Controls from a widespread surface ocean organic micro layer on atmospheric oxidative capacity

<u>Rainer Volkamer,</u> Sean Coburn, Barbara Dix, Michael Lechner, Roman Sinreich, Ivan Ortega – CU Boulder, USA Roberto Sommariva, Roland von Glasow – UEA Norwich, UK Stelios Myriofekalitakis, Maria Kanakidou – UCrete, Greece

Four cruises: IO, BrO, CHOCHO, HCHO, marine VOC, aerosols
Organic carbon (and halogens) are relevant because

 Modify oxidative capacity: influence on the reactive chemistry (OH, Br, Cl, I abundance) that determines the removal rate (lifetime) of climate active gases (e.g., methane, ozone, dimethyl sulfide) in the atmosphere

Modify aerosols: Number/Size (CCN), Optical properties

Ocean-aerosol-cloud interactions

Field evidence

Secondary Organic Aerosol (SOA) ?

Gantt et al., 2011

OM_{SSA} is determined by organic enrichment at the air-sea interface, chemical composition of seawater, and aerosol size

Meskidze and Nenes, 2006

How widespread is BrO over oceans?

 Field measurements: Leser et al., 2003, GRL; Martin et al., 2011

 BrO over the Atlantic Ocean

Models: Holmes et al., 2009; Ordonez et al., 2012
– 2-3 ppt in most conditions

A smoking gun for other OVOCs

Table III. Typical Carbonyl Concentrations in Clean Marine Air, and Predicted and Measured Concentrations in Surface Open Ocean Seawater

compounds	concn in air,ª ppb	predicted concn in seawater, ^b nM	measured concn in seawater,° nM
formaldehyde	0.4	1500	2-40
acetaldehyde	0.3	4	2-15
propanal	0.1	1	0.4 - 3
butanal	0.08	0.5	0.3 - 2
pentanal	0.1	0.5	0.2-5
hexanal	0.1	0.3	0.2 - 0.6
heptanal	0.1	0.2	0.2 - 0.5
octanal	0.1	0.1	0.2 - 0.7
nonanal	0.15	0.06	0.2 - 1
decanal	0.1	0.02	0.2 - 0.8
benzaldehyde	~ 0.01	0.3	ND^{c}
acetone	0.3	10	3-50
butanone	0.05	0.8	0.5 - 2
glyoxal	0.08	30000	0.5 - 5
methylglyoxal	~ 0.01	300	0.1 - 1.5

^a Typical carbonyl concentrations in the air over open Caribbean Sea and Sargasso Sea. ^b Predicted concentrations in seawater in equilibrium with atmosphere: [R'R''CO] = K*P at 25 °C. ^c Carbonyl concentrations measured in South Sargasso Sea surface water. ND, not determined.

Zhou and Mopper, 1990, EST, 24, 1864

Glyoxal over the Sargasso Sea (80 ppt during the day)

Photochemical source of biological substrates in

Glyoxal: solubility and air-sea partitioning

Glyoxal is a source for SOA in clouds and aqueous aerosols
Air-sea partitioning: shifted 10⁷ towards the ocean
Glyoxal must originate from an airborne source !
Ocean is a sink for glyoxal Volkamer et al., 2009, ACP

TORERO study area

Longitude gradients

Glyoxal is observed also over the oligotrophic ocean!
Consistent with some satellites, but not with others.

Wavelength (nm)

Diurnal cycle over the oligotrophic ocean carries mechanistic information

⇒ Night time increase is attributed to O3 + DOM⇒ Non-zero during day: photochemical mechanism

IO over the oligotrophic ocean

Elevated IO over the oligotrophic ocean does not agree with the idea of iodine sources being primarily 'biological'.
Satellite IO shows (some) correlation with Chl-a

Reactive Iodine Species

only organic iodine gases as iodine precursors (biological source)

organic iodine ("open ocean") and additional flux of I₂

Jones et al., 2010; Mahajan et al., 2010

- Organic precursors alone are not sufficient.
- An inorganic iodine precursor?

