

Understanding Atypical Mid-Level Wind Speed Maxima in Hurricane Eyewalls

Daniel P. Stern UCAR/VSP, Monterey CA

Source: NASA/ISS

Motivation

- Eyewall winds are typically maximized at the top of the boundary layer (~500-1000 m), and decrease monotonically upwards.
- In Patricia (2015), there is an atypical profile, with an additional maximum at mid-levels (4-5 km).
- Here, we show that this structure is likely a consequence of systematic unbalanced flow.

Typical Radius-Height Wind Structure

Hurricane Ivan (2005)

Stern et al. (2014)

Vertical Profiles of Tangential Wind

Stern et al. (2014)

Wind Speed at z=2 km and Dropsonde Trajectories

Wind Speed from TCI Dropsondes

Patricia (10/23/15), ~2000 UTC

Wind Speed from P3 Doppler Analyses

SE to NW Leg (~2030 UTC)

Azimuthal Mean Vt and Vr from P3 Doppler Analyses

This Atypical Wind Structure is Not Unique to Patricia

Rita 09/21/2005 height (km)

radius (km)

Felix 09/03/2007

Idealized WRF Simulation

Modeling an Idealized Patricia

Example Axisymmetric CM1 Simulation

CM1 Vt (t=37h), max = 81 m/s

Example Axisymmetric CM1 Simulation

2

0

0 5

radius (km)

10 15 20 25 30 35 40 45 50 55 60

radius (km)

-15

-20

Gradient Wind (Vg)

Unbalanced Flow

Kepert (2001)

Steady-state and Symmetric Radial Momentum Equation

$$u\frac{\partial u}{\partial r} + w\frac{\partial u}{\partial z} - \left(f + \frac{v}{r}\right)v = -\frac{\partial\phi}{\partial r} + DIFFUSION$$

If there is no advection or diffusion:

$$u\frac{\partial u}{\partial r} + w\frac{\partial u}{\partial z} - \left(f + \frac{v}{r}\right)v = -\frac{\partial \phi}{\partial r} + DIFFUSION$$

Then we get gradient wind balance

$$\left(f + \frac{v}{r}\right)v = \frac{\partial\phi}{\partial r}$$

Unbalanced Flow

If advection and/or diffusion are non-zero, we get unbalanced flow

$$u\frac{\partial u}{\partial r} + w\frac{\partial u}{\partial z} - \left(f + \frac{v}{r}\right)v = -\frac{\partial\phi}{\partial r} + DIFFUSION$$

$$u\frac{\partial u}{\partial r} > 0 \quad \text{AND/OR} \quad w\frac{\partial u}{\partial z} > 0 \quad \text{Contribute to supergradient flow}$$
$$u\frac{\partial u}{\partial r} < 0 \quad \text{AND/OR} \quad w\frac{\partial u}{\partial z} < 0 \quad \text{Contribute to subgradient flow}$$

Kepert (2001)

Contributions of Radial and Vertical Advection

Relationship Between Vertical Structure and Size

Initial RMW=90 km

Initial RMW=36 km

Next Steps

Analysis of 3D idealized simulations in CM1

 Boundary layer model of Kepert forced by gradient wind fields from CM1 simulations.

 Kepert's model forced by observational analyses of gradient winds.

Summary and Conclusions

- Patricia near peak intensity had an atypical wind profile, with both a boundary layer maximum and a mid-level (4-5 km) maximum.
- This structure has been seen in a few other intense/small TCs.
- The mid-level maximum is seen in simulations, and is a consequence of systematic unbalanced flow associated with a vertical oscillation in the radial winds.

Bonus Slides!

