HIAPER Atmospheric Radiation Package (HARP) Samuel Hall, Kirk Ullmann

Irradiance products collaboration Sebastian Schmidt, Bruce Kindel – *University of Colorado*

Actinic flux

Frosted Dome

Measures Energy Flux through a sphere

- **Equally responsive** to photons from all directions
- **Total Actinic Flux** (sum of downwelling and upwelling) also known as spherical radiance

Photolysis: Molecules are 3-D and can absorb photons from any direction

Irradiance

Flat Plate or Integrating Sphere

Measures Energy Flux through a plane

Cosine response (i.e., insensitive to photons from 90 deg)

Many uses in radiative transfer including **Net Irradiance** (difference between downwelling and upwelling)

Energy passing through a layer is sensitive to direction

NSF/NCAR HARP

Irradiance

Calculated photolysis frequencies from actinic flux

j[O3->O2+O(1D)] *j* [NO2->NO+O(3P)] *j* [H2O2->2OH] *j*[HNO2->OH+NO] *j*[HNO3->OH+NO2] *j* [CH2O->H+HCO] *j* [CH2O->H2+CO] j[CH3CHO->CH3+HCO] *j* [CH3CHO->CH4+CO] *j* [C2H5CHO->C2H5+HCO] j[CHOCHO->products] *j* [CHOCHO->HCO+HCO] *j*[CH3COCHO->products] j[CH3COCH3->CH3CO+CH3]

j [CH3OOH->CH3O+OH] *j* [CH30N02->CH3O+NO2] *j*[PAN->products] j[CH3COCH2CH3-> **Products**] j[CH3CH2CH2CHO-> C3H7+HCO] j[CH3CH2CH2CHO-> C2H4+CH2CHOH] *j* [HO2NO2-->HO2+NO2] *j* [HO2NO2-->OH+NO3] *j* [CH3CH2ONO2-> **Products**]

i[Br2->Br+Br] *i*[BrO->Br+O] *j*[Br2O->products] *i*[BrNO3->Br+NO3] *j*[BrNO3->BrO+NO2] *j*[BrCl->Br+Cl] *j*[HOBr->HO+Br] *j*[BrONO2->Br+NO3] *j*[BrONO2->BrO+NO2] *j* [Cl2+hv->Cl+Cl] *j*[ClO->Cl+O] *j* [CIONO2->CI+NO3] *j* [CIONO2->CIO+NO2]

Additional photolysis frequencies under construction (including lodine compounds)

<u>Cloud Properties</u> Optical thickness: 10-50 (GOES-12) Cloud Top Height: 10-11 Km

120204-190357

120204-191958

Sebastian Schmidt, 5/15/2012 Remote sensing flight 2/26

5 4.387N, -92 19.286E

Plane⇒Marker: 343°, 2194 nmi Marker⇒Mouse: 158°, 2231 nmi Zoom: 9

Circle maneuver 2/26 for HARP

We can probably use the second half of this circle (outer) which is unaffected by the neighboring cloud!

The brown line should be near 1 after all corrections are applied properly.

Circle maneuver 2/26 for HARP

We can probably use the second half of this circle (outer) which is unaffected by the neighboring cloud!

The brown line should be near 1 after all corrections are applied properly.

Cloud Reflectance Retrievals

This will still work for TORERO (but need to modify to work with reflected irradiance).

Cloud Transmittance Retrievals

With spectral slopes, get independence from radiometric calibration and rely on spectral information. So far, have implemented <u>transmittance-slope</u> technique. This will not work for TORERO, need <u>slope-slope</u> method.

Question: How sensitive is it to thin clouds?

McBride et al., 2011

Summary (irradiance)

• No (or very minimal) data for ferry flight or RF01-RF04 due to failure of stabilized platform. Near complete coverage for remaining flights on fixed platform

- Circles + Sam's/Kirk's cosine response measurements improved HARP data analysis.
- Can still use HARP data for cloud retrievals, by relying on spectral techniques (and absolute techniques for tau>5). Need to see how this works for thin clouds (use information content analysis).
- Cannot derive aerosol products. Must rely on other data for atmospheric correction and ocean color products.