GC-MS measurements of VOC precursors

VOC		VMR ave (ppt)	VMR max	Yield (%)	Glyoxal (ppt)	First isoprene
Isoprene		10	30	8	2 - 5	in the study area
Limonene*		21	80	0.5	< 0.8	Found consistent
o-Cymene*	\rightarrow	2.4	13	8	< 0.2	with prediction by Arnold et al., 2009
Z-b-Ocimene*		1.1	7.6	< 4	< 0.6	
b-Pinene*		1.2	4.5	5	< 0.5	Σ Glyoxal
a-Pinene		0.8	2.1	NA		= 2-7 ppt

Isoprene and 9 monoterpenes were identified concentrations are low, i.e., can explain <10% of the glyoxal source in terms of secondary VOC chemistry. => Secondary VOC can not account for most glyoxal => Glyoxal source: gas-phase/heterogeneous process ! b pinete yield. Monoter, or cynete yield. taken as or yytere, informere yield. unpublished data; assuming [OH] = 3 10⁶ molec/cm³ and a glyoxal lifetime of 1.5 hrs

Glyoxal: Indicator for airborne DOM oxidation

Vertical diffusivity in the thermocline: 0.15 cm² s⁻¹ (Ledwell et al.)
Hydration rate: k_{hydr} = 7 s⁻¹ (Creighton et al., 1988)
Diffusion length scale: ~1.5 mm

Glyoxal source: Oxidation of DOM in the sea surface organic microlayer (or fine sea spray)
 Glyoxal indicates: widespread presence of a surface organic microlayer!

(Wurl et al. 2011; Russell et al., 2010)

Enrichment factors

Measured parameter	Henry's Law H _{eff} [M/atm]	EF_SML	EF_Air
Total Dissolved Carbon (TDC)		1.0 – 4.0	
НСНО	3,700	8.9	43
СНОСНО	420,000	21.1	6720
CH₃COCHO	4,000	14.9	27
CH₃CHO	13	11.1	0.3

EF_X = Enrichment Factor = C_X / C_aq

The SML shows the highest EF for CHOCHO, but it appears to be sub-saturated in glyoxal (factor 320) => POA oxidation appears to be needed

Zhou and Mopper, 1990, Zhou and Mopper, 1997; this work

Interim conclusions

 Glyoxal over oceans is attributed to airborne oxidation of DOM, or DOM oxidation products -> SML? OVOC source in absence of VOC Aerosols or SML or DOM oxidation in the surface ocean? What is the formation mechanism? How big is the organic carbon flux?

A. SCIAMACHY, VCCHO.CHO, Annual mean 2005

Reaction of Organics with halogen atoms

CI: 10⁻¹³ < k_{VOC} < 10⁻¹⁰ cm³/mol/s
 τ_{CI} < 0.2 sec (capped by CH₄)

Br: 10⁻¹² < k_{OVOC} < 10⁻¹¹ cm³/mol/s
 τ_{Br} < 4 sec (RCHO ~ 0.8 ppb)

 I: organic sink is inefficient (endothermic, but indirect effects might exist through coupling with CI and Br chemistry)

Impact of OVOC on oxidative capacity

Black: base case
Red: +0.8 ppb HCHO
Green: +1.8 ppb ALD2

OH: strong reduction
CI: strong reduction
Br: strong reduction
I: insensitive

 \Rightarrow OVOC are efficient sinks for OH, CI and Br

Reaction of Organics with halogen atoms

CI: 10⁻¹³ < k_{VOC} < 10⁻¹⁰ cm³/mol/s
 τ_{CI} < 0.2 sec (capped by CH₄)

Br: 10⁻¹² < k_{OVOC} < 10⁻¹¹ cm³/mol/s
 τ_{Br} < 4 sec (RCHO ~ 0.8 ppb)

I: organic sink is inefficient
 ⇒ OVOC levels are a relevant sink for BrO
 ⇒ Organics and iodine are weakly coupled in terms of their atmospheric chemistry

