Oxidant chemistry in the tropical troposphere: role of oxygenated VOCs and halogens, and implications for mercury

Daniel J. Jacob

with Kevin J. Wecht, Lee T. Murray, Emily V. Fischer, Justin P. Parrella, Anne L. Soerensen, Helen M. Amos

Radical cycle controlling tropospheric ozone and OH

Oxidation of long-lived gases by OH is mostly in tropics

monthly methane oxidation (GEOS-Chem)

Kevin Wecht, Harvard

Ozone distribution in tropical troposphere

Murray et al. [2012]

Ozone budget schematic (Walker circulation):

Volatile organic compounds (VOCs) in the atmosphere: carbon oxidation chain

EARTH SURFACE

Volatile organic compounds (VOCs) in the atmosphere: effect on nitrogen cycle

Reservoirs for long-range transport of NO_x

Distributions of NOx, HNO₃, and PAN over Pacific

PEM-Tropics B aircraft campaign (Mar-Apr 1999): latitude-altitude x-sections

NO_x below 6 km over Pacific is mainly from PAN decomposition

Staudt et al. [2003]

Emily Fischer, Harvard

PAN precursors over Pacific

0 – 3 km

Above 3 km

Emily Fischer, Harvard

Global budget of acetone

Fischer et al. [2012]

Global distribution of acetone and net air-sea fluxes

Circles: mean obs from aircraft campaigns Background: GEOS-Chem model

Fischer et al. [2012]

Halogen radical chemistry in troposphere: sink for ozone, NO_x, VOCs, mercury

Bromine chemistry in the atmosphere

Mean vertical profiles of CHBr₃ and CH₂Br₂

From NASA aircraft campaigns over Pacific in April-June

Northern Extratropics

Tropics

Vertical profiles steeper for CHBr₃ (mean lifetime 21 days) than for CH₂Br (91 days), steeper in extratropics than in tropics

Global tropospheric Br_v **budget in GEOS-Chem (Gg Br a**⁻¹)

Liang et al. [2010] stratospheric Bry model (upper boundary conditions)

Sea salt is the dominant global source but is released in marine boundary layer where lifetime against deposition is short; CHBr₃ is major source in the free troposphere *Parrella et al.* [2012]

Tropospheric Br_v cycling in GEOS-Chem

Global annual mean concentrations in Gg Br (ppt), rates in Gg Br s⁻¹

- Model includes HOBr+HBr in aq aerosols with $\gamma = 0.2$, ice with $\gamma = 0.1$
- Mean daytime BrO = 0.6 ppt; would be 0.3 ppt without HOBr+HBr reaction

Zonal annual mean concentrations (ppt) in GEOS-Chem

- Br_y is 2-4 ppt, highest over Southern Ocean (sea salt)
- BrO increases with latitude (photochemical sink)
- Br increases with altitude (BrO photolysis)

Comparison to seasonal satellite data for tropospheric BrO

- GOME-2 observations (9:30 am)
 GEOS-Chem model
 - with air mass factor correction
 without HBr+HOBr
- p-TOMCAT model
- TOMCAT has lower γ=0.02 for HOBr+HBr than GEOS-Chem, large polar spring source from blowing snow
- HOBr+HBr reaction critical for increasing BrO with latitude, winter/spring NH max in GEOS-Chem

Effect of Br chemistry on tropospheric ozone

Zonal mean ozone decreases (ppb) in GEOS-Chem

- Two processes: catalytic ozone loss via HOBr, NO_x loss via BrNO₃
- Global OH also decreases by 4% due to decreases in ozone and NO_x

Bromine chemistry improves simulation of 19th century surface ozone

Montsouris, France (1876 - 1886)

- Standard models without bromine are too high, peak in winter-spring; bromine chemistry corrects these biases
- Model BrO is similar in pre-industrial and present atmosphere (canceling effects)

Atmospheric lifetime of Hg(0) against oxidation to Hg(II) by Br

• 2-step Hg(0) oxidation (Goodsite et al., 2004; Donohoue et al., 2006)

- GEOS-Chem Br yields Hg(0) global mean tropospheric lifetime of 4 months, consistent with observational constraints
- Br in pre-industrial atmosphere was 40% higher than in present-day (less ozone), implying a pre-industrial Hg(0) lifetime of only 2 months
 ⇒ Hg could have been more efficiently deposited to northern mid-latitude oceans in the past

Mechanism for uptake of atmospheric Hg by ocean as implemented in GEOS-Chem model

Hg(0) decreasing trend in North Atlantic surface air

Ensemble of cruise data, 1977-present

- Large decrease observed since 1990 in N Atlantic, not in S Atlantic
- Model can reproduce this decrease based on 80% observed decrease of dissolved Hg in subsurface N Atlantic since 1990
- Why this large subsurface ocean decrease? Increasing MBL ozone, decreasing coastal inputs from rivers/wastewater, missing historical Hg sources?

Soerensen et al. [2012]

Historical inventory of global anthropogenic Hg emissions

- Large legacy contribution from N. American and European emissions; Asian dominance is a recent phenomenon
- Pre-1850 releases from mining account for 40% of all-time anthropogenic emissions

Streets et al., 2012

Global biogeochemical model for mercury

7-box model with 7 coupled ODEs dm/dt = s(t) - km where s is primary emission (atmosphere only)

Model is initialized at natural steady state, forced with historical anthropogenic emissions for 2000 BC – present; % present-day enrichments are indicated

Helen Amos, Harvard

Contribution of old anthropogenic (legacy) mercury to global atmospheric deposition and surface ocean

GEOS-Chem based global biogeochemical model of mercury cycling

Mercury pollution is mainly a legacy problem that will take centuries to fix; all we can do in short term is prevent it from getting worse

Helen Amos, Harvard

Importance of MBL chemistry for Hg deposition to oceans

Observed RGM diurnal cycle suggests Br chemistry, deposition via sea salt uptake

Box model predicts that ~80% of Hg(II) in MBL should be in sea salt aerosol:

Radiative forcing efficiency from tropospheric ozone is strongest in tropics and particularly in TORERO region

Radiative forcing from uniform $\triangle O_3 = 18$ ppb in troposphere (GISS GCM)

$$\begin{bmatrix} & & & \\ 0.1 & 0.3 & 0.5 & 0.7 \end{bmatrix} (W m^{-2})$$

Mickley et al. [2004]

Seasonal variation of CHBr₃ and CH₂Br₂ tropospheric columns

Marine sources from Liang et al. [2010] with seasonality for CHBr₄ in extratropics

Hg(0) decreasing trend in North Atlantic surface air

- Large decrease observed since 1990 in N Atlantic, not in S Atlantic
- GEOS-Chem can reproduce this decrease based on 80% observed decrease of dissolved Hg in subsurface N Atlantic since 1990
- Why this large subsurface ocean decrease? Increasing ozone, decreasing coastal inputs from rivers and wastewater, missing historical Hg sources?

suface subsurface

Soerensen et al. [2012]