Water vapor, ice supersaturation, and stratospheric mixing in TORERO

Mark A. Zondlo Qiushi Zhang, Minghui Diao, Josh DiGangi

Department of Civil and Environmental Engineering Center for Mid-Infrared Technologies for Health and the Environment PRINCETON UNIVERSITY

> Stuart Beaton, NCAR EOL Ru-Shan Gao, NOAA – preliminary data Teresa Campos, NCAR – preliminary data

> > TORERO Science Team Meeting July 23, 2012 Boulder, Colorado

NSF Gulfstream-V VCSEL hygrometer in TORERO

VCSEL = vertical cavity surface emitting laser hygrometer for NSF Gulfstream-V (Zondlo et al., 2010)

1854 nm fiberized VCSEL, located on top, right aperture plate in TORERO

Open-path avoids sampling biases (moderate/heavy icing can be an issue)

Parameter A Barameter	Specifications	1449 202
Dew point range	-110°C to +30°C	60(
Mixing ratio range	e 1-35,000 ppmv	far far a
Sensitivity (SNR=	1) 0.05 ppmv	
Frequency	25 Hz. 🥾 🛵	-
Accuracy	<u>≤ 5%</u>	
Precision	≤ 3%	
Power	10 W	
Weight	5 kg	-
Size 25	$cm \times 16 cm \times 5 cm$	-
Operation	unattended	
		In the second second second

NAT N

Beer-Lambert law

$$\frac{I(\lambda)}{Io(\lambda)} = \exp(-\alpha(\lambda))$$

0

H20

N is the absolute concentration

l is the pathlength

We use direct absorption and a derivative technique, wavelength modulation spectroscopy, for high sensitivity

current tuning capabilities

VCSEL status in TORERO

- Performed well for all flights, >98.5% data coverage
- QC/QA of data ongoing, expected by end of August (final accuracy ±5%) (possible high bias in submitted data at dewpoints > -20°C)
- Accuracy of raw data ±20%
- Normal data anomalies (transitions between absorption lines, icing, linelocking issues) will be removed in final dataset
- No obvious problems occurred during TORERO

Detector pregain experiments in DC3 10<mark>≭ 1</mark>0¹⁷ Pregain = 0 Pregain = 1 9.5 Pregain = 2 ${\sf H}_2^{\sf O}$ Number Density (molec/cc) 9 8.5 8 7.5 7 6.5 6` 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Power (mV) Uncertain if these data (gain problems) impact TORERO

Uncertain if these data (gain problems) impact TORERO Need to examine pre-, post- calibrations and compare to DC3 results Well-defined response if this requires correction

Ice supersaturation in TORERO

(all analyses shown herein are restricted to T≤-40°C to ensure ice phase)

N=235 ice supersaturated regions in TORERO at T≤-40°C Most well below the homogeneous ice nucleation (Koop et a., 2000)

Horizontal chord lengths of ISSRs in TORERO

Size of ISSRs vs. Maximum RH (averaged over every 20 points) 135 -Median ISSR lengths: 130 TORERO: 1.0 km 125 Compare to: Maximum RH (%) 120 PREDICT: 0.7 km 115 (tropical, western Atl.) HIPPO: 0.9 km 110 (Pacific, 67°S to 87°N) 105 START08: 0.9 km (North America) 100 10⁰ 10^{1}

Size of ISSR (km)

Higher max (mean) RHi observed as ISSR horizontal length increases Sizes very consistent with previous field campaigns

Strat.-trop. mixing: Ozone vs. H₂O

ISSRs largely forming along tropospheric-tropospheric mixing lines

Strat.-trop. mixing: Ozone vs. CO

ISSRs largely forming along tropospheric-tropospheric mixing lines

START08: ISSRs also along strat.-trop. mixing lines

Ice supersaturated regions in extratropics often seen along stratosphere-troposphere mixing lines

Ozone vs. H₂O: TORERO

Ozone vs. CO: TORERO

Stratosphere-troposphere tracers: RF05

Both pairs of tracers show evidence of strat.-trop. mixing

Stratosphere-troposphere mixing: RF08

 O_3/H_2O more clearly shows evidence of stratospheric influence

Stratosphere-troposphere mixing: RF02

 O_3/CO more clearly shows evidence of mixing than O_3/H_2O

Summary

• VCSEL performed well in TORERO, need to analyze esp. low/mid tropospheric data for potential biases in calibrations

• Ice supersaturated regions in TORERO:

small median size (1 km)
larger sized regions also have higher humidities
ISSRs mostly intra-tropospheric mixing (entrainment/detrainment?)

- Examine both O_3/H_2O and O_3/CO tracers to assess stratospheric influence
- Most evident strat.-trop. mixing observed in: RF 02, 03, 04, 05, 07, 08, 09, 15, 17
- Future work: deep convection/entrainment/detrainment processes through tracers and moist adiabatic ascent / adiabatic descent model

