Jan 29, 2012 – Feb 19, 2012 (22 days)

Equatorial Pacific Ocean and Stratospheric/Tropospheric Atmosphere Study

Sky, Ocean, and In-Between

AORI

IVERSITY OF TOKYC

Preliminary Results

Hiroshi Furutani^{*}, Mitsuo Uematsu^{*} and EqPOS Science Team

tmosphere and Ocean Research Institute (AORI) Univ. of Tokyo

Equatorial Pacific Ocean and Stratospheric/ Tropospheric Atmosphere Study

PI: Prof. Uematsu (AORI)

Jan 29, 2012 – Feb 19, 2012 (22 days)

MODIS Surface Chl-a (Feb 2012)

Chlorophyll a concentration (mg / m³)

Equatorial Pacific Ocean and Stratospheric/ Tropospheric Atmosphere Study

PI: Prof. Uematsu (AORI)

Jan 29, 2012 – Feb 19, 2012 (22 days)

MODIS AOD (Feb 2012)

Back Air Trajectories (10 days back) No-40 Honolulu /20 20 '14 St.5 St.1 St Latitude 0 1/29 Callao (Peru) - NF -20 SH . Start Altitude = 200 m Calculated -40 using HySPLIT 10 days-back 270 210 240 300 4000 Altitude [m] EqPOS 3000 (Leg1) Start Altitude = 200 m 2000 Free Troposphere Origin 1000 0 200 250 300

Diurnal Variation of O₃

Measured with Particulate Sulfate and Nitrate Monitor (R&P)

Filter samples (daily) will provide accurate MSA, nss-SO₄²⁻, NO₃⁻ concentrations (coming soon..)

Gerdien type ion counter (+/-), 4 min

(3) TEM Sample for Individual Analysis

Collection with impactor, 1~3 per day

Miura Group (Tokyo Univ. of Sic.)

Horizontal distribution of aerosol concentration

Miura Group (Tokyo Univ. of Sic.)

Positive & Negative Ion concentrations

Miura Group (Tokyo Univ. of Sic.)

High concentration

Ion relate with concentration of nucleation mode aerosols?

Other Aerosol Data Coming Soon...

Categoly	Туре	Instrument	Time Resolution	Note	Target	
Aerosol	Size distribution	OPC(KC01D)		0.5-5 μm, 5 size bin		
		OPC(KC18)	3 min	0.3-0.5 μm, 5 size bin		
		SMPS3034		10-487 nm, 54 size bin		
	Chemical composition	Filter Sampler 1	12 hour	whole size	Ionic Spcies MSA	
		Filter Sampler 2	1 day	2 size fraction		
		Filter Sampler 3	3 day	(d < 2.5 μm, 2.5 μm < d)	Trace Metals	
		Cacade Filter Impactor	6 or 12 days	0.06-12 μm, 12 size bin	Phosphorus (Org-P and Inorg-P)	
		Sampling by PILS	12 or 24 hours	Aerosol samples in liquids		
		Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS)	Real-time	Single particle size-resolved mass spectrometry, d = 100 nm~3 μm	Org-N, Metals, Phosphorus, Oxy- Organics, Dust etc	
		TEM Single Particle Observation	1-3 per day		Morphology, Elemental Composition	
	Mass concentration	EC/OC analyzer	2 - 33hours	PM2.5		
		Nitrate Monitor	10 min			
		Sulfate Monitor	1 hour			
	Number	Water-CPC	1 sec	Total concentradtion for d > 5 nm		
		CCN Counter	1 hour	SS = 0.1, 0.2, 0.3, 0.4, 0.6 (%)	CCN Activity	
	concentration	Small Ion Concentration	4 min			

Omori and Tanimoto (NIES)

Yuko Omori and Hiroshi Tanimoto (National Institute for Environmental Studies)

Subjects (NIES)

Omori and Tanimoto (NIES)

 Underway measurement for
DMS and other VOC dissolved in surface seawater with equilibrator-inlet-PTR-MS (EI-PTR-MS)

2.

