

Aerosol size distributions – nucleation to coarse mode Dave Rogers, NCAR/RAF

Aerosols & TORERO science goals

- Vertical distribution of aerosol particles
- Stable layers & stratification
 - characterize structures shown by HSRL
- Sources, transport & mixing of particles
 - especially new formation
 - association with trace gas data
- Scavenging/removal processes

Aerosol instruments

two WCN in cabin

Operator reminder → Log positions of 3-way valves on chat! Typical = AD or CF

Aerosol diffusion battery

- removes smallest particles
- stack of 8 screens 100 µm mesh

	fractio	onal penet	ration of a	erosol thro	ough diffus	ion battery	y with 8 sc	reens	
		particle diameter (µm)							
	0.010	0.014	0.020	0.027	0.038	0.054	0.075	0.105	Π
150	0.012	0.058	0.161	0.309	0.470	0.613	0.727	0.812	
200	0.026	0.095	0.221	0.379	0.534	0.666	0.767	0.840	
300	0.060	0.165	0.314	0.474	0.617	0.731	0.814	0.873	
400	0.098	0.225	0.383	0.538	0.669	0.770	0.842	0.891	
500	0.135	0.276	0.436	0.585	0.706	0.796	0.860	0.904	
600	0.169	0.319	0.478	0.620	0.733	0.815	0.873	0.912	
700	0.200	0.355	0.513	0.648	0.754	0.830	0.883	0.919	
800	0.229	0.387	0.541	0.671	0.770	0.842	0.891	0.924	
900	0.255	0.415	0.566	0.690	0.784	0.851	0.897	0.928	
1000	0.280	0.439	0.587	0.707	0.796	0.859	0.902	0.931	
		1		[[

UHSAS size distribution measurement – 10 Hz

UHSAS tracks WCN's RF02 - Jan 27

feet

<u>Question</u>: are WCN equivalent? *change 3-way valves to flip/flop WCN*

UHSAS – how to recognize bad data? → USCAT saturated 4.1 v

Þ

UHSAS – how to recognize bad data?

→ size distribution unrealistic gaps & bumps

UHSAS flight measurements http://www.eol.ucar.edu/~dcrogers/TORERO/uhsas/

date	flight #	UHSAS		
19-Jan	RFO1	ok		
21-Jan	RFO2	ok		
24-Jan	RFO3	ok		
27-Jan	RFO4	bad 40%		
29-Jan	RFO5	ok		
31-Jan	RFO6	ok		
3-Feb	RFO7	ok		
4-Feb	RFO8	ok		
7-Feb	RFO9	ok		
10-Feb	RF10	ok		
12-Feb	RF11	ok		
14-Feb	RF12	ok		
17-Feb	RF13	bad 90%		
19-Feb	RF14	ok		
22-Feb	RF15	ok		
24-Feb	RF16	ok		
26-Feb	RF17	ok		

 \rightarrow aerosol data in netcdf files

Analysis In Progress

A. Quality assessment for UHSAS & WCN

B. Regions of enhanced/suppressed aerosol concentrations. *Aerosols as tracers Connections to airmass (thermodynamic markers) Probing structures revealed by HSRL Relation to trace gas data & photolytic production*

C. Can we identify regions with new particle generation ~7 – 30 nm ? *compare WCN's & diff. battery data position of 3-way valves in log books & chat logs*

D. Effects of clouds on particle removal, scavenging