Organic carbon flux of glyoxal

TM4-ECPL global 3-d model : Myriokefalitakis et al., 2008; 2010; 2011

Simulations have been performed in 6°x4° resolution (longitude x latitude) in 34 vertical hybrid layers up to 0.1 hPa

Myriokefalitakis Stelios, <u>stelios@chemistry.uoc.gr</u> Kanakidou Maria <u>mariak@chemistry.uoc.gr</u> Environmental Chemical Processes Laboratory Chemistry Dept., University of Crete, Heraklion, Greece

CHEMICAL

CPL

Organic carbon flux from the ocean

OCEANIC EMISSION						
COMPOUND	ROLE IN ATMOSPHERE	MASS FLUX	C FLUX	% OF TOTAL EMISSIONS	OTHER SOURCES	TOKEN REFERENCES
OVOC		8 TgC/	yr (SC	IA)	Myriofekal	itakis et al. 2008
(glyoxal)		16 – 4	1 TgC/	yr	This work	
Sulfur volatiles:						
DMS	Global sulfur budget Aerosol precursor: atmospheric acidity and cloud nucleation	14-29	TgC/yr	r 90%	Soils, plants	Kettle & Andreae 2000, Simó & Dachs 2002, Lana et al. 2010
COS	Precursor of stratospheric aerosol	0.30 TgS/yr	0.06 TgC/yı	50%	Soils, combustion	Kettle et al. 2002, Uher 2006, Sutharalingam et al. 2008
CS ₂	COS precursor	0.15 TgS/yr	0.02 TgC/yı	25%	Soils, wetlands	Xie & Moore 1999, Watts 2000, Kettle et al. 2002
NMHC	Tropospheric (photo)chemistry, aerosol precursors and cloud nucleation	1-10 T	gC/yr	minor	Plants, combustion	Plass-Dülmer et al. 1995, Broadgate et al. 1997, Yassaa et al. 2008, Arnold et al. 2009, Gantt et al. 2009
POA	Tropospheric (photo)chemistry, cloud nucleation	3-8 Tg	C/yr	minor?	Plants, soils, industrial, combustion	Spracklen et al. 2008, Roelofs 2008, Gantt et al. 2009
					Ta	able credit: Rafel Simo

Ocean: ~ 7x10⁵ TgC DOM (about equal to atm. CO₂ mass)

Conclusions

- OVOC strongly impact oxidative capacity in the remote MBL:
 - Reduce OH, Br, CI radical abundances
 - Weak coupling also with I abundance (increases)
 - OVOC sink can explain 'missing BrO' over tropical Pacific Ocean
- A major organic carbon source from the ocean does involve DOM oxidation by O3 and photochemistry.
- This OVOC source is missing in atmospheric models, and creates model bias in our perception of Br and CI radical abundances.
- Airborne measurements find elevated IO over most of the tropospheric air column above the Equatorial Pacific ocean. Reveal the potential that satellite maps may not indicate a boundary layer process (a-priori uncertainty in satellites).
- Funding: NSF-ATM (CAREER award), NASA

The Volkamer Group

Atmospheric Trace Molecule Spectroscopy

http://www.colorado.edu/chemistry/volkamer

Job opening @ CU Boulder: PhD project on AMAX-DOAS rainer.volkamer@colorado.edu

Detector (CCD Spectrometer)

TORERO – Tropical Ocean tRoposphere Exchange of Reactive Halogen Species and OVOC (11Jan – 22Feb 2012)

FP#7

oxidized, and aerosols formed?

TORERO – Tropical Ocean tRoposphere Exchange of Reactive Halogen Species and OVOC (11Jan – 22Feb 2012)

Glyoxal and IO over the open ocean?

Inside: spectrometers/clinometers

Outside: telescope

Cruise track (Oct08-Dec08)

Correlation: IO vs CHOCHO

DOM oxidation rate and IO are positively correlated
Increasing IO offset concentration towards the West!

Reaction mechanisms

Martino et al., 2009, GRL; Reeser et al., 2009, JPC; Jammoul et al., 2009; Hayase et al., 2010, JPC

IO in the tropical free troposphere

Only ~12% of satellite signal originates from within the MBL at moderate cloud cover