Microwave Temperature Profiler and Sea Surface Temperature Measurements

Julie Haggerty NCAR

MJ Mahoney JPL

TORERO Data Workshop

23-25 July 2012

Overview of Presentation

- Temperature Profiles from GV
 - MTP description
 - Retrieval method
 - Data set quality
 - Data examples
- Sea Surface Temperature from GV
 - KT-19 description and limitations
 - Altitude-induced errors
 - Correction method
 - Data example

Microwave Temperature Profiler

- Measures radiance on three oxygen absorption lines
 56.363, 57.612, 58.363 GHz;
- Rotating mirror scans ±80° from horizontal
 - Io viewing angles
- Scan completed every 17 seconds
- Internal calibration system
 - heated blackbody target
 - in situ ambient témpérature measurement
 - calculate gains

Statistical Retrieval of Temperature Profiles from MTP Measurements

- MTP measures brightness temperature (TB) or radiance from thermal emission by oxygen molecules
- TB is related to T via the radiative transfer equation; TB does not have a one-to-one mapping to a physical temperature (T)
- Even in simplified form, the radiative transfer equation is underconstrained
- Retrieval problem is ill-posed unless we include constraints
- a priori statistics are commonly used to provide constraints on atmospheric behavior

References: Rodgers, 2000: Inverse Methods for Atmospheric Sounding Janssen, 1993: Atmospheric Remote Sensing by Microwave Radiometry Method Implemented by MJ Mahoney (JPL)

Temperature Retrieval Overview

A Priori Statistics for MTP Retrievals

- Radiosonde profiles, together with a forward radiative transfer model, provide the a priori statistics
- Large database of representative radiosonde profiles acquired for each project
 - ~5000 profiles from region and season
 - South and Central American stations
 - Ticosondes and raobs from Hakuho Maru
- Radiosonde profiles close to flight track selected as template profiles
 - Database search for profiles similar to template
 - Similar groups of ~200 profiles are compiled
 - Provides information for numerical solution of retrieval coefficients

MTP Data Attributes

- Best retrievals within ± 6km of flight level
 - Provide data farther away when needed
- Temperature uncertainty range ~0.5-1.5 K
- Vertical resolution near aircraft ~100 m
- Profiles retrieved at 17 sec intervals
- Limited retrievals during steep ascents/descents
- Tropopause height defined using WMO definition

MTP Data Set from TORERO

- Processed Data
 - RFo1 -- problem with sensor configuration resulted in no useful data from this flight
 - RF02-RF17 -- good quality data
- Steep ascents/descents
 - Gain calculation assumes level flight for duration of scan
 - Data gaps during rapid altitude changes
 - Data preserved where consistent with level flight

MTP Data Set from TORERO

- Surface inversion layer
 - Detected by MTP in Antofagasta flights
 - Not represented in a priori data, so retrieval coefficients are not optimal to resolve this feature
 - Surface emissivity not accounted for in retrievals
- Data files
 - NASA Ames format
 - Available via CODIAC
- Website summarizes data quality and shows quicklook images
 - http://mtp.mjmahoney.net/www/missions/torero/torero.html

Single Profile Retrieval 27 Jan 2012 – RF04

😮 RA	RAOB - Pressure Altitude vs Temperature															_			×					
40		•		•		•	; ·										.	1	•		•		-	130
38 36	Ē.														: .	-								120
34	Ē.							•		•					:	-								110
32	Ē															-								100
28	÷.														1.	-								90
26	F				i.		:	7	2	•					: .			1		i.				80
24 22	E						1	4								-								70
20	Ē.			•	5		٢.	•							:	ہ ہ							.]	70
18	Ē				Ç.		: :								: :	-								60
14	È.				2										: .			-		÷			. 1	50
12	Ē								-	-														40
8	Ę		2	2	i.	2	: .		-			-	-	-		-		-	Ż	2	2	2		30
6	₹							•		•				-	1			-	1				P	20
4	Ē														 	-				-	-			10
0	<u>-</u>		i		:		i.					_			i_			i		i.	2	<u>}</u>		0
km	18(0	19	0	20()	210)	220		230) r	240 [K]		250	2	60	27	0	28	0	290) :	800 kft
077 0)51	.34	49	ks	0	85	km	S	CSI	N 2	201	20	12	1 1	120	0,	SC	SN	20	120	12	8 1	.20	0,

