CU AMAX-DOAS measurements of BrO, IO and OVOC

Rainer Volkamer

Sunil Baidar, Barbara Dix, Siyuan Wang

- CU AMAX-DOAS
 - Maximizing Signal-to-Noise
 - Real-time Motion Control
- Case studies: RF05, RF01, RF02
 - BrO / RAQMS
 - IO / Organohalides
 - CHOCHO / OVOC
- Relevance
 - OH- and Br-lifetime, Br recycling
 - Ozone, Mercury

CU Airborne Multi AXis-DOAS

MAX-DOAS observations from ground, ship, and research aircraft: maximizing signal-to-noise to measure 'weak' absorbers

Rainer Volkamer*^{ab}, Sean Coburn^a, Barbara Dix^a, Roman Sinreich^a

Volkamer et al., 2009, SPIE

Parameters measured by CU AMAX-DOAS	Detection limit / Accuracy under FT conditions	Temporal / Spatial resolution
НСНО	120 ppt	Acquisition time: 2-30 sec
СНОСНО	3 ppt	Profile scan: 1-5 mins
NO ₂	10 ppt	Vertical resolution: ~few 100m
HONO	15 ppt	during ascent/descent;
BrO	1 ppt	increases with distance from
10	0.1 ppt	the plane at constant flight
OCIO	0.7 ppt	altitude.
H ₂ O	2 ppm	Horizontal fetch:
Aerosol extinction		UV: ~ 20km
from O ₄ at 360, 477,		Vis: ~ 40km
and 577nm	0.01 - 0.03 km ⁻¹	NIR: ~ 70km

CU AMAX-DOAS on NSF/NCAR GV during HEFT-10 RF#1 (29 Jan 2010)

Technical Innovation

 1σ (0.16 degrees) < angle sensor accuracy (< 0.3 degrees)

 1σ (0.19 degrees) < motor encoder resolution (0.2 degrees)

Overall angle accuracy < 0.35 degrees

Relevance of angle uncertainty

Baidar et al., 2012, in prep.

Statistical Noise limit

Photon shot noise limited RMS = 10^{-4} in ~10 sec @ 440nm

Trace gases and Aerosols simultaneously

- two synchronized CCDs; same telescope; narrow FoV;
- Vertical resolution limited by FoV to few 100m

Vertical profiles: Non-linear Optimal Estimation

¹⁾ http://rtm.iup.uni-heidelberg.de/McArtim
²⁾ Rodgers (2000)

Example: Inversion of water vapour

mixing ratio [%] 1E-3 0.0110 0.1 16 16 H20 14 14 H2O VXL H2O Ragm 12 12 **RF05** 10 10 altitude [km] 8 8 6 6 aer. ext. ot. Temp. 4 4 2 2 0 [1/km] 0.00 0.02 0.040.06 320 330 350 360 [°Κ] 340290

- Water @ 442nm
- Good agreement below 4km:
 - RAQMS
 - VCSEL
- Above 4km, use of a stronger water band, and refined a-priori estimates have unexplored potential

Picture break

Detection of BrO in the tropical FT

BrO predicted along RF01 flight track (RAQMS)

 BrO is detectable over most of the tropospheric air column

- ~ 0.3 ppt BrO in lower FT (4.1km) ~ 6.3 ppt BrO above 14km
- RAQMS predicted BrO < 0.05 ppt over the entire flight
- Timing of RAQMS BrO peak corresponds to peak BrO at altitude

RF05, profile E: 1745-1829 UTC

- Aerosols:
 - below 1.8 km:
 - 2-6 km: near Rayleigh extinction
 - above 6km: << Rayleigh extinction
- Clouds: mostly cloud free

17:47 UTC @ 100m (in MBL)

18:30UTC @ 13.4km – return leg – clear above

BrO vertical profile E, RF05, 29 Jan 2012

- BrO was detected above 2km; visible through most of the air column
- No BrO was observed in the MBL; consistent with our ship data

Comparison of BrO: RF01, RF02, RF05

- Confirms RF05 case study over a wider spatial range
- BrO increases with altitude; No BrO was observed in the MBL

IO vertical profile E, RF05, 29 Jan 2012

IO detected over the entire air column

Comparison of IO: RF01, RF02, RF05

Satellite bias due to clouds? -> Dix et al.

Conundrum: CH₃I?

High IO \Leftrightarrow low CH₃I, really?

CHOCHO vertical profile E, RF05

CHOCHO detected over the entire air column

OVOC artifacts?

No CHOCHO during RF02 in air influenced by the stratosphere

Effect of organic carbon on OH reactivity

- OH reactivity = $\sum k_{i,OH} [VOC_i]$
- OVOC account for major share of OH reactivity

Effect of OVOC on Br reactivity

- Br reactivity = $\sum k_{i,Br} [OVOC_i]$
- What species are missing?

Relevance of bromine and iodine ?

- Reaction: $BrO + IO \rightarrow Br + I + O_2$
 - > IO shifts the Br/BrO ratio towards Br atoms
 - > accelerates the rate of mercury oxidation
 - > accelerates the rate of ozone destruction
 - > effects on HOx

Assumes: BrO ~ 1ppt IO ~ 0.02 ppt ?

⇒ Current first
estimates may
be a lower limits

Saiz Lopez et al., 2012

temperature in Kelvin.

Goodsite et al., 2004

(1)

Rapid mercury oxidation in upper FT

PAMS field data tropical UTLS

Empirical Hg-O3 relationships

Quote: '[A <u>sharp gradient</u> is observed]... <u>just above the</u> <u>tropopause</u> small amounts of mercury were found in over half of the aerosol particles that were analyzed.'

- Condensation?
- Ionization efficiency?
- Calibration?
- Size bias (D_p > 200nm)?

Murphy et al., 1998

Lyman and Jaffe, 2012; Rutter and Schauer, 2007

With τ_{Hg} < 1 day there is abundant semi-volatile mercury above 10 km, Which exists mostly in the particulate phase @ -20 to -30 C (~ 9-10km) Why is mercury not observed in particles already in the upper FT?

A missing piece... consistency with PAMS?

BrO constrains the rate of mercury oxidation Efficient oxidation in FT (~10 days @ 6km;

Particles in lower stratosphere tend to be larger due to coagulation (Murphy et al., 1998)

TORERO: frequent nucleation mode in upper FT. How much condensational sink surface area is due to particles with $D_p < 200$ nm (invisible to PAMS)?

Action items:

 \Rightarrow Evaluate aerosol surface area distribution data [IO, Hg(II)]

 \Rightarrow Air mass back trajectories (Run Flexpart along GV tracks?) \Rightarrow More analysis...

Conclusions

- BrO, IO, and CHOCHO are measured over the entire air column
- The spatial variability needs more analysis...
 - HARP J-values, and cloud OD
 - HSRL data access currently via 'Bruce'
 - Aerosol size distribution data

Acknowledgements:

TORERO Science team, Volkamer group NSF-CAREER, CARB, TORERO funding by NSF