DMS and other VOC flux measurement with "profiling buoy" system

DMS cocentration	Seawater (nM)	Atmosphere (ppb)
Min	1.3	0.00
Max	8.8	0.42
Ave (SD)	3.2 (1.0)	0.07(0.08)

5 sec int. for each gas 30 sec/per cycle Detection limit ~0.02 nM

Comparison with previous observations

DMS (nM) (SD)	Min-Max	Area	Ref
3.4 (0.9)	1.4-10.1	10S-0N, 85-115W	this observation
3.1		0-5N, 80-140 W	Andrea & Raemdonck (1983)
2.0 (0.70)	0.6-4.2	15N-10S, 145-165 W	Bates et al.(1993)
2.4	1.7-3.3	5.6-5.7S, 107 W	Turner et al. (1996)
1.58 (0.6)		Equatorial upwelling	Marandino et al. (2007)
0.95 (0.40)		Gyre	Marandino et al. (2007)
1.88		5-20N, 140W	Andrea & Raemdonck (1983)
2.22	0.94-4.06	Sargasso Sea, 25N	Andrea & Barnard (1984)

高時間分解能でのDMS測定によって、これまで観測されてこなかった DMS濃度の局所的なピークを捉えることが出来たのかもしれない Omori and Tanimoto (NIES)

Calculation for sea-air DMS flux

 $Flux = k_{DMS} \times (DMS_{seawater} - DMS_{Air}) = k_{DMS} \times (DMS_{seawater})$

 $k_{DMS} = 0.31 \times U^2 \times (Sc_{DMS}/660)^{-0.5}$ (Wanninkhof et al. 1992)

Sc_{DMS}= 2674.0- 147.12t + 3.726t²- 0.038t³ (Saltzman et al. 1993)

DMS: DMS concentration

 k_{DMS} : exchange velocity of DMS

Sc_{DMS}: schmidt number of DMS

t: seawater temperature (°C)

U: wind speed (m s⁻¹)

Omori and Tanimoto (NIES)

DMS flux and wind speed

(NIES)

Omori and Tanimoto (

DMS Flux vs. Atm-DMS

フラックスが大きい → 大気DMS濃度が増加する傾向を確認

今後、フラックスブイ観測との整合性を確認・エアロゾルなどのデータとも 比較し、大気中の粒子形成とDMSの関係をみていきたい

2. "Profiling Buoy" observation

Subject of profiling buoy observation

- Measurement of flux from of DMS and other VOC profiles
- Gas exchange velocity estimation

Location of Flux Buoy Measurement

Chlorophyll-a [mg m-3] @ ALTITUDE [m]=first

DMS and acetone concentration

Each height from sea surface : 1.2, 5.0, 20, 53, 120, 258, 1400 (upper deck) cm

Omori, Iwata and Tanimoto

Profiles of DMS and acetone

Omori and Tanimoto (NIES)

DMS(m63) Acetone(m59) 1000 1000 Height (cm) Height (cm) 100 10 10 1 1 0.8 0.3 0.5 1.0 1.5 2.0 ppbv ppbv

Average of 5 profiles $(\pm SD)$

Omori, Iwata and Tanimoto

Future Work

 Comparison of flux observed by "flux buoy" and estimated from DMS air/sea concentrations.

=>Factor controlling DMS flux

Relationship with microorganisms and DMS concentration

=> Microbial structure/functional gene vs. DMS concentration.

Relationship with Atmospheric Aerosols

Characterization of Sea Surface Microlayer

Sea-Surface Microlayer (SML) Sampling

Top thin layer of ocean surface (air-liquid interface)

Sea-Surface Microlayer (SML) Sampling

Laboratory Bubble Bursting Aerosol Generation Exp.

Surface Microlayer: Gelatinous biofilm?

Particulate P << Dissolved P in bulk seawater Particulate P may be enriched in SML?

Cunliffe and Murrell (2009)

Chemical Fractionation of Phosphorus

Grasshoff et al. (1999), Moutin et al. (2005) and Chen et al. (2006)

TDP Sea-Surface Microlayer (SML) Sampling

Station No

TDP Sea-Surface Microlayer (SML)

Station No

TDP Sea-Surface Microlayer (SML)

Laboratory Bubble Bursting Aerosol Generation Exp.

Sampling of Stratospheric Atmosphere

• Since 1985, stratospheric air sampling has been carried out repeatedly, over Japan (Sanriku, Taiki), Sweden (Kiruna), and Antarctica (Syowa).