MTP profile vs. Santo
 Domingo radiosondes

Separation

- 2+ hours later
- aircraft 85 km west

Tropical Convective Flight 4 Feb 2012 – RFo8 Hakuho Maru overpass

O3 Mixing Ratio and Temperature Profiles – 26 Feb 2012 (RF17)

Preliminary ozone data shown (R. Gao)

Sea Surface Temperature

- Heitronics KT19.85 infrared pyrometer
- Spectral range 9.6 11.5 um
- Field of view 2°
- Sampling rate 5 Hz
- Specified accuracy 0.5 K plus a term dependent on difference between scene temperature and sensor housing temperature
- Temperature variations in sensor housing may be large
 Emission by water vapor in the
- column also contributes to uncertainty

GV Installation

- Mounted on downward
- facing aperture plate
- Vertical orientation
- Not heated

Altitude-Induced Variation in SST Measurement

Method to Remove Water Vapor Emission Signal

- Radiative transfer model runs over a range of hypothetical surface temperatures
- Temperature and humidity profiles from aircraft ascents/descents used as input
- Clear scenes
- Difference between brightness temperature at top of layer and input surface temperature gives the correction
- Generate look-up table of corrections dependent on altitude and measured brightness temperature

Corrected Data Example 26 Feb 2012 – RF17

TORERO, Flight #rf17 02/26/2012, 14:20:00-14:47:00

This plot contains preliminary data

υ

effect not yet addressed

Summary

MTP production data files now available SST data processing continues

Convection over the Andes, near San Pedro de Atacama

Radiative Transfer Equation:

Discrete approximation

Microwave radiative transfer in the atmosphere

- Non-scattering at these wavelengths (several millimeters)
- Neglect surface emission
- Remaining terms from atmospheric emission:

$$TB(\nu,\theta) = \sec\theta \int_{z_1}^{z_2} T(z) \cdot \alpha(\nu,z) \cdot \exp((-\tau(z_1) - \tau(z_2) \sec\theta) dz$$

Integral can be approximated by a sum:

$$TB(\nu,\theta) = \sum_{i=0}^{N} Ki(\nu,\theta) \cdot T(zi) + \varepsilon$$

 Residual error, ε, denotes quadrature error and can account for instrument noise, etc.

Polynomial Representation

 Alternatively, T can be written as a polynomial in terms of TB

$$T(z) = \sum_{i=1}^{N} a_i \cdot TB(\nu, \theta) + \varepsilon$$

Then we must estimate the coefficients, a_i, using a priori information

Generating Retrieval Coefficients

For each of N = 200 raobs, at a given altitude:

• Express T_{raob} as a linear combination of TB_{raob}

 $T_{raob} = a_1 T B_{raob_1} + a_2 T B_{raob_2} + \dots + a_{30} T B_{raob_{30}}$

• Using a system of N equations in M=30 unknowns, solve for a_m at each vertical level L.

Obtain a set of *Retrieval Coefficients* at each vertical level associated with a single template. Repeat process for all template profiles (usually 20-40 sets).

Relate Temperature to Brightness Temperature

For each template raob, at each frequency (3), at each viewing angle (10), at common flight altitudes

Repeat for ~200 similar raob profiles → Regression on results gives a linear polynomial relationship between T and TB Template and associated radiosondes from Antofagasta

Retrieval Procedure

- For each MTP scan, match (measured) TB_{mtp} profile with most similar (modeled) TB_{raob} profile
- Assume similar TB profiles will have similar relationships to T profiles
- Apply the associated set of RCs to TB_{mtp}
- Calculate T_{mtp} at altitude z:

$$T_{mtp}(z) = \overline{T_{raob}} + \sum_{m=1}^{30} RC(z,m)TB_{mtp}(m))$$

