

Detection of IO and glyoxal in the FT –

implications for satellite retrievals

Barbara Dix (1), Sunil Baidar(1, 2), Rainer Volkamer(1, 2)

1 Dep. of Chemistry and Biochemistry, 2 CIRES, University of Colorado, Boulder, CO, USA

Content

1 Motivation 2 CU Airborne Multi AXis DOAS on HIAPER **3** Profile retrieval 3.1 slant column densities 3.2 aerosol extinction 3.3 inversion 4 Results 4.1 HEFT-10 IO, glyoxal and H₂O profiles 4.2 meteorological modeling 4.3 potential implications for satellite retrievals **5** Summary and Conclusions

1 Motivation

Iodine monoxide (IO) and glyoxal (CHOCHO) impact atmospheric chemistry and potentially climate by:
affecting atmospheric oxidation capacity
formation by destroying ozone (IO)
forming particles that could act as CCN (IO)
leading to formation of SOA (CHOCHO)

→ Open questions on:
 - source mechanisms
 - global distribution

Myriokefalitakis et al., 2008, Schönhardt et al., 2008, Mahajan et al., 2010

Sinreich et al., 2010, Volkamer et al., 2010; recent confirmation: Mahajan et al., 2012, Puentedura et al., 2011)

2 Instrumentation: CU-AMAX-DOAS

<u>Colorado University-Airborne Multi-AXis</u> <u>Differential Optical Absorption Spectroscopy</u>

Volkamer et al., 2009

spectrographs/detectors scientist accessories

telescopes

Motion stabilized

3 Profile retrieval - 3.1 slant column densities

Slant Column Densities of IO and glyoxal in the FT during HEFT-10, 29 Jan 2010

 $SCD = \int c(I)^* dL$

 $SCD_{IO} = 1.1 \pm 0.2 \times 10^{13} \text{ molec/cm}^2 \text{ (RMS} = 1.2 \times 10^{-4})$ $SCD_{glyoxal} = 1.3 \pm 0.2 \times 10^{15} \text{ molec/cm}^2 \text{ (RMS} = 1.3 \times 10^{-4})$

3 Profile retrieval - 3.2 aerosol extinction

SCD O ₄	diative Insfer Ing (RTM)	Aero Pro	osol file		RTM + trace gas SCD + Optimal Estimation		Trace Gas Profiles	
F	;							
Parameter Settings								
428nm (IO), 455nm (glyoxal), wavelength 445nm (H₂O), 477nm (O₄)					- aircraft in-situ sensors - microwave temperature profiler			
ground albedo	8%							
solar zenith angle	from measurements				- HSRL			
solar azimuth angle	uth angle from measurements							
viewing direction	from measurements				- inferred from HARP irradiance			
field of view	0.17°							
Atmosphere		Aerosol and clouds						
pressure	in-situ	profile	t.b.d.		- aerosol size distributions			
temp	in-situ	AOD/AOD	t.b.d.					
O ₄ profile	from p, T	SSA	0.99					
O_3 , NO ₂ profile/VCD	in-situ/ sat.	g/g	0.75					

3 Profile retrieval - 3.2 aerosol extinction

3 Profile retrieval - 3.3 trace gas inversion

$\Rightarrow \mathbf{y} = \mathbf{F}(\mathbf{x}, \mathbf{b}) + \mathbf{\varepsilon}$ SCD = F (c, RTM param.) + Δ SCD

→ Baidar S. et al., The CU Airborne MAX-DOAS instrument: ground based validation, and vertical profiling of aerosol extinction and trace gases, in prep.

3 Profile retrieval - 3.3 trace gas inversion

4 Results - 4.1 HEFT-10 IO, glyoxal and H₂O profiles

4 Results - 4.2 meteorological modeling

 \rightarrow Role of deep convection/detrainment?

WRF analysis by Jim Bresch

4 Results - 4.2 meteorological modeling

IO and glyoxial in fresh and aged FT air

 \rightarrow presence over large spatial scales

WRF analysis by Jim Bresch

Refreshed?

ANT -

SCAN

4 Results – 4.4 implications for satellite retrievals

Satellites provide:

- global view
- remote ocean access

Satellite maps are used:

- to constrain models
- to compare to meas. and models
- to scale sources

Quantification of satellite SCDs is complicated by:

- altitude dep. sensitivity
- need for a priori profiles
- changing cloud cover
- low ocean albedo

4 Results – 4.4 implications for satellite retrievals

Simulation of satellite nadir view of retrieved IO and glyoxal profiles

Comparison of averaged retrieved VCDs and modeled satellite SCDs

Trace Gas	VCD			Cloud	SCD				VCD	
	Total	MBL	Trans. Layer	FT	Cover	Total	MBL	Trans. Layer	FT	Bias*
IO x10 ¹² molec/cm ²	2.71	0.94	0.76	1.01	0% 20% 40%	4.25 4.34 4.38	0.99 (23.3%) 0.60 (13.8%) 0.39 (8.9%)	1.17 (27.5%) 1.29 (29.7%) 1.36 (31.1%)	2.09 (49.2%) 2.45 (56.5%) 2.63 (60.0%)	1.5 2.5 3.8
glyoxal x10 ¹⁴ molec/cm ²	1.76	0.55	0.60	0.61	0% 20% 40%	2.74 2.88 2.96	0.57 (20.8%) 0.34 (11.8%) 0.23 (7.8%)	0.91 (33.2%) 1.04 (36.1%) 1.10 (37.1%)	1.26 (46.0%) 1.50 (52.1%) 1.63 (55.1%)	1.5 2.6 4.0

* Based on widely made assumption that satellites indicate BL processes

4 Results – 4.3 implications for satellite retrievals

R = -0.7 MBL correlation Mahajan AS et al. (2012)

> Schönhardt A et al.(2008) NASA Aqua/MODIS Sassen K et al. (2009)

4 Results – potential atmospheric implications

oceanic iodine + bromine species: 10% depletion of tropical tropospehric ozone (annual average)

Saiz-Lopez et al. 2012

modeled IO mixing ratio UT: ~0.02 ppt

5 Summary and Conclusions

HIAPER/TORERO flights well suited for FT trace gas profile retrievals:

 distance and altitude range
 auxiliary measurements and modeling (TORERO)

First evidence for IO and CHOCHO in the tropical FT
First IO detection from research aircraft

 \rightarrow regular detection during TORERO

IO and glyoxal in fresh and aged FT air

~ 2/3 of vertical columns are *above* MBL

 → potential for reactive halogen species and OVOCs in FT on global relevant scales

5 Summary and Conclusions

Relevant to the interpretation/quantification of satellite maps:

 altitude dependent satellite sensitivity
 possible satellite VCD overestimation by ~ 1.5 – 4
 spatial decoupling of MBL and FT processes
 -> - first a priori constraint by our profiles

Implications for:

- perception of sources
- current research focus on MBL
- atmospheric chemistry (ozone, oxidation capacity, SOA)

B. Dix, S. Baidar, J. Bresch, S. Hall, S. Schmidt, R. Volkamer *Detection of Iodine Monoxide and Glyoxal in the Tropical Free Troposphere*, submitted

Thank You!

Acknowledgements:

NCAR/EOL staff for support during HEFT-10 and TORERO Volkamer group for support during instrument preparation T. Deutschmann for providing the McArtim radiative transfer code

HEFT-10 work was funded by a NSF-CAREER award to R. Volkamer