Antarctica (2004)

Sanriku (2007)

Antarctica (2008)

Sampling of Stratospheric Atmosphere

- Since 1985, stratospheric air sampling has been carried out repeatedly, over Japan (Sanriku, Taiki), Sweden (Kiruna), and Antarctica (Syowa).
- It primarily aims to elucidate the stratospheric transport / chemical processes by direct and long-term sporadic air sampling.
- Concentration of various compounds and isotopes including green-house gases have been monitored;
 - > CO_2 , CH_4 , N_2O , SF_6 , etc.
 - > δ^{15} N of N₂, δ^{18} O of O₂, CO, H₂, Ar, etc.
- Gravitational separation of major components has been found in their stratospheric vertical distributions.

- It is essential to sample the air "<u>over the equator</u>" to investigate the transport process of greenhouse gases from the troposphere to the stratosphere.
- Air sampling had never been carried out over the equator. ("<u>data gap</u>")

Flight Train Configuration

Flight Sequence

Technical Challenges for Launch

- Narrow deck; The open space of vessel deck is limited to only 20 m^L, 7 m^W.
- Many equipments are located: such as a big crane C-frame, poles, and antennas.
- Minimum cargo; It is important to utilize existing equipments on vessel as much as possible.
- Limited number of people; "a few scientists + crews" (no staff from ISAS balloon office).

Newly Modified Static Launch Method

Launch from "Hakuho-Maru"

Payload Recovery by "Hakuho-Maru"

All Four Flights Successfully Done !!

Chemical Analysis for Stratospheric Air

 CO_2 CH_4 N_2O SF_6 CO H_2 Ar

 δ^{15} N of N₂ δ^{18} O of O₂ D/H of CH₄

etc.

, Aoki Group Tohoku Univ.

Preliminary results 2012.07.15 Equatorial

Chemical Analysis for Stratospheric Air

 CO_2 CH_4 N_2O SF_6 CO H_2 Ar

 δ^{15} N of N₂ δ^{18} O of O₂ D/H of CH₄

etc.

Summary of rubber-balloon soundings

(Total 6 Launches)

CO₂, O₃, H₂O T, RH, GPS

Altitude = Surface to 30 km

Launch time (LT)	Longitude	Sensors
09:12, Feb. 2, 2012	95.501degW	T, RH, GPS
10:56, Feb. 3, 2012	100.035degW	H2O, O3, T, RH, GPS
17:30, Feb. 5, 2012	110.009degW	CO2, T, RH, GPS
17:14, Feb. 6, 2012	115.000degW	CO2, T, RH, GPS
13:37, Feb. 7, 2012	115.021degW	H2O, O3, T, RH, GPS
17:29, Feb. 7, 2012	115.010degW	CO2, T, RH, GPS

Instruments for soundings

Cryogenic Frostpoint Hygrometer (CFH)

uncertainty: < 9% vertical resolution: < 100m Electrochemical Concentration Cells (ECC) ozonesonde

Radiosonde

reference gas

container

uncertainty: a few ppmv(?)

vertical resolution: ~240m

sensor

CO2 sonde

uncertainty: ~10% vertical resolution: ~100m

Equatorial Pacific Ocean and Stratospheric/Tropospheric Atmosphere Study

Gra

was mainly influenced by SH (South Pacific Ocean) air mass.

Summary

- Particulate matter seems to be enriched in SML, but only St. 1 among 5 stations.
- Pr Continuous and simultaneous sewater-DMS and atmospheric DMS were successfully conducted with 30 sec time resolution with EI-PTR-MS.
 - Patch-like high seawawter-DMS in tropical /EQ Pacific Ocean
 - Emission from ocean seems to incrase atmospheric DMS
- Stratospheric large balloons were all successfully launched from R/V Hakuho and recovered for the first time.
 - Nicely overlaps with TORERO campaign in time and space, and scientific research topics.
 - Marine biogeochemical /biogeochemical information would be interesting.

Acknowledgement

- All participants for *more-than-planed* research activity and fun and joy together
- R/V Hakuho crew (Seino captain) for perfect support!
- TORERO (PI Prof. Volkamer) project for excellent collaboration.

RSITY OF TOKYO

(at the end of the cruise)

AOR

Jan 29, 2012 – Feb 19, 2012 (22 days)

Equatorial Pacific Ocean and Stratospheric/Tropospheric Atmosphere Study

Ocean, and In-Between

Thank you for your attention!

IE UNIVERSITY OF TOKYO