

CU LED-CE-DOAS and MAX-DOAS: diurnal cycles, vertical profiles and air-sea fluxes of glyoxal

Sean Coburn¹, Ryan Thalman¹, Ivan Ortega¹, Roman Sinreich¹, Barbara Dix¹, Rainer Volkamer^{1,2}

¹Dept. Chemistry and Biochemistry, and ²CIRES, CU Boulder

20°25'44.75" S 87°31'49.83"

(mg/m) Coale

- CE-DOAS
 - TORERO set up
 - Preliminary data
- Case Study RF17: SMAX, AMAX, and CEDOAS
- Eddy Covariance Flux measurements
 - Method
 - Preliminary results

- MAX-DOAS data from four cruises in 2008-2009
- MAX- DOAS Daytime only data
- What is the diurnal cycle?

Light Emitting Diode Cavity Enhanced DOAS (CU LED-CE-DOAS)

Thalman and Volkamer, 2010, AMT

NSF

Setup for TORERO

Glyoxal Time Series

MAX-DOAS telescope aboard KA

- 3 instruments overlap during GV overpasses
 - Airborne MAX-DOAS (AMAX-DOAS)
 - Ship-based MAX-DOAS (SMAX-DOAS)
 - CE-DOAS

MAX-DOAS: Multi-Axis DOAS

The lower the Elevation Angle the longer the light path through the BL

Vertical profile retrieval method

Differential effective path length

Relies on "collapsing" of O₄ dSCDs under elevated aerosol load conditions

RF17: HSRL Curtain

RF17: Glyoxal VMR Comparison

Descent Feb 26

Vertical profile information can help with the assessment of source apportionment and flux measurements are a good compliment to this!

Eddy Covariance Flux Measurements

- Allow to measure vertical gas fluxes in the MBL
 - Facilitate understanding of air-sea exchange of measured species
- Require fast response measurements of wind velocities and the concentration of the desired analyte
 - Flux is the covariance of the vertical wind velocity and concentration of analyte

G. Burba and D. Anderson. "A Brief Practical Guide to Eddy Covariance Flux Measurements," 2005

Fast sensor: Time constant

Fast Sensor: White Noise

Fast Sensor: White Noise

Eddy Covariance Calculations

5 Step Program

- 1) Correct wind data to compensate for motion of the measurement platform
- 2) Interpolate the measured analyte concentration onto the timestamp for the wind data
- 3) Relative wind analysis and phase correction
- 4) Calculate 10 minute flux averages and statistics for the time series
- 5) Apply additional filters to remove any "bad" 10 minute averages and then calculate 1 hour averages

Eddy Covariance: Interpolate data

Data measurement frequency needs to be the same as the wind sensor frequency

• CE-DOAS data: measured at 2Hz, need to interpolate to 10Hz

Eddy Covariance: Wind direction and phase correction

Analyze Relative Wind Direction

• Hour long segments are assessed whether they can be included in the data set based on relative wind direction

• Needs to be $\pm 60^{\circ}$

Phase Correction

• Because the sample is drawn through an inlet, there is lag time between the wind measurements and the sample measurements

• To account for this a fast-switching valve was connected to the sample inlet and dry nitrogen was pulsed into the line every hour

• The pulse that triggered the valve was recorded on the wind sensor data logger and thus serves as a reference point to which the sample data can be adjusted

Eddy Covariance: Wind direction and phase correction

Eddy Covariance: 10 minute averages

Eddy Covariance: 10 minute averages

Eddy Covariance: 10 minute averages

Eddy Covariance: Hourly averages

Summary

- Successfully built and deployed LED-CE-DOAS for ship based measurements of glyoxal
 - Able to measure the full diurnal cycle to compliment the SMAX-DOAS
- The derived glyoxal concentrations are consistent between AMAX, SMAX (parameterization method), and optimal estimation
 - Boundary layer values also agree with cavity measurements
- Doesn't seem to be a vertical profile in the boundary layer
- CE-DOAS eddy covariance flux measurements also successful

