven SSA bromine emission increases BrO in the MBL

Heterogeneous recycling of HOBr and cloud scavenged HBr enhances FT BrO

Sources of cloud and aerosol bromide

Location	[Na+]/µM	[CI ⁻]/µM	[Br ⁻]/nM
Netherlands *	204	251	540
Whiteface Mt, NY	11	31	(30)
HI99, Hawaii*	25	31	(60)
Porto Rico*	55	69	(140)
Taiwan	153	200	(400)

^{*} Precipitation (estimate from [CI⁻]/[Br⁻]=500)

GEOS-Chem underestimates BrO in the free troposphere

What (liquid phase) reactions are responsible for recycling and activation?

Implications for tropospheric ozone

Density Weighted Mean Difference DWMD(GC-EHC*) ≈ 6 ppb

TORERO O3 observations vs. GC v9-02 and EHC

Summary

- GEOS-Chem underestimates the levels of BrO in the troposphere compared to observations:
 - TORERO (Free Troposphere)
 - OMI and GOME-2 columns (Tropical Regions)
 - Surface stations (MBL)
- Recycling of scavenged HBr in cloud water droplets enhances BrO in the FT.
- Activation of SSA derived Br⁻ in cloud water droplets is potential overlooked source of tropospheric bromine.

Acknowledgments

- TORERO Team:
 - R. Volkamer (DOAS)
 - L. Carpenter (VSLH)
 - E. Apel (TOGA)
- CARIBIC Team (C. Brenninkmeijer and A. Rauthe-Schöch)
- Q. Liang
- M. Evans and T. Sherwen
- S. Choi
- G. Abad
- Danish Council for Independent Research (\$\$\$)

Thank you for your attentions!

Additional slides

Implications for tropospheric ozone

Density Weighted Mean Dev.

TORERO O3 observations vs. GC v9-02

Fig. 3 of Mickley et al. (2004): Change in forcing due to uniform 18 ppb increase to pre-industrial tropospheric ozone. 42

Implications for tropospheric ozone

(Fine) Aerosol surface area

- Model is overestimating sulfate aerosol
- Due to missing BrO + DMS → DMSO + Br ?

Deviation between GC and Obs. is largest around equator

