Water vapor: initial analyses with other tracers

Mark Zondlo + VCSEL, O₃, CO teams Dept. of Civil and Environmental Engineering

Princeton University

Ozone / water vapor tracer-trace plots

Ozone / water vapor tracer-trace plots

Ozone / water vapor tracer-tracer plots

RF02 and RF03 definitely saw stratospheric-influenced air, unlike RF01 Two slopes in lower and middle troposphere for H_2O/O_3 ; boundary layer/free trop.?

O_3 vs. H_2O by pressure

Based upon pressure, not just a boundary layer / free troposphere feature; examine vertical profiles of gases

RF01 vertical profiles

pressure (hPa)

RF02 vertical profiles

pressure (hPa)

RF03 vertical profiles

pressure (hPa)

time series near intrusion

While ozone decreased, water stayed continued to decrease throughout descent

 O_3 vs. CO

For comparison: O_3 vs. CO for RF03

Summary

- VCSEL performed well in FF01-RF03; no problems noted
- complicated strat.-trop. mixing, fine scale structure in water vapor (what mechanism responsible for fine-scale H₂O?)
- next steps: distribution of RH in troposphere and identifying mechanisms responsible for horizontal water vapor variability